## **Supplementary Information**

## Silicon/polypyrrole nanocomposite wrapped with graphene for lithium ion anodes

Changling Li<sup>1</sup>, Chueh Liu<sup>1</sup>, Zafer Mutlu<sup>1</sup>, Yiran Yan<sup>1</sup>, Kazi Ahmed<sup>2</sup>, Mihri Ozkan<sup>2</sup> and Cengiz S. Ozkan<sup>1,3</sup>

<sup>1</sup> Materials Science and Engineering Program, University of California Riverside, CA 92521

<sup>2</sup> Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521

<sup>3</sup> Department of Mechanical Engineering, University of California Riverside, CA 92521

Thermogravimetric analysis was performed to estimate the Si content in the PPy/SiNPs composite as shown in Figure S1. Upon heating up to 1000 °C under an air atmosphere, SiNPs has an increase of 46.7 wt.% in weight due to the partial oxidation of Si particles; Pure PPy gel has totally burned at a temperature range from 650-700 °C with a residue of 7.8 wt.%. For the TGA behavior of PPy/SiNPs, the weight percentage of PPy/SiNPs drops to the minimum with a value of 83.9 wt. % at 700°C, due to the complete burning of the coated PPy hydrogel. Then the SiNPs immediately start oxidation in air. Hence, 700 °C is assumed to be critical temperature for estimation. The Si content in the PPy/SiNPs is calculated to be 70.3 wt. % by using PPy/SiNPs retention (83.9 wt. %) subtracting the retained weight of PPy (7.8 wt. %) and the slightly increased weight of Si (5.8 wt. %) at 700 °C.



Figure S1. TGA curves of SiNPs, pure PPy and PPy/SiNPs/rGO composite.



**Figure S2.** (a) Galvanostatic charge/discharge profiles of C-rates test measure from 0.1 to 2.1 A  $g^{-1}$ . (b) Charge/discharge curves at 2.1 A  $g^{-1}$ .