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Supplementary Methods 

Model description 

• Population, as the core sub-model, captures the dynamics of male and female population growth and ageing, and is 

directly linked to all SDGs through other sub-models that compute energy demand, food consumption, and water 

use, amongst others.  

• Education computes the size of male and female population with primary, secondary, and tertiary education through 

feedback loops between enrolment and graduation rate, directly interacting with: SDG2 via the impact of education 

level on diet change and reduced meat consumption; SDG3 and SDG4 via improving wellbeing and educational 

attainment with higher number of graduates at all levels, and; SDG8 via providing the labour force necessary to 

power the economy.  

• Economy computes economic outputs through a Cobb-Douglas production function where economic output is 

computed based on labour input, capital input from energy and non-energy sectors, new technology productivity 

factor, and ecosystems and climate change impacts. Economy interacts with all SDGs except for SDG4 (as 

educational attainment is not modelled in FeliX as a function of economic outputs).  

• Energy computes (a total end-use) energy demand as a function of GDP per capita and population, the energy 

consumption and market share of three fossil (i.e., coal, oil, gas) and three renewable (i.e., solar, wind, biomass) 

sources, and the production of different (six) energy sources based on a detailed modelling of installed capability 

and their ageing process, energy technology advancement (e.g., learning curves), investments, and availability of 

resources (e.g., average sun radiation, exploration and discovery of new fossil resources). Energy interacts with 

most of the SDGs such as SDG7 through renewable energy production, SDG13 through reducing emissions from 

fossil fuels, and SDG15 by decreasing the demand for land-use change for deforestation for biomass generation.  

• Water simulates water supply and demand across agriculture, industrial, and domestic sectors as a function of 

available water resources, drought out rate, the impact of climate change, water withdrawal, and the recovery of 

used water. Water interacts mostly with SDG2 through supplying water for agricultural activities and SDG3 by 

providing quality water for domestic use.  

• Land, Food, Fertiliser, Diet Change, and Biodiversity are extensively described in the FeliX model documentation 

(Eker et al., 2019; Walsh et al., 2017). They simulate the change of four different land-uses, the demand and 

production of food (i.e., crop-based meat, pasture-based meat, dairy and eggs, plant-based products), feed, and 

energy crops, diet shift reflecting the proportion and type of meat consumption in the human food (five diet 

compositions), (nitrogen and prosperous) fertiliser uses and their footprints, and the restoration and extinction of 

species. The food consumption is primarily determined through the impacts of diet change (towards less meat diets) 

across different population segments (e.g., male and female, level of education), modelled based on two feedback 

mechanisms from psychological theories: diet change due to social norms and diet change due to a threat and coping 

appraisal (e.g., in response to climate change) (Eker et al., 2019). The demand for agricultural land is balanced by 

increasing crop yields with fertilisation. The impacts of these sub-models are diverse across most of the SDGs. For 

example, the limitation of agricultural activities through diet change in SDG2 can substantially reduce pressure on 

deforestation in SDG15, and the impact of biodiversity conservation can subsequently impact general public health 

in SDG3.  

• Carbon Cycle and Climate compute CO2 emissions from the land and energy sectors, as well as the atmospheric 

radiative forcing and temperature change of the emitted CO2 and their cycle and absorption through terrestrial 

reservoirs and oceans based on the C-ROADS model (Sterman et al., 2012). They also model the effect of 

improvement in carbon capture and storage on controlling emissions. The radiative forcing of other gases (CH4, 

N2O, HFC) are read externally in the model via links to the RCP scenario database (van Vuuren et al., 2011). See 

Walsh et al.(Walsh et al., 2017) for the detailed equations of carbon cycle and climate modelling. These sub-models 

interact with most of the SDGs, and primarily with SDG13 through climate change impacts. FeliX models the 

effects of feedback interactions between climate change (i.e., increasing temperature or carbon concentration) and 

several other sectors, including biodiversity loss (e.g., species extinction rate), agricultural (crop and livestock) 

yield, life expectancy, economic growth, and water supply availability. However, the model still does not include 

some of other related biogeophysical feedbacks (e.g., the effects of wildfires on land-use change) (Calvin & Bond-

Lamberty, 2018). 

  



Model sensitivity analysis 

With Morris elementary effects, we computed the sensitivity index, μ*, from a total evaluation of 𝑟 × (𝑝 + 1) experiments, 

where 𝑟 is the number of sampling trajectories over the number of parameters 𝑝 + 1 points. The μ*, which shows the overall 

effect of a parameter on an output, can be sufficient on its own in providing reliable ranking of model parameters (Campolongo 

et al., 2007). We generated experiments by systematically sampling random values (Morris sampling) using the Exploratory 

Modelling Workbench (Kwakkel, 2017) across 114 model parameters and computed μ* using the SALib Library (Herman & 

Usher, 2017) implementation of this technique, both in the Python environment. To ensure that the ranking obtained from the 

μ* elementary effects converges, we computed the sensitivity index of different samples of increasing size from 250 to 5,000 

samples (equivalent to 28,750 - 575,000 experiments) and used the μ* of the sample size of 2,000 (230,000 experiments), where 

the parameter ranking was stabilised (Supplementary Figure 1), as the reference. We also computed μ* over time (i.e., 2030, 

2050, 2100) to understand how the sensitivity of parameters can change in response to non-linear model behaviour throughout 

time (Figure 3).  

While this can help in ranking model parameters, it does not still specify how many of the ranked parameters should be included 

in the modelling of scenarios. We systematically explored the impact of inclusion or exclusion across top-ranked parameters. 

This was a more reliable approach compared to setting a priori, subjective cut-off value for μ* where a high cut-off value can 

lead to the inclusion of many parameters (some of which with negligible effects) and a low cut-off value can cause the exclusion 

of some important parameters that could potentially have significant effects, both of which with biased impacts on the 

identification of key model parameters. 

To select influential parameters from the ranking results, we assumed that the n top-ranked parameters, where n can vary from 

1 to all parameters, are those that are the most influential. We then systematically tested for what number of n, the metrics of 

sampling across the n top-ranked parameters have high correlations with the metrics of sampling across all parameters (i.e. 

maximum range of behaviour) (Hadjimichael, 2020). We tested the degree of correlation between the Latin Hypercube 

sampling across all parameters (Set 1), across the n top-ranked parameters (Set 2), and across all parameters except the n top-

ranked parameters (Set 3). Ideally, if the n top-ranked parameters are the most influential, they should have the same impacts 

on outputs as when we sampled across all parameters (i.e., Set 1-Set 2 and Set 1-Set 3 correlations converge to 1 and 0 

respectively). We started from 𝑛 = 1 and increased 𝑛 = 𝑛 + 1 until sampling across the n top-ranked parameters (Set 2) 

generated at least 99% correlation with sampling across all parameters (Set 1). The generation and evaluation of the three sets 

for different number of 𝑛 values resulted in 2,400,000 computational experiments. This approach in identifying influential 

parameters is more reliable compared to a priori cut-off value in the ranking results where the inclusion or exclusion of 

parameters can be biased to our subjective thresholds. A priori cut-off value in selecting the number of influential parameters 

can lead to either the inclusion of a large set of parameters (some of which with negligible effects) or the exclusion of some 

important parameters that could potentially have significant effects, both of which will make the identification of key 

parameters biased (Hadjimichael, 2020). 

  



Model calibration 

Among various influential parameters, those related to the demographic and macro-economic input assumptions were the only 

ones harmonised with other integrated assessment models as they form the fundamental underlying logic for each SSP, and 

their harmonisation is important for generating internally consistent scenarios. The original quantifications of these 

socioeconomic assumptions are also based on country-level, multi-dimensional (e.g., age, gender, level of education) 

mathematical modelling of demography and economy growth (Dellink et al., 2017; Samir & Lutz, 2017), and therefore their 

estimates were considered as reference for FeliX (as well as across all other marker integrated assessment models). We used 

Vensim’s built-in optimisation algorithm (i.e., Powell) to find the value of FeliX’s (socioeconomic) parameters (Section 2.2) 

aligned with the reference demographic and economic model (Dellink et al., 2017; Samir & Lutz, 2017). The objective function 

(also called payoff function) was defined as the weighted difference between FeliX’s socioeconomic output variables and the 

quantification of the same outputs by formal demographic and economic models at each time step under each SSP-RCP 

scenario. The optimisation search under each scenario involved 1000 iterations from 5 different starting point (i.e., 5000 

evaluation per scenarios) for different initialisation to avoid local minimum. 

The quantification of non-socioeconomic parameters (related to energy demand, food consumption, etc.) was not harmonised 

with other integrated assessment models to allow the generation of other plausible futures. Their quantification was based on 

FeliX’s initial parameterisation (previously calibrated by Eker et al. (2019), Walsh et al. (2017), and Rydzak et al. (2013)) and 

its variation across scenarios aligned with the scenario assumptions (Section 2.3). To illustrate, the influential FeliX’s parameter 

related the diet composition was calibrated based on five groups of diet (Eker et al., 2019). Diet composition 1 (sustainable) 

was when meat-eaters become flexitarian (limited animal-based foods) and vegetarians eat vegan (high plant-based foods). 

Diet composition 2 (relatively sustainable) was when meat-eaters adopt a healthy diet (moderate animal-based foods and high 

plant-based foods) and vegetarians eat reference vegetarian diet. Diet composition 3 (relatively sustainable) was when meat-

eaters eat healthy diet and vegetarians eat a vegan diet. Diet composition 4 (slightly better than status quo) was when everyone 

(meat-eaters and vegetarians) is flexitarian (a mix of animal-based and plant-based foods), and therefore there is only a slight 

improvement from the current situation, but still on the same trends. Diet composition 5 (status quo) was when everyone follows 

the current reference meat and vegetarian diets (high meat and moderate vegetable consumption). Each of these diet 

compositions was assigned to a scenario consistent with our qualitative assumptions (Section 2.3) about environmental impacts 

of food consumptions. Other influential parameters were calibrated in the same way. Supplementary Table 3 includes the 

detailed quantified assumptions for uncertain model parameters under each scenario as well as information on the unit of each 

parameter. 

  



Design of experiments 

We considered three aspects in designing the computational experiments. The first two aspects were sampling method and 

sample size, that together specified how to randomly collect assumptions from the uncertainty space of scenarios (e.g., 

population growth, GDP, technology advancement) to create an ensemble of SOWs. Complex, highly dynamic models such as 

FeliX can create non-linear and unpredictable model behaviour, and sampling uniformly may not be able to explore a sufficient 

range of model behaviour. We used Latin Hypercube Sampling (McKay et al., 2000) to generate SOWs with the highest 

possible coverage of the uncertainty space and level of randomness, generating 50,000 SOWs across five scenarios (10,000 

SOWs per each). We chose Latin Hypercube Sampling as it creates evenly spaced and distributed grid boxes in the uncertainty 

space and (quasi) randomly selects a sample from each grid box. This results in a sampling strategy that is more evenly 

distributed across the space compared to, e.g., uniform random sampling (Saltelli et al., 2000). Latin Hypercube Sampling has 

been also suggested as suitable technique for the design of experiments in previous exploratory modelling studies (Bryant & 

Lempert, 2010). Sample size (i.e., the number of experiments to run) was selected based on the stability of performance 

indicators with increasing number of experiments.  

The third aspect in the design of experiments was the delineation of the uncertainty range to sample from. Previous studies 

suggested alternative ways to delineate a multi-dimensional uncertainty space based on learning and feedback from the 

influence of uncertainties on model behaviour (Islam & Pruyt, 2016; Moallemi et al., 2018). We specified the uncertainty range 

of 10-30% around the calibrated value of parameters, with the range’s length varying between parameters depending on the 

meaningfulness of range’s bounds for the model parameter and the interpretability of model response. For example, a highly 

sensitive parameter such as fertility rate, whose variation could impact various parts of the model, had a narrow uncertainty 

range for having reasonable projection of population size. Supplementary Table 3 includes the quantified uncertainty range of 

key scenario parameters under five selected scenarios (SSP1-2.6 to SSP5-8.5).  

 

 

  



 

 
Supplementary Figure 1. The convergence of parameter ranking and sensitivity index in the projection of model’s 

control variables in year 2100, for the increasing number of sample size. The figure only shows the convergence of top 10 

most sensitive parameters which for better visibility. 
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Supplementary Figure 2. Scenario projections with the FeliX model and their comparison with the projections of 

major demographic and economic models (Dellink et al., 2017; Samir & Lutz, 2017) and integrated assessment models 

(Bauer et al., 2017; Calvin et al., 2017; Fujimori et al., 2017; Kriegler et al., 2017; Popp et al., 2017; Riahi et al., 2017; 

van Vuuren et al., 2017). Projections cover the period 2020-2100 with an annual time step. 

  



Supplementary Table 1. Qualitative assumptions of scenarios 

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-6.0 SSP5-8.5 

Socioeconomic 

Population growth (Samir & Lutz, 2017) 

Low population growth Moderate population growth High population growth Moderate population growth Low population growth 

Educational attainment (Samir & Lutz, 2017) 

Low number of primary and 

secondary graduates by the end 

of century (due to declining 

population) but high number of 

tertiary graduates 

Moderate number of 

primary, secondary, and 

tertiary graduates 

High number of primary and 

secondary graduates but low 

number of tertiary graduates 

High number of primary and 

secondary graduates but 

relatively low number of 

tertiary graduates 

Low number of primary and 

secondary graduates by the 

end of century (due to 

declining population) but 

high number of tertiary 

graduates 

Economic growth (Cuaresma, 2017; Dellink et al., 2017) 

Relatively high economic 

growth which is tempered over 

time to balance with well-

being, equity, and 

sustainability 

Moderate economic growth 

following historical patterns 

Low economic growth due 

to limited international 

cooperation, low 

investments in education 

Relatively low economic 

growth globally due to unequal 

progress between high- and 

low-income countries. 

High economic growth that 

is much focused on 

consumerism and resource-

intensive consumption 

Energy 

Energy demand and market share of renewable and fossil fuels (Bauer et al., 2017; O’Neill et al., 2017) 

Low energy demand; high, 

relatively high, and moderate 

market share for solar, 

biomass, and wind; low market 

share for all fossil energies 

Relatively high energy 

demand; relatively high, 

low, and high market share 

for solar, biomass, and wind; 

moderate, moderate, and 

high market share for coal, 

gas, and oil 

Moderate energy demand; 

low, high, and low market 

share for solar, biomass, and 

wind; relatively high, 

relatively low, and moderate 

market share for coal, gas, 

and oil 

Moderate energy demand; 

moderate market share for solar, 

biomass, and wind; relatively 

low, low, and moderate market 

share for coal, gas, and oil 

High energy demand; 

relatively high, low, and 

relatively high market 

share for solar, biomass, 

and wind; relatively high, 

high, and high market 

share for coal, gas, and oil 

Energy technology advances (fossil fuels recovery and exploration technology and renewable technology investment and efficiency) (Bauer et al., 2017; 

O’Neill et al., 2017) 

Fast renewable energy 

technology improvement, and 

limited fossil energy 

technology improvement (both 

efficiency and investment) 

Moderate renewable and 

fossil energy technology 

improvement (both 

efficiency and investment) 

Slow renewable and fossil 

energy technology 

improvement (both 

efficiency and investment) 

Relatively slow renewable and 

fossil energy technology 

improvement (both efficiency 

and investment) 

Moderate renewable 

energy technology 

improvement and fast 

fossil technology 

improvement (both 

efficiency and investment) 

Investment in fossil fuels and their resource availability, renewable production cost reduction, limit on emissions from fossil fuels (Bauer et al., 2017; 

O’Neill et al., 2017) 

High, relatively high, and 

moderate solar, biomass, and 

wind energy production; low 

energy production for all fossil 

fuels; low emissions and 

radiative forcing 

Relatively high, low, and 

high solar, biomass, and 

wind energy production; 

moderate, moderate, and 

high coal, gas, and oil 

energy production; relatively 

high emissions and radiative 

forcing 

Low, high, and low solar, 

biomass, and wind energy 

production; relatively high, 

relatively low, and moderate 

coal, gas, and oil energy 

production; relatively high 

emissions and radiative 

forcing 

Moderate solar, biomass, and 

wind energy production; 

relatively low, low, and moderate 

coal, gas, and oil energy 

production; moderate emissions 

and relatively high radiative 

forcing 

Relatively high, low, and 

relatively high solar, 

biomass, and wind energy 

production; relatively 

high, high, and high coal, 

gas, and oil energy 

production; high 

emissions and radiative 

forcing 

Continued. 

  



Land 

Land-use change (Jiang & O'Neill, 2017; O’Neill et al., 2017; Popp et al., 2017)  

Low land cover built-up area; 

deforestation at a slow rate and 

the expansion of cropland and 

pasture land at a slow rate 

Relatively low land cover 

built-up area; deforestation 

at a moderate rate and the 

expansion of cropland and 

pasture land at a moderate 

rate too 

Low land cover built-up 

area; deforestation at a high 

rate and the expansion of 

cropland and pasture land at 

a high rate too 

Relatively low land cover built-

up area; deforestation at a 

moderate rate and the expansion 

of cropland and pasture land at a 

moderate rate too 

High land cover built-up 

area; deforestation at a 

relatively slow rate and 

the expansion of cropland 

and pasture land at a 

relatively slow rate too 

Land productivity growth (O’Neill et al., 2017; Popp et al., 2017) 

High crops and livestock yield Moderate crops and 

livestock yield 

Low crops and livestock 

yield 

Relatively low crops and 

livestock yield 

Relatively high crops and 

livestock yield 

Food and diet change 

Food waste, food consumption, diet change (Eker et al., 2019) 

Low waste, low plant foods 

consumption, low animal 

foods consumption, more 

sustainable diets 

Waste at the current level, 

moderate plant and animal 

foods consumption, the 

global diet follows the status 

quo (more meat, less 

vegetables) 

Relatively high waste, 

moderate plant and animal 

foods consumption, the 

global diet follows the status 

quo (more meat, less 

vegetables) 

Relatively low waste, moderate 

plant and animal foods 

consumption, the global diet 

follows may slightly to towards 

the less meat, more vegetables 

High waste, high plant and 

animal foods 

consumption, the global 

diet follows the status quo 

(more meat, less 

vegetables) 

Climate 

Climate mitigation policy assumptions 

As an indicative scenario for 

low-range emissions with the 

highest potential for mitigation 

facilitated by technology 

advances and high level of 

global cooperation, we 

assumed carbon pricing for 

fossil fuel unit cost of 

production with a linearly 

increasing (global average) 

trajectory (reaching ~$450 per 

tCO2 by 2100), high land-

based mitigations; high 

adoption of carbon capture and 

storage for reducing emissions 

from fossil fuels and from 

bioenergy (BECCS). To model 

high global cooperation in 

adopting climate policies as 

early as possible, we activated 

all implemented measures by 

2025. For other greenhouse 

gases that were not modelled 

endogenously in FeliX, we 

calibrated the model under the 

green recovery consistent with 

the lowest forcing level of 2.6 

W m-2, with data from the 

IASA Scenario Database. 

With medium mitigation 

challenges, we assumed 

slightly lower carbon price 

(reaching ~$300 per tCO2 by 

2100) compared to SSP1-

2.6, lower adoption of  

carbon capture and storage 

for reducing emissions from 

fossil fuels and also from 

bioenergy (BECCS), and 

also lower land-based 

mitigations. To indicate less 

global cooperation in 

adopting climate policies, all 

measures were implemented 

by 2040, later than SSP1-

2.6. For other gases, we 

calibrated the model 

consistent with 4.5 W m-2 

forcing level, with data from 

the IASA Scenario 

Database. 

With significant challenges 

to mitigation (and also with 

little global cooperation in 

the former), we assumed no 

effective climate policy 

regime for carbon emissions 

in FeliX. For other gases, we 

calibrated the model 

consistent with 7.0 W m-2 

forcing level, with data from 

the IASA Scenario 

Database. 

Similar to SSP2.4.5, with 

medium mitigation challenges, 

we assumed slightly lower 

carbon price (reaching ~$300 per 

tCO2 by 2100) compared to 

Green Recovery, lower adoption 

of  carbon capture and storage 

for reducing emissions from 

fossil fuels and also from 

bioenergy (BECCS), and also 

lower land-based mitigations. 

For other gases, we calibrated the 

model consistent with 6.0 W m-2 

forcing level, with data from the 

IASA Scenario Database. 

With significant 

challenges to mitigation 

(and also with little global 

cooperation in the former), 

we assumed no effective 

climate policy regime for 

carbon emissions in FeliX. 

For other gases, we 

calibrated the model 

consistent with 8.5 W m-2 

forcing level, with data 

from the IASA Scenario 

Database. 

 

 

  



Supplementary Table 2. The list of candidate uncertain model parameters used for sensitivity analysis.  

See the Supplementary Table 2 in the Excel spreadsheet with this article. 

  



Supplementary Table 3. Key scenario parameters and their quantification in the FeliX model. 

See the Supplementary Table 3 in the Excel spreadsheet with this article. 
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