
9 Supplementary Appendix A. Data Appen-
dix (Cai, Lau and Yuen)

In this appendix, we lay out the details of data construction and de�nitions
in Figure 1. We use the data from the Current Population Survey (CPS)
to compute the average retirement age from each cohort. In particular, we
obtain the harmonized Basic Monthly CPS data from IPUMS (Flood et al.,
2018). We restrict our sample to those US men from the 1920 cohort to the
1950 cohort based on their birth year41. All observations are weighted by the
Final Basic Weight in the CPS.
We follow the de�nition of Munnell (2011) to compute the average re-

tirement age. Speci�cally, for each cohort we calculate the labor force par-
ticipation rate at each age. The average retirement age is then de�ned as
the age at which the participation rate drops below 50 percent (See Figure
A1). In particular, we use the �rst age if the participation rate rises above 50
percent at a later age. Moreover, we use interpolation to obtain a continuous
measure of average retirement age. In Figure 1(a) we further compute the
average retirement age for each cohort and education group.

[Insert Figure A1 here.]

Finally, the average schooling years is from the schooling years data set
(for US men) used in Goldin and Katz (2008).
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10 Supplementary Appendix B. Derivations
for the model with direct utility bene�t of
schooling (Cai, Lau and Yuen)

In this model, the individual maximizes (32) subject to (1), (3) and (4).
Again using standard techniques of dynamic optimization, we can obtain
(5). Following the derivation in the baseline model, we denote

Ub (S;R) =

Z T

0

exp (��x) l (x) c (x; S;R;�b)
1� 1

� � 1
1� 1

�

dx
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Z S

0

exp (��x) l (x) dx�
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W

exp (��x) l (x) � (x) dx;

where health index �b is absent because mortality decline is not considered
in this model. Di¤erentiating Ub (S;R) with respect to S and using (A3) to
simplify, we obtain
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Setting @Ub(S;R)
@S

= 0 in (B1) and rearranging, we obtain the �rst-order con-
dition for schooling (33).
Similarly, di¤erentiating with respect to R and using (A4) leads to
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h
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(B2)
Setting @Ub(S;R)

@R
= 0 in (B2), we obtain the same �rst-order condition for

retirement age (8) as in the baseline model in Section 2.

10.1 Comparative statics

The following relationships, obtained from using (5), are useful for subsequent
analysis:
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Multiplying both sides of (33) by �
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Substituting (33), (B3) and (B4) into this equation, we obtain8><>:
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Hence, we have (35) and (38).
Similarly, totalling di¤erentiating (8) leads to (A11). Using (B3) and

(B4), we have (36) and (A16). Note that if � � 0; then � (S�; R�;�b) � 0 and

@ ~S (R�)

@R
> 0

@ ~R (S�)
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> 0:

Hence, Proposition 1 holds for this model as well.

10.2 Proof of Proposition 6

First, note that the total e¤ects of a productivity increase are given by:
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and
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When 0 < � < 1 and � � 0, we have @ eS(R�;�b)
@�b

> 0 and @ eR(S�;�b)
@�b

< 0.

Then @S�
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(B5). That is,

�@S
�

@R

@ ~R (S�;�b)

@�b
<
@ ~S (R�;�b)

@�b
:

By substituting (35), (38), (A16), and rearranging, the above condition is
equivalent to
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Similarly, we have @R�
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< 0 if and only if the direct e¤ect (in absolute value)

dominates the indirect e¤ect in (B6). That is,
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By substituting (36), (38), (A16), and rearranging, the above condition is
equivalent to
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Hence, Proposition 6 follows by considering di¤erent cases of the signs of @S
�

@�b

and @R�
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:

11 Supplementary Appendix C. Sensitivity
analysis: The details (Cai, Lau and Yuen)

We report the results of the sensitivity analysis regarding the parameters
listed in Table 1.
First, we are interested to know how sensitive our quantitative results are

with respect to the values of interest rate and subjective discount rate. In the
baseline case, we have followed Bloom et al. (2014) to assume r = � = 3%.
The �rst sensitivity analysis we perform is to assume that r = � = 4%
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(Case 1a), as in Restuccia and Vandenbroucke (2013).42 When the values of
these two parameters are the same, (5) implies that the consumption path is
constant. It is also interesting to consider other parameter values such that
consumption is changing over time. We consider the case that r = 5% and
� = 2% (Case 1b), as in Barro et al. (1995). The results for these two cases,
together with the baseline case, are presented in panel (a) of Figure C1. It
can be observed that there are only minor di¤erences in retirement age and
years of schooling. Graphically, the pro�les remain mostly unaltered, with
a mildly inverted U-shaped graph for the retirement age and a concavely
increasing one for schooling years. These analyses show that the baseline
results are not sensitive to the choice of r and �, at least when they vary
within a reasonable range.

[Insert Figure C1 here.]

Second, we vary the value of the growth rate of productivity. In the
baseline case, we assume that the growth rate of productivity is 1.27%.43 We
would like to know how sensitive our main results are with respect to this
parameter. We consider g = 1% (Case 2a), lower than the baseline value,
and g = 2% (Case 2b), higher than the baseline value. The results are given
in panel (b) of Figure C1. When productivity is growing at a slower rate
(g = 1%), the retirement age path is above that of the baseline case, with the
retirement age for the 2000 cohort at 69.8, which is almost 2 years higher than
67.9 of the baseline case. Intuitively, when the growth rate of productivity
is lower, the e¤ect of productivity increase (and thus, wealth) is weaker.
Thus, the e¤ect of mortality decline on retirement age becomes relatively
more important, resulting in a higher retirement age path. Interestingly,
the schooling years pro�le is not too much di¤erent from the baseline case.
When productivity is growing faster (g = 2%), the stronger productivity
e¤ect drags down the retirement age path substantially, to an extent that
the level of retirement age for the 2000 cohort is even lower than the level for
the 1900 cohort. The schooling years pro�le now has an inverted U-shape.
For Case 2b, the decrease in retirement age is substantial (4.6 years) from
1945 to 2000, and similarly, the corresponding decrease in schooling years
is quite large (1.71 years), o¤ering support regarding the interaction of the
e¤ects on these two variables.
42Note that in each of the following cases, we re-calibrate the three parameters (
, �

and �) according to the procedures described in Section 4.2.
43Note that this is the value assumed in Bloom et al. (2014, p. 852), corresponding

to the long-run growth rate of real wage in the USA. On the other hand, Restuccia and
Vandenbroucke (2013) assume g = 2%.
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We next perform analysis with di¤erent values of the intertemporal elas-
ticity of substitution (�). In the baseline case, we focus on the region � < 1
(with the income e¤ect dominating the substitution e¤ect), and assume
� = 0:6. We consider two cases in this region: � = 0:5 (Case 3a), which is
assumed in Bloom et al. (2014), and � = 0:7 (Case 3b). We also consider two
other cases that the income e¤ect does not dominate the substitution e¤ect.
In Case 3c, we consider � = 1 such that the two e¤ects cancel out. Finally,
we consider � = 1:5 (Case 3d), in which the substitution e¤ect dominates.
The results vary signi�cantly when � changes. This pattern is particularly
clear when we switch o¤ the mortality e¤ect and focus only on the e¤ect
of productivity increase. The variation of the relative magnitude of the in-
come and substitution e¤ects with respect to � is con�rmed: retirement age
and schooling years decrease over time (with increasing wealth) when � < 1,
but increase when � > 1. (See Table C1.) Quantitatively, the magnitude
of the changes in retirement age and schooling years with respect to � is
large. In panel (c) of Figure C1, we focus on the comparison of the base-
line case with Cases 3a and 3b, regarding the combined e¤ect of changes in
mortality decline and productivity increase. When � decreases slightly from
the baseline value to 0.5, the productivity e¤ect becomes stronger, leading
to decreases in the retirement age and schooling years in the second half
of the twentieth century. The e¤ect is substantial, and the retirement age
for the 2000 cohort is even lower than that for the 1900 cohort. Similarly,
the productivity e¤ect becomes weaker when � increases to 0.7, leading to
increases in both retirement age and schooling years over almost the entire
period. Again the e¤ect is large, with the retirement age for the 2000 cohort
increases to 71.2 years, compared with 67.9 years in the baseline case.

[Insert Table C1 here.]

It is seen from the above analysis that a decrease in g shifts up the
retirement age path (and the schooling years in recent years), but a decrease
in � produces opposite e¤ects. In panel (d) of Figure C1, we present the
results of g = 0:85% and � = 0:5 (Case 4). In this case, decreases in g and
� (from the baseline values) produce almost completely o¤setting e¤ects,
resulting in retirement age and schooling years paths similar to the baseline
case. We also consider results with di¤erent assumptions of the age that
individuals begin making economic decisions (N) and maximum age in the
model (T ). The results of N = 6 (Case 5) and T = 105 (Case 6) are given
in panel (d) of Figure C1. We see no major di¤erences in the retirement age
and schooling years, relative to the baseline case. Our results are robust to
the choice of N and T .
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To summarize, the computational results are robust with respect to r,
�, N and T , at least when they are within some relevant ranges. They
are less robust with respect to g and � individually, but we also �nd that
simultaneous changes in g and � can lead to retirement age and schooling
years paths close to the baseline case.
For each of the above cases, we also perform the decomposition exer-

cises by focusing on one exogenous change (mortality decline or productivity
increase) only. As seen in Table C1, we �nd that in each case, optimal retire-
ment age and schooling years always change monotonically, and these two
variables always move in the same direction.44
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Table C1: Sensitivity Analysis 

    Mortality decline & productivity  
increase Mortality decline only Productivity  increase only 

Cases Values RMSE  R*+N S*+N-6 R*+N S*+N-6 R*+N S*+N-6 

Baseline / 0.302 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 69.0 13.71 78.1 18.45 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.9 13.67 78.1 18.45 53.0 5.29 

1a 𝑟𝑟 = 4%; 

𝜌𝜌 = 4% 
0.303 

1900 65.0 8.21 65.0 8.21 65.0 8.21 
Max. value 69.4 13.82 78.9 18.03 65.0 8.21 

(Year) (1950) (1995) (2000) (2000) (1900) (1900) 
2000 68.3 13.81 78.9 18.03 52.3 5.47 

1b 𝑟𝑟 = 5%; 
𝜌𝜌 = 2% 0.305 

1900 65.0 8.17 65.0 8.17 65.0 8.17 
Max. value 69.0 14.15 76.4 17.14 65.0 8.17 

(Year) (1965) (2000) (2000) (2000) (1900) (1900) 
2000 68.4 14.15 76.4 17.14 56.0 6.38 

2a 𝑔𝑔 = 1% 0.263 

1900 65.0 8.30 65.0 8.30 65.0 8.30 
Max. value 70.1 14.14 77.7 17.46 65.0 8.30 

(Year) (1965) (2000) (2000) (2000) (1900) (1900) 
2000 69.8 14.14 77.7 17.46 53.1 5.56 

2b 𝑔𝑔 = 2% 0.615 

1900 65.0 8.05 65.0 8.05 65.0 8.05 
Max. value 67.1 13.27 79.5 21.88 65.0 8.05 

(Year) (1940) (1945) (2000) (2000) (1900) (1900) 
2000 62.4 11.56 79.5 21.88 52.6 4.43 

3a 𝜎𝜎 = 0.5 0.541 

1900 65.0 8.08 65.0 8.08 65.0 8.08 
Max. value 67.3 13.22 78.9 21.23 65.0 8.08 

(Year) (1940) (1945) (2000) (2000) (1900) (1900) 
2000 63.3 12.02 78.9 21.23 47.6 4.10 

3b 𝜎𝜎 = 0.7 0.250 

1900 65.0 8.34 65.0 8.34 65.0 8.34 
Max. value 71.2 14.39 77.6 16.90 65.0 8.34 

(Year) (1995) (2000) (2000) (2000) (1900) (1900) 
2000 71.1 14.39 77.6 16.90 57.2 6.58 

3c 𝜎𝜎 = 1 0.252 

1900 65.0 8.48 65.0 8.48 65.0 8.48 
Max. value 77.1 15.06 77.1 15.06 / / 

(Year) (2000) (2000) (2000) (2000) / / 
2000 77.1 15.06 77.1 15.06 65.0 8.48 

3d 𝜎𝜎 = 1.5 0.263 

1900 65.0 8.52 65.0 8.52 65.0 8.52 
Max. value 81.8 15.22 77.0 14.22 71.0 9.37 

(Year) (2000) (2000) (2000) (2000) (2000) (2000) 
2000 81.8 15.22 77.0 14.22 71.0 9.37 

4 𝑔𝑔 = 0.85%; 
𝜎𝜎 = 0.5 0.302 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 69.0 13.71 77.9 18.42 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.8 13.68 77.9 18.42 47.8 4.50 

5 𝑁𝑁 = 6 0.304 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 68.8 13.64 77.7 18.04 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.6 13.59 77.7 18.04 52.4 4.25 

6 𝑇𝑇 = 105 0.302 

1900 65.0 8.22 65.0 8.22 65.0 8.22 
Max. value 69.0 13.70 78.1 18.45 65.0 8.22 

(Year) (1950) (1990) (2000) (2000) (1900) (1900) 
2000 67.9 13.67 78.1 18.45 53.0 5.29 




