

FIG. S1: Schematic of the FEA, with weak boundary conditions at $x=0$. The wedge half-angle (α) and indentation depth Δ are also indicated.

FIG. S2: Uniaxial stress-strain curve and mechanical properties used for the finite element simulation. The maximum interfacial shear stress, $\tau_{\max }=Y / \sqrt{3}$ where $Y=275 \mathrm{MPa}$.

FIG. S3: Optimized FEA mesh used for $2 \alpha=30^{\circ}$ analysis at three different magnifications.

FIG. S4: Plastic strains obtained using FEA for a wedge angle (2α) of 120° using strong (left) and weak (right) boundary conditions. The strain patterns are visually almost indistinguishable; this is also confirmed by an element-by-element comparison of the two results.

