
Appendix A The Algebra of Decoupling

While the previous section reviewed evidence for and against relative and absolute decoupling it did not

indicate the magnitude of the necessary rates of intensity declines for emissions that are now required to meet

emissions targets associated with, say, the 1.5 ◦C 580 GtCO2 Carbon budget from the 2018 IPCC special

report. In this section we construct a simple mathematical model linking emissions, economic growth,

emissions intensity, and a carbon budget and derive analytical expressions for both the time to budget

exhaustion and the rate of intensity decline associated with emissions pathways consistent with a carbon

budget of a given magnitude.

Let Y (t) [$ yr−1], E(t) [GtCO2 yr−1], and I(t) [GtCO2 $−1] denote the GDP, emissions, and emissions

intensity at time t respectively and note that E(t) = Y (t)I(t) by definition.1 Denoting the rate of economic

growth as g and the rate of intensity decline as r then we may write the following expressions for the evolution

of Y (t) and I(t) as:

Y (t) = Y (0)egt (1)

I(t) = I(0)e−rt (2)

where Y (0) and I(0) are initial year values for GDP and intensity. Emissions per year E(t) is simply the

product of E(t) = Y (t)I(t) which after some simplification results:

E(t) = E(0) · e(g−r)t (3)

Since the B(t) is the remaining carbon budget the emissions E(t) act to reduce the remaining budgets

magnitude. The differential equation governing the evolution of the remaining carbon budget can be given

as:
dB

dt
= −E(0) · e(g−r)t (4)

Letting B(0) be the initial period remaining carbon budget (4) has the solution:

B(t) = −E(0)

g − r
· e(g−r)t +B(0) +

E(0)

g − r
(5)

From Equation (5) two useful quantities can be determined; the time of budget exhaustion te (the time for

the remaining carbon budget to reach 0) and the rate of emissions intensity re such that the budget will

just be exhausted over an infinite horizon.2 The year of budget exhaustion is given by (6) and the rate of

intensity decline re is given as by (7). The year of budget exhaustion te is found by setting B(t) = 0 in (5)

and solving for t which leads to:

te =
ln
[(

g−r
E(0)

)
·
(
B(0) + E(0)

g−r

)]
g − r

(6)

1While it is conventional to write the units of the relevant quantities in square brackets as done above we shall not always

do so in this document. Units will be discussed explicitly when necessary and otherwise left unstated when obvious.
2An emissions pathway that exhausts a budget over an infinite horizon is one whose cumulative emissions, summed from

the initial period to time infinity, equals the budget.
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Here (6) states that year from present that the carbon budget B will be exhausted given g, r, B(0), and

E(0).

The second quantity of interest is the rate of intensity reductions that, for given values of the other

variables, leads to the carbon budget being just exhausted over an infinite horizon. Defining the rate of

intensity in this manner may seem somewhat abstract but its connotation is simple. Any value of intensity

declines greater than re indicates that the carbon budget B will never be exhausted while any value less

implies the budget will be exhausted in some finite time. To obtain this value, we make two assumptions;

first that as t goes to infinity B(t) goes to 0; and second that g − r < 0. The second condition simply

states the obvious requirement that the rate of intensity declines is greater than the rate of growth. If this

condition were not true, then decoupling would not occur at all. Therefore, we have:

lim
t→∞

B(t) = lim
t→∞

[
−E(0)

g − r
· e(g−r)t

]
+ lim
t→∞

[
B(0) +

E(0)

g − r

]
By assumption the left-hand side (LHS) is 0 and since g− r < 0 the first limit on the right hand side (RHS)

also goes to 0. Therefore, we have:

0 = B(0) +
E(0)

g − r
which we may rearrange as follows to obtain the value for r which we denote as re:

re = g +
E(0)

B(0)
(7)

Equation (7) provides a simple relationship between the rate of intensity reductions and the rate of economic

growth. For given initial year emissions and remaining carbon budget, the rate of intensity decline increases

linearly with the rate of economic growth.

Panel (a) of Figure 1 plots te as a function of the rate of reduction in emissions intensity r and panel

(b) plots re as a function of the rate of economic growth g for a range of values.3 For example, reading from

panel (a) of Figure 1, we see that for an assumed rate of economic growth of 3%, a remaining carbon budget

of 520 GtCO2, and yearly rate of intensity decline of 8%, the carbon budget is exhausted by approximately

year 2042.

3Note well, (6) has no solution if the carbon budget is not exhausted (this occurs for sufficiently high values of r).
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(a) (b)

Figure 1: Panel (a):For an assumed initial budget of of B(0) = 520 GtCO2, a rate of economic growth of g = 0.02,

and initial year emissions of E(0) = 37.5, the plot displays the year of budget exhaustion te (beginning at 2020) for

a range of intensity declines r. Panel (b): For an assumed initial budget of 520 GtCO2 the plot displays rates of

intensity reduction (re) that correspond to the budget just being exhausted over an infinite time-horizon as a function

of rate of economic growth (g).

From (7) we know that g − re is simply equal to −E(0)
B(0) . Substituting this into the emissions trajectory

equation 3, we have:

E(t) = E(0) · e−(E(0)
B(0) )t

which defines the emissions trajectory with constant decay rate that will lead to the carbon budget being

exhausted over an infinite horizon. The emissions pathway and cumulative emissions pathway are plotted in

the following figure.

Figure 2: Emissions and cumulative emissions trajectories assuming a remaining carbon budget of B(0) = 520

GtCO2, a rate of economic growth g = 0.02, and initial year emissions E(0) = 37.5 GtCO2 yr−1.
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The salient feature of Figure 2 is that emissions must decline initially very rapidly. As this trajectory

is constructed from approximate global level data it indicates an example of a global emissions pathway that

assumes no overshoot and no carbon dioxide removal (CDR).4 The shape of the trajectory is dependent on

the magnitude of the remaining carbon budget assumed. Trajectories for several different carbon budgets

are shown in the following figure.

Figure 3: Emissions trajectories assuming a range (400 - 1300 GtCO2) of values for the remaining carbon budget,

a rate of economic growth g = 0.02, and initial year emissions E(0) = 37.5 GtCO2 yr−1. Legend values display the

value of the assumed budget and the magnitude of the intensity declines re assumed for each pathway.

All else being equal, Figure 3 indicates (the obvious) that emissions pathways associated with larger

remaining carbon budgets are characterized by slower reductions and longer times to reach zero emissions.

Notably, even for relatively larger budgets the intensity reductions are still on the order of 5% per an-

num.5,6 The rates of intensity decline necessary to just exhaust carbon budgets over this range varies from

approximately 11% to 8%; that is, every year emissions intensity must decline by these amounts.

Appendix B Balance Sheet, Transactions Flow, and Input-Output

Matrices

Figure 4 presents the balance sheet (stock) matrix which contains the main model variables and presents the

accounting structure of the model. The entries of Figure 4 display the value in current prices of the assets and

liabilities of each sector. The model economy is divided into six sectors: households, three production sectors

(renewable sector, fossil-fuel sector, and the manufacturing sector), private banks, and the government. Each

4Similar pathways could just as easily be constructed at the individual country level by using country level emissions and

an appropriate share of the remaining budget as the target.
5In 2018 the carbon budget for a 50% chance of staying within a 1.5 ◦C temperature rise was 580 GtCO2 and 1500 GtCO2

for a 50% chance of staying within a 2 ◦C temperature rise.
6Naturally these budgets have since declined given the emissions produced since the publication of the report.
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of the production sectors operates capital equipment to produce its output and finances the construction

and replacement of depreciated capital via loans obtained from the banking sector. The banking sector also

holds and pays interest on household deposits.



Households Renewable Firms Fossil-Fuel Firms Manufacturing Banks Government Σ

Money Hh(t) 0 0 0 0 −H(t) 0

Deposits M(t) 0 0 0 −M(t) 0 0

Fixed Capital 0 KR
e (t) +KR

f (t) KF (t) Km
e (t) +KM

ne(t) 0 0 K(t)

Loans 0 −LR(t) −LFt −LM (t) L(t) 0 0

Advances 0 0 0 0 A(t) −A(t) 0

Net Worth −V (t)∗ −V R(t) −V FF (t) −VM (t) 0 −V g(t) K(t)


(8)

Figure 4: Balance Sheet Matrix

Figure 5 displays the transactions (flow) matrix where the rows record the transactions between each

sector and the columns and the columns display the budget constraint of each sector.7 For example, the first

row of Figure 5 states that consumption expenditure by households at time t, denoted C(t), is matched by

the sales recorded in the first row for the renewable, fossil fuel, and manufacturing sectors, denoted CR(t),

CF (t), and CM (t) respectively. The negative sign on the consumption term in for households indicates that

this is an outflow of funds; correspondingly, the positive sign of the sales terms for each industrial sector

indicates inflows of funds. The first column states that the change in the stocks of money and deposits held

by households is equal to the difference between income (wages and interest on deposits) and consumption

and taxation expenditures. Considering interindustry transactions Figure 5 shows by symmetry that the

sum of payments made by, and received from, each industry to each other industry is zero and therefore the

inclusion of multiple industries into the SFC framework is consistent with the requirement of zero row sums.

The interdependencies between the production sectors are shown in the following input-output table

in Figure 6. The manufacturing sector is assumed to purchase inputs in the form of electricity and fuels

from both the renewable and fossil fuel sectors as well as use some of its output as an input in its production

process. The fossil fuel sector is assumed to purchase as inputs only its own output (energy in the form

of fuel) to power its operations (extraction, refinement, transportation, etc.). Finally, the renewable sector

does not purchase inputs from any of the sectors; rather, the renewable sector purchases capital equipment

from the manufacturing sector which is recorded as investment and hence appears in final demand. The

purchase of capital equipment for the other two sectors is also considered investment and hence counted in

final demand.8

7Note well; the entries of the transaction (flow) table are flows variables and therefore have units of dollars per unit time.

The entries in the balance sheet matrix are measured in dollars.
8Figures 5 and 6 present two different economic accounting schemes and in order to successfully merge stock-flow consistent

modelling with input-output analysis it must be the case that both systems of accounting are coherent. For example, the

sum of the first four entries of row one of Figure 6 equals XR(t) which must also equal the column sum. This implies that,

after rearrangement, WBR(t) = z13 + Cr(t) + GR(t) − (r + ZR)L(t); for the model to work this must be consistent with the
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

Renewable Fossil Fuel Manufacturing Final Demand Total Output

Renewable 0 0 z13(t) CR(t) +GR(t) XR(t)

Fossil Fuel 0 z22(t) z23(t) CFF (t) +GFF (t) XFF (t)

Manufacturing 0 0 z13(t) Cm(t) +GM (t) + I(t) XM (t)

Wages WBR(t) WBF (t) WBM (t) 0 WB(t)

Loans (r + Zr)L
R(t) (r + Zr)L

R(t) (r + Zr)L
R(t) 0

∑
i(r + Zi)L

i(t)

Total Outlays XR(t) XF (t) XM (t) C(t) + I(t) +G(t) X(t)


(10)

Figure 6: Extended Input-Output Matrix

accounting in the transactions matrix. Indeed, substituting the expressions for WBR(t) just found into the second column of

the transactions flow matrix returns an identity as it must.
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Appendix C Energy Return on Investment, Model Calibration,

and Fossil-Fuel Depletion

Up until this point we have been relatively cavalier in the discussion of the role of energy in the model and

have left aside, until now, any discussion of how to properly assign magnitudes to the rate parameters φe and

φm or how, necessarily, they must relate to each other. Recall that these two parameters denote the power

output per unit machine and machine output per unit machine per unit time respectively. This section will

explore a method to calibrate SFCIO-IAM models using a life-cycle energy approach such that they are

energetically “internally consistent”.9

In the following sections we introduce two new power output parameters that are use to model simplified

and idealized energy generation via renewable energy capacity and fossil-fuel capacity and show how these

parameters can be related back to life-cycle energy measurements as determined in the physical analysis of

these technologies.

C.1 Power Requirements

Consider the parameter φM from the model presented in the main body of the paper. This parameter

denotes the output per unit time per unit capital and hence when multiplied by some physical quantity of

capital equipment, gives the output of manufacturing goods per unit time. Due to the highly aggregated

nature of the model attempting to estimate some empirical value for this parameter is not especially useful;

and fortunately, not required. Rather, φM will take the form of an arbitrarily chosen parameter from which

the other model parameters will be obtained.

For simplicity let us set φM = 1[m/yrm ] which states that new manufacturing sector output (which, we

recall, can take the form of either capital goods or consumption goods) is produced at a rate of one unit per

year. Now, using the concept of energy return on investment, the overall logic for proceeding is to calibrate

the remaining production parameters. Since one unit of capital is produced per year then it is simplest

to assume that the process consumes power at the rate of one unit per year as well. Therefore, let us set

the power consumption parameters as follows τE = 1[kWm ] and τFF = 1[kWm ]; that is both electrified and

non-electrified manufacturing capital consumes power at a rate of one kilowatt.10. To be clear the previous

assumptions imply that one unit of manufacturing capital operating over one year will produce one unit of

output and consume one kilowatt-Year of energy. To see this formally consider the following. A single unit

of manufacturing capital will, over some very small time interval of operation dt, produce φM · 1 · dt units

of output 11 and likewise would consume τE · 1 · dt energy. Now if we “sum” up the output and energy

consumption over an entire year we have: ∫ 1

0

φM · 1 · dt = 1[m]

9What is meant by internally consistent here will become clear in the following sections.
10To be clear this number is ultimately arbitrary; obviously different types of real world capital consumer power at different

rates but it must be recalled that the number chosen here acts only as the anchor to determine the other parameters. One

kilowatt of continuous power consumption over a year is equivalent to 31,447,600 kJ of energy
11The 1 in the equation is the unit of capital and therefore has units of machines [m].
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and ∫ 1

0

τE · 1 · dt = 1[kWy]

These expressions simply formalize what was noted above. The output produced and the energy consumed

by one unit of a given type of manufacturing capital operating continuously over one year are both nor-

malized to one. A complexity arises however due to the model included both electrified and non-electrified

manufacturing capital. Since the manufacturing sector output is modelled as a single universal good in the

SFCIO-IAM model it follows that said good’s production can be attributed to the operation of both types of

capital over the production cycle. A further complexity arises in that the electrified manufactured capital is

powered both directly by the electrical output of renewables and via electricity produced by the conversion

of primary fossil-fuels into electricity which implies energy conversion losses.

Let β =
kMe

kMe +KM
ne

denote the ratio of electrified manufacturing capital to total manufacturing capital

for initial year values of each capital type. Furthermore, let ε be the fraction of electric power used by the

electrified manufacturing sector that comes from renewables. Finally, let CF denote the conversion factor

from fossil fuels to electricity (generously assumed to be 2 in the model implying a conversion efficiency of

50%). The energy input per production of one unit of manufacturing sector output is therefore given as:

IDe = (ε · CF · τE · β + (1− ε)τEβ + τFF (1− β))

∫ 1

0

1dt (11)

Note well, we are able to pull the term out in front as we construct the β ratio from initial year values.

Obviously as this ratio evolves, the calculation changes.

C.2 Power Output of Fossil-Fuel Capacity

In this section we present a method to obtain a magnitude for the power output per unit of fossil fuel capital

σFF from estimated values of energy payback ratios. Following the definition in (White and Kulcinski, 2000),

an energy payback ratio is the ratio of the total power output over the operational life of the generating

technology divided by the energy costs associated with construction, gathering and processing fuels, operation

and maintenance, and decommissioning. Notably, this fraction does not include the energy content of the

fuels used to generate the electricity. Now, from the previous section, we know that the energy associated

with construction is given as IDe. We can, with some algebra, include the energy costs associated with

gathering the fuel.

The direct energy requirements for fossil-fuel capacity is simply the energy we will define the direct

or extraction energy costs. As noted in the previous main paper the technical coefficient a22 represents the

ratio of the purchases of fossil-sector input by the fossil-fuel sector to its total output, or in physical terms,

the physical quantity of fossil-fuel sector output used by the fossil-fuel sector to gather fuels and run its

operations. This ratio is the energy cost to produce fossil-fuel derived energy. To obtain an energy return of

one unit requires an energy cost of a22, to obtain an energy return of arbitrary magnitude ERF require an

investment of a22 · ERF .

Now. we know that the parameter φFF has units of power produced per unit capital (or machine).

The fossil-fuel capital in the model can be interpreted as a composite capital stock that extracts and refines
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fuels for energy usage. Like all other capital discussed so far in the model, a unit of fossil-fuel capital can

only provide its service at some rate and therefore, over its life-cycle, will produce some energy return ERF .

Now, what must the magnitude of φFF be such that over the life cycle of one unit of capital, ERF energy

is produced accounting for depreciation at rate σFF ? This calculation is simply:∫ ∞
0

φF · e−σF ·t · dt = ERF

which leads to:

φFF = ERF · σF (12)

Examining the literature on life-cycle energy costs, the dominant proportion of energy inputs for fossil-fuel

power generation is the fuel cycle (See Meier and Kulcinski, 2000 and (White and Kulcinski, 2000)). For

example, from Meier and Kulcinski (Figure 7), the energy costs of construction and materials, operation,

and decommissioning account for slightly over 5% of the life-cycle energy costs for electricity production via

a gas turbine. The approximate 95% of the remaining input energy costs are associated with the fuel cycle.

We assume, for simplicity, that IDe embodies the construction, operation, and maintenance costs.

Using the 5% figure, we have that the fuel cycle portion of the energy inputs a22 · ERF must be:

a22ERF = 19 · IDe

Now, using the sum of energy costs associated with construction and the provisioning of the life-cycle

energy return ERF we have that the energy payback ratio is:

EPR =
ERF

IDe + a22ERF
=

ERF
20 ∗ IDe

(13)

which is the ratio of life-cycle energy output divided by the SFCIO-IAM model’s simplified construction and

operation costs. Finally, if we “know” the value of EPR, we can solve for φFF as follows by rearranging and

substituting and equation 12 into equation 13.

φFF = 20 · EPR · IDe · σFF (14)

Finally, if we assume a value of 5 for the EPR then the power output per unit of fossil-fuel capital is, for

IDe = 1.025 and σFF = 0.03:

φFF = 3.075 [kW/m]

Note well, the units of power are here (kilowatts) are important only in that they are the same as those used

to measure the power requirements of manufacturing capital. Ultimately, the unit chosen for this purpose is

not important, only the relative magnitude of power required to the power produced by the energy generation

capital matters. As such we might have just as simply measured power in megawatts or gigawatts.

C.3 Power Output of Renewable Capacity

Calculating a value of φR using the above methodology is complicated by the problem of selecting a single

life-cycle EROI to represent a heterogeneous suite of generation technologies (e.g., wind turbines, geothermal,
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large hydro, solar PV, etc.) possessing different life-cycles and EROIs. Furthermore, such a method might

lead to price estimates per kilowatt hour delivered that are substantially different than observed, given the

assumption that manufacturing sector output, which takes the form of several different capital types, is

valued at price Pm. As such, we instead obtain a value of φR via relating the weighted average of capital

costs per kilowatt hour of a suite of renewable generation technologies to the same capital costs for fossil-

fuel capital. This method is necessarily imprecise and its outcome is heavily dependent on the underlying

assumptions which is part of the justification for for the model sensitivities undertaken in the paper.

To facilitate the comparison of capital costs per kilowatt hour we use EIA data concerning the overnight

costs of various generation technologies. We assume that the renewable technology in the model is a composite

of off-shore wind, onshore wind, photovoltaic panels, hydro, and geothermal and that the proportion of each

of these technologies in the overall mixture is roughly that found for year 2050 in the 100% renewable E+

RE+ scenario in the Net Zero America report (Larson et al, 2020). Finally, using these proportions, we form

a weighted average of the total overnight costs for each of these technologies using data from the Energy

Information Administration EIA 2021.

Generation Technology Total Overnight Cost ($/kW) Proportion

Onshore wind 1846 0.52

Offshore wind 5,453 0.115

Rooftop PV2
a

Utility Scale PV (Storage) 1,612 0.35

Hydrob 2,769 0.018

Geothermalb 2,772 0.0016

Combined Cycle 1,082

Industrial Combustion Engine 957

Combustion turbine — aeroderivative 1,813

Combustion turbine—industrial frame 1,169

The weighted average of renewables using the given proportions is ≈ 1579 [$/kW]. Assuming no new

coal construction, we take a simple average of the four electric power generation types obtaining ≈ 1255

[$/kW]; the ratio of the two is χ = 1255
1579 ≈ 0.776. Therefore, the amount of actual capacity per dollar spent

on renewables is 0.776 that of fossil-fuel capacity. Now quite obviously, this ratio (and the method to obtain

it) is relatively crude and subject to a number of assumptions, hence the necessity for the sensitivities of

renewable EROI undertaken in the main paper.

Since the cost of one unit of manufacturing output in the model is Pm, and both fossil-fuel and renewable

capital is valued at this price, the power generation of renewable capacity necessary to make this consistent

must be χ · φFF . From this, we can work backwards to obtain the models renewable EROI.

Now, a note of caution is necessary here concerning the life-span of the technology. Since we assume

a fixed energy construction cost and no explicit decomissioning time or operation costs for renewables, the

life-cycle energy return and hence its life-cycle EROI is a function of the assumed life-span. For example,over
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the approximately 30 years the model runs over, the life-cycle EROI of the renewable technology is:

1

IDe

∫ 30

0

χ · φFF · e−σR·t · dt = EROI =
1

1.025

∫ 30

0

(0.776 · 3.025)e−0.03tdt ≈ 45

where σR is the depreciation rate of a unit of renewable capacity. For 25 and 20 year life-spans the values are

40 and 34 respectively. Two things must be noted here. First, this value may seem both too high or too low

depending on the technology considered (e.g. solar PV or hydro). Ultimately the renewable technology in

the model represents a composite of real technologies so the magnitude of the EROI is necessarily somewhat

different from any single given actual generation technology.

Second, it is important to note the dependence of the EROI on the assumed life-span of the technology.

The model has no explicit decommissioning mechanism and capital simply depreciates at some fixed rate

per unit time. As such, the life-span of a unit of renewable capacity is technically infinite and will produce

energy over the entire model simulation horizon. However, given the exponential depreciation this value is

bounded. For an infinite horizon the above integration may be solved to obtain:

EROI =
χ · φFF
IDe · σR

(15)

Using the example numbers from above we would calculate an EROI of the renewable capacity of:

0.776 · 3.025

1.025 · 0.03
≈ 76

Since the EROI of renewables in the model is dependent on the assumed life-cycle there is no single value

conclusive value to report. In the paper we report the EROI values assuming 25 years of continuous operation.

As explored in (Kubiszewski et al, 2010) the life-cycles for wind turbines used in EROI calculations range

significantly (from 15 to 30 years). This 25 year horizon also captures, approximately, the lifespan of solar

PV.

C.4 Fossil-Fuel EROI and Depletion

This subsection will introduce a net energy based formulation to tie the EROI of fossil-fuels to the magnitude

of the remaining stock of fossil-fuels.

In order to capture the dynamic of fossil-fuel EROI declining with extraction we denote a stock of

extractable fossil-fuels as S(t). A simple formulation of EROI declining with extraction is given as follows:

EROI(t) =
EROI(0) · S(t)

S(0)
(16)

where EROI(0) and S(0) are initial conditions for EROI and the stock of fossil-fuels respectively. By

equation (16) the EROI of fossil-fuels is modelled to decline linearly with the decline in the stock of fossil-

fuels which, as will be shown, implies a non-linear depletion trajectory for the stock itself. Now, to relate

this back to the input-output structure of the model we note that the EROI (of extraction) is simply the

reciprocal of the fossil-fuel sector technical coefficient a22(t):12

a22(t) =
1

EROI(t)
(17)

12That is, the ratio of energy production to the direct energy requirements to meet that production.

12



Substituting (16) into (17) we obtain the following expression which relates the technical coefficient a22(t)

to the decline in EROI as modelled by the depletion of the underlying stock S(t):

a22(t) =
S(0)

EROI(0) · S(t)
(18)

Finally, since EROI is by construction a dimensionless ratio, and the stock of fossil-fuels appears in both the

numerator and denominator, the resulting expression for a22(t) is dimensionless as required.

The EROI of fossil-fuels and depletion of the stock S(t) form a positive feedback loop. To supply a given

magnitude of energy return ER requires extraction of fossil-fuels which depletes the stock and lowers the

EROI. This declining EROI implies that to continue supplying just some constant ER requires progressively

greater energy investment EI (the energy return portion of EROI is unchanged so the denominator must be

increasing).13 This greater energy investment must itself be met by the consumption of additional fossil-fuels

and hence greater extraction and so on.

The EROI-depletion dynamics can be explored using the concepts of net and total energy where net

energy is defined as the energy return ER minus the energy invested EI and total energy is defined as

ER+ EI. Now, for a given ER what is the EI? From equation (16) we have that:

EROI(0) · S(t)

S(0)
=

ER

EI(t)
(19)

solving for EI we have:

EI(t) =
ER ∗ S(0)

EROI(0) · S(t)
(20)

Total energy is therefore

TE = ER+
ER ∗ S(0)

EROI(0) · S(t)
(21)

or in more compact form

TE = ER

(
1 +

S(0)

EROI(0) · S(t)

)
(22)

This last expression will be used in specifying the differential equation for S(t) but it should be noted that,

by substituting in equation (16), the equation becomes:

TE = ER

(
1 +

1

EROI(t)

)
(23)

Which displays the non-linear behaviour of the total energy requirements. Similarly we may write the

expression for net energy as:

NE = ER

(
1− 1

EROI(t)

)
(24)

Equations (23) and (24) indicate fundamentally important behaviour. To supply some constant energy

return ER it is clear that the quantity of total energy will increase non-linearly as EROI(t) declines and

that the net energy available will decline non-linearly; the latter decline has been termed the EROI cliff by

Euan Mearns. The following figures plot TE and NE for a constant ER = 100 for a range of EROI values.

13Why do we model EROI as declining with extraction? As presented in (Hall et al, 2014) the EROI of various types of

fossil fuels has been declining linearly over the last several decades. The simple logic as to why is that as the easiest to extract

sources of fossil fuel are depleted it becomes necessary to exploit more energetically expensive productions processes. Fracking,

deep sea extraction, tar sands are all good examples of low EROI oil extraction technologies that have come into play.
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Figure 7: (a) Total and Net energy as a function of declining EROI.

Panel (a) of Figure 7 shows that as EROI declines from 100, the total energy necessary to deliver an

energy return of 100 increases only very slowly and then increases dramatically for EROI values lower than

10. Similarly, panel (b) shows that the net energy available decreases in a symmetric fashion

Now, to deliver some given energy ER requires some total energy TE of overall energy use (energy

invested plus energy returned). As such the depletion of the stock of fossil-fuels S(t) is proportional to the

total energy TE. Let us, for the sake of this derivation, assume that the stock of fossil-fuels is measured in

tonnes of coal. Then, given some conversion factor τ which measures the joules per tonne of coal, producing

TE energy requires 1
τ TE tonnes of coal.

The above logic states simply that to provision some quantity of energy (Joules) will require the usage

of some quantity of a primary energy source (in our example coal); the above states nothing about the rate

at which this occurs. Ultimately, we require a differential equation governing the depletion of the fossil-fuel

stock and to obtain that we must also specify the rate at which total energy is consumed.

Suppose the energy return ER is consumed every second, then, by the above, TE energy per second

is the total energy that must be used per second to obtain and deliver this energy return. More simply,

this implies a rate of energy consumption of TE per second or TE Watts which gives total power which we

denote TP . Now, in some infinitesimal time interval dt we have that TE · dt [Ws] energy is consumed, and

therefore (recalling the conversion factor τ) the differential change in the stock of fossil-fuels dS is:

dS = −1

τ
TP · dt (25)

which is negative to reflect that the stock of fossil-fuels is being depleted. Finally, we obtain the differential

equation for the depletion of the stock of fossil-fuels by dividing both sides of the above expression by dt:

dS

dt
= −1

τ
TP (26)

which relates the depletion per unit time of the stock of fossil-fuels with the total power requirement. We

may take this one step further by substituting in equation (24) which leads to:

dS

dt
= −τPR

(
1 +

S(0)

EROI(0) · S(t)

)
(27)
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where PR is the power return which is simply the energy return ER per unit time. As noted at the outset

of these calculations the differential equation governing the depletion of the stock of fossil-fuels is non-linear.

Figure 8 displays the trajectory of the stock of fossil-fuels for assumed values of initial EROI, S(0), and a

constant energy return of 10. Note well that a small value of EROI is chosen to more clearly indicate the

non-linearity. Panel (a) shows, as expected, that to supply a constant energy return under declining EROI

implies increasingly rapid depletion. Panel (b) indicates that as the stock is depleted the EROI declines

commensurately.

Figure 8: Assuming S(0) = 1000, EROI(0) = 3, and, ER = 10. (a) Depletion path for the stock of fossil-fuels S(t)

(b) EROI trajectory due to depletion of the stock of fossil-fuels S(t). (c)Constant Energy Return. (d) Trajectory

of energy invested necessary to the constant energy return.

Panel (c) displays the energy return ER which is assumed constant over time. Finally, panel (d) shows

that the energy invested necessary to provide the constant energy return grows in an exponential manner as

EROI declines.

Now, if we assume simply that emissions are proportional to total fossil-fuel usage than the emissions

overtime, arising from the provisioning of a constant energy return, are plotted in the following figure.
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Figure 9: Trajectory of emissions E(t) for E(t) = ζTP (t) where ζ = 1 is a constant of proportionality set to one

for simplicity and assumed values of initial EROI = 3, S(0) = 1000, and ER(t) = 10.

Figure 9 displays a critically important result; as the EROI of fossil fuels decline, the emissions as-

sociated with providing some given energy return increase non-linearly. Now, the above figures all use a

relatively low EROI value of 3 in order to better display the non-linear behaviour. For more realistically

large values of EROI the same dynamics exist and can be clearly seen by compressing the y-axis. The

trajectory of emissions for the same process described above except with an EROI of 20 is shown below.

Figure 10: Trajectory of emissions E(t) for E(t) = ζTE(t) where ζ = 1 is a constant of proportionality set to one

for simplicity and assumed values of initial EROI = 20, S(0) = 1000, and ER(t) = 10.

Finally, we may link the above work back to the SFCIO energy transition framework by replacing the

total power TP term with the total fossil-fuel power requirements given by XFF (t)P−1f . By construction

this quantity is measured in Watts so we may write the fundamental equation relating the depletion in some

stock of fossil fuels to a key SFCIO model component as:

dS

dt
=

1

τ

XFF (t)

Pf
(28)
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C.5 Renewable EROI Dynamics

The transition to large-scale renewable based electricity generation is potentially complicated by the stor-

age requirements arising from the inherent variability underlying solar and wind as energy sources. This

variability requires energy storage to smooth the flow of energy produced, however, as this storage is itself

energetically costly to produce. To incorporate aspects of this issue we turn to the grid storage EROI model

of (Barnhart et al, 2013). This section provides a surface overview of the model of which the full details can

be found in the publication and the supplementary material. First, the author’s use the concept of energy

storage on investment (ESOI) from a previous study (Barnhart and Benson, 2013). This ESOI is defined

as:14

ESOIe =
ληD

εe
(29)

where λ is the number of charge-discharge cycles of the battery (cycle-life); η is the round-trip AC–AC

efficiency, D is the depth of discharge of the battery, and εe is the embodied electrical energy per unit of

electrical storage capacity.

Some fraction φ of the energy produced by a variable renewable must be either stored for later usage

or curtailed.15 Therefore, for each unit of energy produced φ enters storage and ηφ is taken from storage.

Of the one unit of energy produced, 1− φ+ ηφ units of energy are available to society after accounting for

storage losses. The authors show that the energy costs to produce this unit of energy return is given as

1
EROIR

+ ηφ
ESOIe

. They define the EROI at the “grid” level as:

EROIg =
1− φ+ ηφ
1

EROIR
+ ηφ

ESOIe

(30)

The following figure, using the authors data, plots EROIg as a function of increasing storage φ for solar and

wind under three different storage technologies. Figure 11 shows that the EROI at the grid level declines

as a function of increasing electrical energy storage. That the transition of economies to renewable energy

may imply dramatically larger storage requirements implies that over the course of such a transition the

storage fraction φ would increase and consequently, that the grid level EROI would decline. This is arguably

a dynamic of key importance in modelling the energy transition and will therefore be added to the basic

SFCIO-ETM framework.

To ensure our energy accounting is correct, we need to obtain a “grid corrected” power output parameter

φg that, when applied to the renewable capacity constructed from one unit of energy invested, matches the

life-cycle grid-level energy return EROIg. Assuming for simplicity the same depreciation rate σR, we may

obtain φg is the same manner as we did φR by solving the following for the φg term:∫ ∞
0

φg · e−σR·t · dt = EROIg (31)

which leads to

φg =

(
1− φ+ ηφ
1

EROIR
+ ηφ

ESOIe

)
σR (32)

14The range of ESOI values for different types of storage is quite large. In (Barnhart and Benson, 2013) a value of 5 is

reported for lead acid batteries while a value of 797 is reported for compressed air energy storage.
15Note well, this is a simplification as this does not take into account Power-to-X technologies. See (Bogdanov et al, 2021)

for a discussion of the role of Power-to-X in energy transitions.
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Figure 11: EROI grid values for solar PV and wind for three different energy storage technologies. EROI values

chosen to match those found in (Barnhart et al, 2013).
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Recalling from equation (15) that σR = φR

EROIR
we have:

φg =

(
1− φ+ ηφ
1

EROIR
+ ηφ

ESOIe

)
φR

EROIR
(33)

Of course, the bracketed term is simply the definition of EROIg so the entire expression may be simplified

in a more intuitive (though less physically informative) form as:

φg = φR

(
EROIg
EROIR

)
(34)

This last formulation is particularly appealing as it states that the power output when corrected for grid

losses is simply the power output of renewables φR scaled by the ratio of the grid scale EROI to the EROI of

renewable not accounting for storage costs. It follows from this that for any storage fraction φ greater than

zero that the grid level EROI will be lower than the EROI of the renewable considered directly; therefore,

the power output per unit renewable capacity (at the grid level) will decline continuously as the storage

fraction increases.

Finally, making this process dynamic requires that the storage fraction parameter φ be endogenous

in the model. The idea, roughly stated, is that storage fraction is an increasing function of the fraction of

total electricity used in the model that is generated by renewables (renewable market penetration). This is

informally shown as follows:

φ(t) = f(Renewable Market Penetration) (35)

Appendix D Additional Model Runs and Sensitivities

The model runs (degrowth, steady-state, and growth) in the main body of the paper are generated by

assuming different growth rates of autonomously determined government expenditures. In this section we

explore the same experiments but allow for degrowth and growth in the energy demands by the household

and government sector as well. The following figure presents the base case scenario modified to include the

additional impacts of the changing energy demands.
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Figure 12: Trajectories for select SFCIO-IAM model variables assuming ∆1 = 0.01 and σNE
M = 0.03. Growth

scenario trajectories (green plots –) Steady-State trajectories (orange plots –) Degrowth scenario trajectories

(blue plots –). The solid red lines in panels (2) and (3) correspond to the 500 GtCO2 carbon budget and 1.5 ◦C

warming threshold respectively.
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Figure 13: Trajectories for select SFCIO-IAM model variables assuming ∆1 = 0.11 and σNE
M = 0.06. Growth

scenario trajectories (green plots –) Steady-State trajectories (orange plots –) Degrowth scenario trajectories

(blue plots –). The solid red lines in panels (2) and (3) correspond to the 500 GtCO2 carbon budget and 1.5 ◦C

warming threshold respectively.

Figure 14: Contour plots for ESOI and storage fraction upper bounds across a range of renewable investment rates.

The storage fraction upper bound denotes the maximum required storage that occurs at 100% renewable penetration.
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Appendix E Parameter and Initial Value Tables

Note well, units with dimensions given as 1 in Figure 1 are dimensionless.

Parameter Name Symbol Units Value
Inverse exchange timescales between atmosphere-oceana ka yr−1 0.2
Inverse exchange timescales between upper-lower oceana kd yr−1 0.05
Equilibrium ratio of atmospheric to upper ocean inorganic carbon A·B 1 Derived Quantity
Ratio of volume of lower to upper oceana δ 1 50
Ratio of the molar concentrations of CO2 in atmosphere and oceana kh 1 1910
Disassociation Coefficienta k1 mol kg−1 0.000006
Disassociation Coefficienta k2 mol kg−1 0.000000000753
Number of Moles in Atmospherea AM mol 1.77× 1020

Number of Moles in Oceana AM mol 7.8× 1020

Net radiative forcing for a doubling of CO2
b F2xCO2

Wm−2 5.35
Effective heat capacity per unit area upper oceanb C JK−1m−2 7.3
Effective heat capacity per unit area deep oceanb C0 JK−1m−2 106
Radiative Feedback Parameterb δ Wm−2K−1 1.13
Heat Exchange Coefficientb γ Wm−2K−1 0.7
Initial Fossil-Fuel Sector EROI EROI(0) 1 20
Renewable Sector 25-year life-cycle EROI EROIR 1 40
Round-trip AC–AC efficiencyc η 1 0.8
Energy Stored on Investedc ESOIe 1 30
Upper Bound Storage Fraction b 1 0.05
Normal price of fossil-fuel sector output (dollars per Joule) PF0 $J−1 1
Price of manufacturing sector output (dollars per unit of capital) PM0 $k−1 10
Propensity to consume from disposable income α1 1 0.7
Propensity to consume from savings α2 1 0.3
Tax Rate θ 1 0.3
Fraction of wealth held as deposits λ0 1 0.5
Interest rate modulation factor λ1 1 0.1
Disposable income modulation factor λ2 1 0.1
Power output per unit renewable capital φR kW · k−1 ≈ 2.36
Power output per unit of fossil-fuel capital φF kW · k−1 3.08
Manufacturing output per unit time per unit of manufacturing capital φM yr−1 1
Conversion factor of fossil-fuels to electricity CF 1 2
Power requirement per unit of electrified manufacturing capital τE kW · k−1 1
Power requirement per unit of non-electrified manufacturing capital τF kW · k−1 1
Renewable capital depreciation rate σR yr−1 0.03
Fossil-Fuel capital depreciation rate σF yr−1 0.03
Electrified manufacturing capital depreciation rate σM yr−1 0.03
Non-electrified manufacturing depreciation and decommissioning rate σne yr−1 0.03
Interest rate r yr−1 0.03
Loan fraction repaid by renewable sector in given time period ZR yr−1 0.3
Loan fraction repaid by fossil-fuel sector in given time period ZF yr−1 0.3
Loan fraction repaid by manufacturing sector in given time period ZM yr−1 0.3
Technical coefficients matrix exogenous manufacturing sector parameter a33 1 0.05
Renewable capital stock adjustment factor ∆1 yr−1 0.1
Fossil-Fuel capital stock adjustment factor ∆2 yr−1 0.1
Manufacturing capital stock adjustment factor ∆3 yr−1 0.1
Emissions Calibration Factor ξ EF−1 5.95

Table 1: Table of model parameter values. Parameters noted with a are from (Glotter et al, 2013), b from (Geoffroy

et al, 2013), and c from (Barnhart et al, 2013).
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Variable Name Symbol Units Initial Condition
Mass of Atmospheric CO2

a Mat(t) GtC 879
Mass of Atmospheric CO2

a Reference Mat(1750) GtC 596
Mass of Upper-Ocean CO2

a Mup(t) GtC 611
Mass of Lower-Ocean CO2

a Mlo(t) GtC 29604
Global-Average Surface Temperatureb T (t) K 1.09
Deep Ocean Temperatureb T0(t) K 0.0368
Renewable Loans LR(t) $ 0.24
Fossil-Fuel Loans LR(t) $ 3.96
Manufacturing Loans LR(t) $ 4.4
Household Wealth V (t) $ 24
Renewable Intermediate Capital KR

e (t) physical capital [m] 0.035
Renewable Final Capital KR

f (t) physical capital [m] 0.085

Fossil-Fuel Capital KF (t) physical capital [m] 1.99
Electrified Manufacturing Capital KM

e (t) physical capital [m] 0.84
Non-Electrified Manufacturing Capital KM

ne(t) physical capital [m] 2.52
Initial Government Expenditure G(t) $yr−1 10

Table 2: Table of initial conditions. Initial values noted with a are from (Glotter et al, 2013) and b from (Geoffroy et

al, 2013).
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