
S Supplementary Appendix for “Deductions for Early

Retirement”

In this supplementary appendix I offer a number of extensions of the basic set-up of the

paper without long-run changes, i.e. extensions that are set in an environment where the

crucial demographic variables (the retirement age, life expectancy etc.) are assumed to

be stationary.23 In particular, I discuss how the main results are affected in a set-up

with mortality and with growing wages and (appendix S.1.1) and with heterogeneity of

entry ages, employment histories and wages (appendix S.1.2).24 In the first section of this

supplementary appendix I summarize the main results of these extensions while in the

next sections I offer the proofs of the results. They involve somewhat longer arguments

and derivations.

S.1 Main conclusions

The main conclusion from these extensions is that a stationary distribution of retirement

ages is associated with a situation where the level of actuarial deductions is independent

of the market interest rate.

S.1.1 Mortality and growing economy

In sections 3 and 4 of the paper I have used a model with rectangular mortality (all

cohort members die at the same age ω) and with constant wages. In order to broaden

this view I have also looked at a set-up with non-rectangular survivorship S(a) (where

S(0) = 1 and S(ω) = 0) and a growing wage W (t). Since this general case involves

many derivations I have collected them in a separate supplementary appendix S.2 where

I show how the main formulas have to be adapted. Furthermore, I demonstrate that all

main findings continue to hold in this more general framework. In particular I show that

for a stationary retirement distribution (i) a NDC system is stable without the use of

additional deductions or supplements; (ii) the DB and AR systems are also compatible

with balanced budgets if they are augmented by demographic deduction factors that are

independent of the market interest rate; (iii) the discount rate that corresponds to these

23Extensions that also involve time-variability (e.g. increasing mean retirement age or increasing life
expectancy) are sketched in sections 5.3 and 5.4 of the paper.

24In the working paper version of the paper I have also dealt with the case where a pension system is
unbalanced by design (i.e. designed in a way such that it is not balanced in the stationary situation).
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budget-neutral deduction factors is given by the internal rate of return (i.e. now the

growth rate of wages). Quantitatively, I show that the actuarial deductions are lower for

non-rectangular survivorship than for the rectangular case (as reported in table 2). For

realistic assumptions they come out as 7% (DB system) and 4.9% (AR system) which

is smaller than the corresponding rates for rectangular survival where they have been

calculated as 8.33% and 6.25%, respectively.

S.1.2 Additional heterogeneity

The real-world is more complex than reflected in the frameworks used so far. Individuals

differ along many more dimensions including fertility, mortality, work history and wages.

It can be shown that the main results of sections 3 and 4 of the paper will continue

to hold in a set-up that allows for heterogeneity in labor market entry age and in the

average lifetime wage. If these variables follow a stationary distribution then one can use

the same arguments as above to conclude that a pure NDC system without additional

deductions is compatible with a stable budget. In fact, one can regard the formulation

with fixed A and W as referring to one specific constellation. Since the pure NDC system

leads to a balanced budget for this (as for any other) specific subgroup one can conclude

that also the aggregate budget will be in balance. Section S.3 shows this in more detail.

Furthermore, following the arguments of section 5.2 one would guess that fluctuations

around this stable joint distribution should also be compatible with an approximately

balanced budget.

S.2 Proofs of the extensions of appendix S.1.1

This generalizes the model of section 4 of the paper. The main results of the generalized

model are summarized in section S.1.1 above.

S.2.1 Set-up

Demographic structure I work with a model in continuous time. In every instant of

time t a new cohort is born. The maximum age that a member of cohort t can reach is

time-invariant and denoted by ω. S(a) gives the probability that an individual survives

to age a. It holds that S(0) = 1, S(ω) = 0 and that survivorship declines with age,

i.e. dS(a)
da
≤ 0 for a ∈ [0, ω]. The mortality hazard rate is given by µ(a) ≡ −dS(a)

da
1

S(a)
.
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Therefore:

S(a) = e
∫ a
0 −µ(x) dx. (22)

An interesting benchmark case is given by rectangular survivorship where S(a) = 1 for

a ∈ [0, ω]. In this case there are no premature deaths and all members of a cohort reach

the maximum age ω. This corresponds to the assumption made in section 4.

Remaining life expectancy is given by:25

e(z) =

∫ ω

z

e
∫ a
z −µ(x) dx da =

∫ ω
z
S(a) da

S(z)
. (23)

The second equality follows from the fact that e
∫ a
z −µ(x) dx = e

∫ a
0 −µ(x) dxe

∫ z
0 µ(x) dx = S(a)

S(z)

where the last step uses equation (22).

The size of cohort t at age a is given by N(a, t) = N(0, t)S(a), where N(0, t) stands

for the initial size of the cohort. For the sake of simplicity I assume constant sizes of

birth cohorts, i.e. N(0, t) = N, ∀t. The entry age in the labor market is again assumed to

be constant and given by A while the age-specific probability to retire for generation t is

again given by f(a, t) for a ∈ [A, ω]. I assume that the mortality rates are independent

from this probability. The cumulative function F (a, t) then gives the percentage of the

surviving members of cohort t that are already retired at age a. It holds that F (A, t) = 0

and F (ω, t) = 1. In this appendix I focus on a stationary retirement distribution, i.e.

f(a, t) = f(a) and F (a, t) = F (a).

The total size of the active population L and the retired population M are constant

and given by:

L = N

∫ ω

A

S(a) (1− F (a)) da, (24)

M = N

∫ ω

A

S(a)F (a) da. (25)

Budget of the pension system The contribution rate to the PAYG pension system is

assumed to be fixed at τ . I abstract from intragenerational wage differences and seniority

profiles and simply assume that in a specific period t each workers earns an identical wage

W (t). Wages grow at rate g(t), i.e. W (t) = W (0)e
∫ t
0 g(s) ds.

Each retired member of generation t receives a pension payment P (R, a, t). The size

of the pension can depend on the payment period t+a, on the individual’s age a and also

25See, e.g., Keyfitz & Caswell (2005) or Goldstein (2006).
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on the time of his or her retirement R ≤ a. Below I will say more about the determination

of the pension payments in different systems.

In order to calculate the total expenditures of the pension system one can make the

following considerations. First, focus on one particular retirement age R and calculate

the total of pension payments that is distributed to the group of pensioners that has

retired at this age. This comprises individuals at different ages a ∈ [R,ω]. For a person

who is of age a in period t the pension payment is P (R, a, t − a) and the size of this

subgroup is N × S(a). The total payments to people with retirement age R in period

t is thus given by: P total(R, t) = N
∫ ω
R
P (R, a, t − a)S(a) da. The same logic applies for

any possible retirement age R ∈ [A, ω] where the relative frequency of the retirement

age is given by f(R). Total pension expenditures in period t can thus be written as

E(t) =
∫ ω
A
P total(R, t)f(R) dR or:26

E(t) = N

∫ ω

A

(∫ ω

R

P (R, a, t− a)S(a) da

)
f(R) dR. (26)

Total revenues I(t), on the other hand, are given by:

I(t) = τW (t)L = τW (t)N

∫ ω

A

S(a) (1− F (a)) da. (27)

The total deficit (or surplus) of the pension system is given by D(t) = E(t)− I(t) while

the deficit ratio by d(t) = D(t)
I(t)

= E(t)
I(t)
− 1. A continuously balanced budget is thus

characterized by D(t) = d(t) = 0,∀t.

S.2.2 Different PAYG systems

In the last section S.2.5 of this appendix I discuss in detail how the pension level Pj(R, a, t)

is determined in the three different pension systems j ∈ {DB,AR,NDC}. Here I only

summarize the main results. There are two main differences to the simple model of

sections 3 and 4 that have to do with the assumptions of growth and mortality. All

pension systems have to specify how pension claims that have been acquired in the past

are revalued at the moment of retirement. In the NDC system, e.g., this is done by the

choice of a “notional interest rate” ρ(a, t). There exist two popular variants of this interest

26Alternatively, one could also reverse the order and look first at a fixed age a of the retired population
and calculate the total pension payments to those individuals that have different retirement ages R. In the
second step one would then calculate the total pension payments to all possible ages a. This results in an
equivalent expression. I focus on the formulation in (26) since it is more convenient for later calculations.
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rate that are discussed in the literature and used in real-world systems:

ρ(a, t) = g(t) + µ(a) (28a)

or

ρ(a, t) = g(t). (28b)

Both notional interest rates reflect the growth rate of average wages g(t) while the first

specification (28a) also corrects for the fact that each period some cohort members die.

The account values of the deceased cohort members are regarded as “inheritance gains”

that are distributed among surviving cohort members by granting an extra return µ(a).

For later reference it is also useful to define the following term:

h(R) ≡
∫ R
A
S(a) da

(R− A)S(R)
, (29)

that stands for the “per capita inheritance gains premium”, i.e. the factor by which the

first pension at retirement age R is higher if the revaluation takes inheritance gains into

account. For rectangular survivorship there are no inheritance gains and thus the average

premium is h(R) = 1.

Furthermore, due to the assumption of a growing economy one also has to specify how

pension are adjusted over time. Here it is assumed (for simplicity and in line with the

practice in many countries) that ongoing pensions are adjusted with the average growth

rate of wages, i.e.%

ϑ(t) = g(t). (30)

In section S.2.5 I show that in this situation the three pension system are associated

with the following pension levels:

PNDC(R, a, t) = τW (t+ a)
(R− A)h(R)

e(R)
XNDC(R, t), (31)

PDB(R, a, t) = q∗W (t+ a)XDB(R, t), (32)

PAR(R, a, t) = κ∗W (t+ a)(R− A)XAR(R, t), (33)

where the NDC system uses the notional interest including inheritance gains (i.e. equation

(28a)) to revalue past contributions. This is in line with the approach used in Sweden.

The other two system are based on indexations excluding these mortality adjustments (i.e.
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on equation (28b)) which is also in line with the real-world systems. All three pension

system also allow for the use of demographic adjustment factors Xj(R, t) as discussed in

section 3. In the case of non-stationary constellations the deduction factor might also be

time-dependent as is indicated by the use of a time index t.

S.2.3 Budget-neutral deductions

In this part I investigate how the deduction factors Xj(R, t) have to be determined in

order to guarantee a balanced PAYG system in the case of a stationary demographic

situation. The following proposition is a generalization of proposition 1 and has already

been stated in section 5.1 of the paper. It states that a standard NDC system with

ρ(a, t) = g(t) + µ(a) leads to a balanced budget without the need for further deductions.

Propositon 2 Assume a stationary demographic situation where the size of birth cohorts

is constant (N(0, t) = N), people start to work at age A, the maximum age is ω, mortality

is described by the survivorship function S(a) for a ∈ [0, ω], retirement age is distributed

according to the probability density function f(R) for R ∈ [A, ω] and wages grow with

rate g(t). In this case a NDC system will be in continuous balance (E(t) = I(t),∀t) if

the notional interest rate and the adjustment factor are set according to ρ(a, t) = g(t) +

µ(a) (equation (28a)) and ϑ(t) = g(t) (equation (30)), respectively, and if there are no

additional deductions (XNDC(R, t) = 1).

Proof. For the NDC system one can insert the pension level from equation (31), i.e.

PNDC(R, a, t− a) = τW (t) (R−A)h(R)
e(R)

XNDC(R, t) into (26) to conclude that:

E(t) = τW (t)N

∫ ω

A

(R− A)h(R)

e(R)
XNDC(R, t)

(∫ ω

R

S(a) da

)
f(R) dR

= τW (t)N

∫ ω

A

(∫ R

A

S(a) da

)
XNDC(R, t)f(R) dR, (34)

where I use the definitions h(R) =
∫R
A S(a) da

(R−A)S(R)
and e(R) =

∫ ω
RS(a) da

S(R)
.

For the assumptions of proposition 2 total expenditures in equation (34) can be written

as:

E(t) = τW (t)N

∫ ω

A

(∫ R

A

S(a) da

)
f(R) dR.

One can define u(R) =
∫ R
A
S(a) da and v(R) = 1− F (R) with u′(R) = S(R) and v′(R) =
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−f(R). Using integration by parts it holds that:∫ ω

A

(∫ R

A

S(a) da

)
f(R) dR = −

∫ ω

A

u(R)v′(R) dR = −u(R)v(R) +

∫ ω

A

u′(R)v(R) dR.

The term (−u(R)v(R)) is given by
[(∫ R

A
S(a) da

)
(1− F (R))

]ω
A

which can be evaluated

as (∫ ω

A

S(a) da

)
(1− F (ω))−

(∫ A

A

S(a) da

)
(1− F (A)) = 0. (35)

Since it holds that
∫ ω
A
u(R)v′(R) dR =

∫ ω
A
S(R)(1− F (R)) dR one can conclude that:

E(t) = τW (t)N

∫ ω

A

S(R)(1− F (R)) dR. (36)

This is equal to total revenues I(t) = τW (t)N
∫ ω
A
S(a) (1− F (a)) da (see (27)) and thus

E(t) = I(t).

Proposition 2 generalizes proposition 1 and it confirms the previous findings. For a

stationary economic and demographic situation a NDC system that includes a correction

for inheritance gains is stable if one uses the benchmark NDC formula:

PNDC(R, a, t) = τW (t+ a)
(R− A)h(R)

e(R)
. (37)

There is no need for an additional adjustment factor and it holds (as in section 4.2) that

XNDC(R, t) = ΨNDC(R) = 1.

In this case it is also possible to make the DB and the AR systems stable by just using

demographic deduction factors ΨDB(R) and ΨAR(R) that are independent of the discount

rate δ and of time t. These are calculated in appendix S.2.5.27 As in appendix A I again

invoke the “balanced target condition”, i.e. the condition that the target replacement rate

q∗ is chosen in such a way that if everybody retires at the target retirement age R∗ there

will be no deductions (ΨDB(R∗) = 1) and the system will be in balance. The demographic

adjustment factors come out as:

ΨDB(R) =
e(R∗)

e(R)

h(R)

h(R∗)

R− A
R∗ − A

, (38)

27I also discuss the case of a NDC system that uses (28b) instead of (28a), i.e. that excludes the
correction for inheritance gains in the notional interest rate. In this case one also needs a demographic
adjustment factor in order to implement a balanced system.
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Table S.1: Three PAYG systems for a stationary demography

(1) (2) (3) (4)

Type P̂j(R, a, t) P̂j(R, a, t) Ψj Pj(R, a, t)
(j) (for BTC) (for BTC)

DB q∗W (t+ a) τW (t+ a) (R
∗−A)h(R∗)
e(R
∗
)

e(R
∗
)

e(R)
h(R)

h(R
∗
)
R−A
R
∗−A τW (t+ a) (R−A)h(R)

e(R)

AR κ∗(R− A)W (t+ a) τW (t+ a) (R−A)h(R
∗
)

e(R
∗
)

e(R
∗
)

e(R)
h(R)

h(R
∗
)

τW (t+ a) (R−A)h(R)
e(R)

NDC τW (t+ a) (R−A)h(R)
e(R)

τW (t+ a) (R−A)h(R)
e(R)

1 τW (t+ a) (R−A)h(R)
e(R)

Note: The table shows the formula pension P̂j(R, a, t), the demographic deduction factor Ψj and the

total pension Pj(R, a, t) = P̂j(R, a, t)Ψj for three variants of PAYG schemes: DB (Defined Benefit), AR
(Accrual Rates), NDC (Notional Defined Contribution). The balanced target condition (BTC) has to hold
if the system has a balanced budget in the case that all individuals retire at the target retirement age
R = R∗. These are specified in the text. Column (4) is the multiple of columns (2) and (3).

ΨAR(R) =
e(R∗)

e(R)

h(R)

h(R∗)
. (39)

In table S.1 I collect important formulas for the three PAYG systems. In particular, it

contains the formula pension P̂j(R, a, t) (both in its basic form and after invoking the

balanced target condition), the demographic deduction factor Ψj and the final pension

Pj(R, a, t) = P̂j(R, a, t)Ψj. Note that for rectangular survivorship it holds that h(R) = 1

and e(R) = ω−R . In this case the results of table S.1 coincide with the ones of table 1.

In particular, ΨDB(R) = ω−R∗
ω−R

R−A
R
∗−A and ΨAR(R) = ω−R∗

ω−R .

S.2.4 The choice of discount rates

So far I have shown that for a stationary economic and demographic situation a standard

NDC system implements a stable PAYG pension system. By using the correct demo-

graphic adjustment factors ΨDB and ΨAR also the DB and a AR systems can be amended

to guarantee a continuous budgetary balance. This implies that it is not necessary to

refer to the market interest rate in order to design the budget-neutral deduction rates in

this stationary constellation.

It is interesting to look at this issue from the viewpoint of the standard deduction

framework presented in section 3.2 and ask a number of questions. First, which choice of

the discount rate will give rise to the budget-neutral demographic deduction factors Ψj?

Second, what deductions are implied if the discount rate is set to higher levels? Third,

under which conditions will higher discount rates also be compatible with a balanced
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budget? Answers to these questions will be provided in the next three subsections.

The appropriate budget-neutral discount rate for a stationary demography

In order to find the discount rate that is compatible with the budget-neutral demographic

deduction factors Ψj one has to adapt the neutrality condition (1) of section 3.2 for the

general framework. It comes out as:

∫ R∗
R

(
τW (t+ a) + P̂j(R, a, t)Xj

)
e−δ(a−R)S(a) da =∫ ω

R
∗

(
P̂j(R

∗, a, t)− P̂j(R, a, t)Xj

)
e−δ(a−R)S(a) da. (40)

I want to know for which choice of δ the total deduction factor will collapse to the

demographic factor, i.e. for which δ it holds that Xj = Ψj. In general, one cannot solve

(40) for Xj in closed form. In the following I show, however, analytically that for the case

of constant growth (i.e. g(t) = g) the choice of δ = g leads to the result that Xj = Ψj.

In order to do so I focus on formula pensions that are proportional to τW (t + a).

Therefore I write P̂ (R, a, t) = τW (t + a)P̌ (R). Furthermore, noting that W (t + a) =

W (t+R)e
∫ a
Rg(t+s) ds equation (40) can also be written as:

τW (t+R)

∫ R
∗

R

(
1 + P̌ (R)X

)
e
∫ a
Rg(t+s) dse−δ(a−R)S(a) da =

τW (t+R)

∫ ω

R
∗

(
P̌ (R∗)− P̌ (R)X

)
e
∫ a
Rg(t+s) dse−δ(a−R)S(a) da.

For constant wage growth g(s) = g this can be simplified to:28

∫ R∗
R

(
1 + P̌ (R)X

)
e−(δ−g)(a−R)S(a) da =∫ ω

R
∗
(
P̌ (R∗)− P̌ (R)X

)
e−(δ−g)(a−R)S(a) da. (41)

I want to show that for the choice of δ = g the deductionsX coincide with the demographic

deduction factor Ψ. I focus first on the NDC system. In this case it holds that Ψ = 1

and the conjecture is that X = Ψ = 1. Furthermore, P̂ (R, a, t) = τW (t + a) (R−A)h(R)
e(R)

,

i.e. P̌ (R) = (R−A)h(R)
e(R)

. Noting that h(R) =
∫R
A S(a) da

(R−A)S(R)
and e(R) =

∫ ω
RS(a) da

S(R)
one can thus

28Similarly, one could also assume a time-varying discount rate δ(s). Under the assumption that
δ(s) = g(s) one could then derive the same result as in the following.
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write: P̌ (R) =
∫R
A S(a) da∫ ω
RS(a) da

. Inserting this into (41) leads to:

(
1 +

∫ R
A
S(a) da∫ ω

R
S(a) da

)∫ R
∗

R

S(a) da =

(∫ R∗
A
S(a) da∫ ω

R
∗S(a) da

−
∫ R
A
S(a) da∫ ω

R
S(a) da

)∫ ω

R
∗
S(a) da.

This can be simplified to:(∫ ω
R
S(a) da+

∫ R
A
S(a) da

) ∫ R∗
R
S(a) da =(∫ R∗

A
S(a) da

∫ ω
R
S(a) da−

∫ R
A
S(a) da

∫ ω
R
∗S(a) da

)
.

Collecting terms this leads to:

∫ ω

R

S(a) da

(∫ R
∗

R

S(a) da−
∫ R

∗

A

S(a) da

)
=

∫ R

A

S(a) da

(
−
∫ ω

R
∗
S(a) da−

∫ R
∗

R

S(a) da

)
.

Combining integrals one can conclude:

−
(∫ ω

R

S(a) da

∫ R

A

S(a) da

)
= −

(∫ ω

R

S(a) da

∫ R

A

S(a) da

)
.

This proves the conjecture that for δ = g the implied deduction X equals the demographic

deduction Ψ which is just Ψ = 1 for the NDC system. Since the demographic deduction

factors ΨDB and ΨAR are just determined in such a way as to transform the DB and AR

systems into a NDC system the same conclusion also holds for these systems.

The stated result implies that the appropriate budget-neutral discount rate for a sta-

tionary situation is given by the internal rate of return. This has often been claimed in

the related literature but the present framework allows to formulate it in a precise manner

and to state the exact conditions (in particular demographic stationarity) under which it

holds.

Deductions for different discount rates In a next step one can investigate which

deductions are implied by choices of the discount rate δ > g. Although these choices are

not necessary from the viewpoint of budgetary stability it is nevertheless instructive to see

the magnitudes involved. To do so I use illustrative numerical examples. In particular, I

assume a Gompertz survival curve of the form S(a) = e
α
β (1−eβa).29

29The associated mortality rate is given by µ(a) = αeβa (i.e. the logarithm of mortality rates increases
linearly in age). The Gompertz-function delivers a good description of empirical mortality data. For the
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Table S.2: Deductions for R = 64 and R∗ = 65

δ̂ = 0 δ̂ = 0.02 δ̂ = 0.05

Type j P̂j Ψj Xj xj(in%) Pj Xj xj(in%) Pj Xj xj(in%) Pj
DB 67.0 0.93 0.93 -7.04 62.3 0.91 -8.71 61.1 0.89 -11.49 59.3
AR 65.5 0.95 0.95 -4.92 62.3 0.93 -6.64 61.1 0.91 -9.48 59.3
NDC 62.3 1 1 0 62.3 0.98 -1.81 61.1 0.95 -4.79 59.3

Note: The table shows the actuarial deduction factors Xj , the annual deductions rates xj (based on the

linear relation xj =
Xj−1

R
∗−R ) and the final pension Pj(R,R

∗) = P̂j(R,R
∗)Xj for three pension schemes and

three (net) discount rates δ̂ ≡ δ − g. For the sake of comparison also the values of the pure demographic
deduction factors Ψj are reported. The numerical values are: A = 20, τ = 0.25, g = 0.02, R∗ = 65 and
R = 64. For all three schemes the target pension is P ∗ = 67. Mortality follows a Gompertz distribution
with α = 0.000025 and β = 0.096.

In Table S.2 I report the deduction factors Xj and annual deduction rates xj for various

assumption concerning the (net) discount rate δ̂ ≡ δ − g. It corresponds to table 2 from

section 3.2 which was based on rectangular survivorship. In addition, I also report the

demographic deduction factors Ψj that are sufficient for budgetary stability. For all three

systems the target pension level at the target retirement age R∗ = 65 is given by P ∗ = 67

(which implies a target replacement rate for the DB system of q∗ = 0.67). This is lower

than for the case of rectangular survivorship since —due to premature deaths—remaining

life expectancy e(R∗) at R∗ = 65 is now larger (18.6 vs. 15). The step-up of pensions due

to inheritance gains is non-trivial and given by h(R∗) = 1.11 (or 11%). This is due to the

fact that only 88% of all members of a cohort survive up to this age (S(R∗) = 0.88).

The results are qualitatively similar to the ones for rectangular survivorship in table

2 The first thing to note is that for δ̂ = 0 (i.e. δ = g) the total deductions correspond

exactly to the demographic adjustment factors, i.e. Xj = Ψj as has already been shown

in section S.2.4. For the DB system the correct annual deduction rate for a retirement at

the age of 64 is 7% while it is 4.9% for the AR system if mortality follows a Gompertz

pattern. This is smaller than the corresponding rates for rectangular survival where they

have been calculated as 8.33% and 6.25%, respectively. For larger discount rates, however,

the difference shrinks and for δ̂ = 0.05, e.g., the annual deduction rates for the Gompertz

following examples I use a parameterization of α = 0.000025 and β = 0.096. This is roughly based on
the Austrian life tables from 2005 which have the convenient property that the (unisex) life expectancy
at birth was almost exactly 80 which facilitates comparisons to the numerical examples of section 3 with
rectangular survivorship.
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Table S.3: Deficit ratios d = E/I

Distribution 1 Distribution 2 Distribution 3

Type j δ̂ = 0 δ̂ = 0.02 δ̂ = 0.05 δ̂ = 0 δ̂ = 0.02 δ̂ = 0.05 δ̂ = 0 δ̂ = 0.02 δ̂ = 0.05

DB 1 1 1.004 1 0.982 0.954 1 1.001 1.003
AR 1 1 1.004 1 0.982 0.954 1 1 1.003
NDC 1 1 1.004 1 0.982 0.954 1 1 1.003

Note: The table shows the deficit ratio for three pension schemes, three assumptions of the discount rate δ̂ ≡ δ−g
and three assumed distributions of the retirement age. These are RL = 60, Rmod = 65, RH = 70 (distribution

1), RL = 60, Rmod = 65, RH = 67 (distribution 2) and RL = 60, Rmod = 67, RH = 68 (distribution 3). The
mean retirement age is R = 65 for distributions 1 and 3 and R = 64 for distribution 2. Mortality follows a
Gompertz distribution with α = 0.000025 and β = 0.096 and the target retirement age is always R∗ = 65.

and the rectangular case are very similar.

Balanced and unbalanced budgets for different discount rates In the simple

framework of sections 3 and 4 I have shown that even for discount rates that are larger than

necessary it might still be the case that the system runs a balanced budget. In particular,

I have shown there that the balanced budget condition depends on the choice of both the

discount rate δ and the target retirement age R∗. This can be repeated for the general

framework. It is not possible to derive closed-form solutions for the balanced budget and

one has to resort to numerical calculations. In particular, I assume that retirement ages

follow a triangular distribution that is defined by the minimum and maximum retirement

ages RL and RH , respectively and also by the mode Rmod. The density function is then

given by f(R) = 2(R−RL)
(R
H−RL)(Rmod−RL)

for RL ≤ R ≤ Rmod and f(R) = 2(R
H−R)

(R
H−RL)(RH−Rmod)

for

Rmod ≤ R ≤ RH .30

In table S.3 I show three distributions that differ in the shape and the average retire-

ment age R = R
L
+R

mod
+R

H

3
. In all three distributions I assume that the earliest retirement

age is given by RL = 60. In the first distribution RH = 70 and the modus, median and

mean coincide at Rmod = R = 65. In the second distribution the modus is again Rmod = 65

while the maximum retirement age is RH = 67 implying a mean of R = 64. Finally, for

the third distribution I assume a non-symmetric case with R = 68 and Rmod = 67 which

implies an average retirement age of R = 65.

The first result is that the budget is in balance for all three distributions of retirement

30I have also analyzed different retirement distributions. The results are robust.

S12



ages as long as the discount rate is equal to the growth rate of wages (i.e. δ̂ = 0). This is

of course an expected result that follows from the analytical findings of section S.2.4. As

a second result one can see that the budget is also (approximately) balanced for situations

where δ̂ > 0 as long as R∗ = R (which is the case for distributions 1 and 3). For the

second distribution, however, for which R∗ = 65 > 64 = R this is different. In this case

the pension system runs a permanent surplus if the discount rate is above the growth rate

of wages (d = 0.98 for δ̂ = 0.02 and d = 0.95 for δ̂ = 0.05).

These results are completely parallel to the ones of section 4. In particular, the budget

is balanced as long as the discount rate is set equal to the growth rate of wages (as has

already been shown analytically in section S.2.4). Furthermore, the budget also turns out

to be (approximately) balanced for situations where the discount rate differs from this

benchmark value as long as R∗ = R.

S.2.5 Derivation of the pension formulas for the different systems

In this section I derive the formulas for the different pension systems that have been

stated and used above in section S.2.2.

Notional defined contribution pension system I start with the discussion of how

the pension level P (R, a, t) is determined in NDC systems. This provides again a useful

benchmark case to derive the necessary deductions and supplements for the two other

PAYG pension systems (AR and DB).

The contributions in a NDC system are credited to a notional account and they are

revalued with a “notional interest rate” ρ(a, t) (that is allowed to change over time and

across ages). The total value of this account is called the “notional capital” that accumu-

lates over the working periods of an insured person. When the individual retires at age

R the final notional capital is given by:

K(R, t) =

∫ R

A

τW (t+ x)e
∫R
x ρ(s,t+s) ds dx, (42)

where the cumulative factor e
∫R
x ρ(s,t+s) ds indicates how the contribution τW (t + x) that

is paid into the pension system in period t + x is revalued when calculating the final

amount of the notional capital in period t + R (the period of retirement). The notional

interest rate is a crucial magnitude in a NDC system as I discuss in a different paper

(see Knell 2018). In section S.2.2 I use two standard definitions that can be found in
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real-world NDC systems. Both notional interest rates are related to the growth rate of

productivity (or of average wages) while one also contains a correction for the fast that

the cohort size decreases with the mortality rate µ(a). The account values of the deceased

cohort members are regarded as “inheritance gains” that are distributed among surviving

cohort members by granting an extra return µ(a). In particular:

ρ(a, t) = g(t) + µ(a)

or

ρ(a, t) = g(t),

which corresponds to equations (28a) and (28b) in section S.2.2. Using these definitions

for the notional interest rate in (42) one can conclude that K(R, t) = τW (t+R)(R−A)

if one uses the value of ρ(a, t) without inheritance gains (equation (28b)) or K(R, t) =

τW (t+R)
∫ R
A
e
∫R
a µ(s) ds da if one uses the specification that includes the inheritance gains

(equation (28a)). This can also be written as K(R, t) = τW (t + R)(R − A)h(R), where

h(R) ≡
∫R
A S(a) da

(R−A)S(R)
as expressed in equation (29). The term h(R) stands for the per capita

“inheritance gains premium” to the “normal” notional capital, averaged over the (R−A)

contribution periods and distributed among the mass S(R) of surviving members.31

The first pension that is received by a member of cohort t who retires at the age R is

given by:

PNDC(R,R, t) =
K(R, t)

e(R)
XNDC(R, t). (44)

The first pension is calculated by taking the final notional capital K(R, t) and turning it

into an annual pension payment by using remaining life expectancy e(R) as the annuity

conversion factor. In addition, there might also be a deduction factor XNDC(R, t) that

is applied to secure a balanced budget if the formula pension K(R,t)
e(R)

is not sufficient.

For simplicity I write this demographic deduction factor only as a function of the actual

retirement age R and time although—in general—it will also depend on other demographic

and policy variables (like R∗ and A). The dependence on time is relevant for the case of

non-stationary retirement distributions.

31The relation follows by noting that e
∫ R

a
µ(s) ds can be written as: e

∫ R

a
µ(s) ds = e

∫ R

0
µ(s) dse

∫ a

0
−µ(s) ds.

Therefore
∫ R
A
e
∫ R

a
µ(s) ds da = e

∫ R

0
µ(s) ds ∫ R

A
e
∫ a

0
−µ(s) ds da = (S(R))

−1 ∫ R
A
S(a) da, where I use (22).
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From equation (23) it is known that:

e(R) =

∫ ω
R
S(a) da

S(R)
. (45)

This can be used together with K(R, t) = τW (t+ R)(R− A)h(R) = τW (t+ R)
∫R
A S(a) da

S(R)

to derive the first pension in the case that the notional interest rate includes a correction

for the inheritance gains (i.e. ρ(a, t) = g(t) + µ(a)):

PNDC(R,R, t) = τW (t+R)
(R− A)h(R)

e(R)
XNDC(R, t)

= τW (t+R)

∫ R
A
S(a) da∫ ω

R
S(a) da

XNDC(R, t). (46)

This expression is quite intuitive. At the moment of retirement the first pension payment

is proportional to the wage level in the period of retirement t+R. This is due to the fact

that past contributions are indexed to average wage growth. The inclusion of inheritance

gains raises the notional capital (which is captured by the expression in the numerator)

while the period pension payment depends on remaining life expectancy (which is captured

by the expression in the denominator). In addition there might be a correction for early

or late retirement XNDC(R, t).

For the situation where inheritance gains are not included and where the notional

interest rate is simply given by ρ(t) = g(t) the first pension is:

PNDC′(R,R, t) = τW (t+R)
R− A
e(R)

XNDC
′(R, t)

= τW (t+R)
R− A∫ ω
RS(a) da

S(R)

XNDC
′(R, t). (47)

For the case of rectangular survivorship (S(a) = 1 for a ∈ [A, ω]) one gets that both (46)

and (47) lead to the same result that PNDC(R,R, t) = τW (t+R)R−A
ω−RXNDC(R, t). This is

the same expression that was used in section 3 (see table 1).

Existing pensions are adjusted according to:

Pj(R, a, t) = Pj(R,R, t)e
∫ a
Rϑ(t+s) ds, (48)

for a ∈ [R,ωc(t)] and where I use the index j since the adjustment in (48) is valid for all
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three pension systems j ∈ {DB,AR,NDC}. The variable ϑ(t) stands for the adjustment

rate in period t and the cumulative adjustment factor e
∫ a
Rϑ(t+s) ds indicates how the first

pension P (R,R, t) is adjusted to give the pension payment in period t + a. In section

S.2.2 I assume that ongoing pensions are adjusted with the average growth rate of wages

as expressed in equation (30) stating that ϑ(t) = g(t).

In this case one can use (46) and (48) to conclude that with ρ(a, t) = g(t) + µ(a) the

ongoing pension is:

PNDC(R, a, t) = τW (t+ a)
(R− A)h(R)

e(R)
XNDC(R, t),

which is equation (31) in section S.2.2. For ρ(a, t) = g(t) it holds that PNDC′(R, a, t) =

τW (t + a)R−A
e(R)

ΨNDC
′(R). In the following I focus on the first case with a compensation

for inheritance gains.

Defined benefit pension system In a similar vein one can look at the two alternative

pension systems discussed in section 3. The defined benefit (DB) system promises a

target replacement rate q∗ if an individual retires at the target retirement age R∗. The

replacement rate is related to average lifetime income, where past incomes are revalued

at a rate ρ(a, t) and where there are correction for early/late retirement. In particular,

instead of (44) it now holds that:

PDB(R,R, t) = q∗W
LT

(R, t)XDB(R, t), (49)

whereW
LT

(R, t) =
∫R
AW (t+x)e

∫R
x ρ(s,t+s) ds dx

R−A . This expression is closely related to the notional

capital (42) for NDC systems. I know of no existing DB system that includes a correction

for inheritance gains when indexing past wage levels. Therefore the benchmark DB system

is characterized by the indexation ρ(a, t) = g(t). From this is follows that PDB(R,R, t) =

q∗W (t + R)XDB(R, t). As above I assume that existing pension are adjusted with the

growth rate of average wages according to (48) and (30) and thus:

PDB(R, a, t) = q∗W (t+ a)XDB(R, t),

which corresponds to equation (32) in section S.2.2.
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Accrual rate pension system Finally, one can look at the accrual rate system in the

general set-up. The AR system promises a pension that is proportional to the revalued

average lifetime income. In particular, for each year of work the system promises a certain

percentage κ∗ (the accrual rate) of this lifetime average that can be claimed at the target

retirement age R∗. For early retirement there exists a deduction XAR(R, t). In particular,

the first pension is now defined as:

PAR(R,R, t) = κ∗(R− A)W
LT

(R, t)XAR(R, t), (50)

where W
LT

(R, t) stands for lifetime income (as defined in section S.2.5) for which past

incomes are revalued at a rate ρ(a, t). As before and in line with existing AR system I

assume that indexation follows the growth rate of average wages, i.e. ρ(a, t) = g(t). From

this is follows that PAR(R,R, t) = κ∗W (t+R)(R−A)XAR(R, t). For pension adjustment

according to (48) and ϑ(t) = g(t) one can conclude that:

PAR(R, a, t) = κ∗W (t+ a)(R− A)XAR(R, t).

which corresponds to equation (33) in section S.2.2.

S.2.6 Demographic adjustment factors

Proposition 2 shows that for a stationary retirement distribution f(R) the NDC system

is stable for X(R, t) = Ψ(R) = 1. It is now straightforward to discuss the demographic

deductions Ψj(R) that are necessary to establish balanced budget for pension systems that

deviate from the NDC benchmark. This can be seen by looking at equation (34). If the

pension payments of the alternative system can be written as Pj(R, a, t) = τW (t+a) (· · · )
then the correction Ψj(R) just has to be set in a way such that it mimics the benchmark

NDC-pension given in (37). As a first example one can look at a NDC ′ system that

does not include the compensation for inheritance gains (as is the case for most existing

NDC systems with the notable exception of Sweden) and that sets ρ(a, t) = g(t). In

this case it has been shown above that the pension is given by PNDC′(R, a, t) = τW (t +

a) (R−A)
e(R)

ΨNDC
′(R). It is immediately apparent that an adjustment with ΨNDC

′(R) = h(R)

leads to a balanced budget. Otherwise, the pension system would run a surplus since

h(R) > 1, i.e. the system would keep the inheritance gains for itself instead of distributing

them among the surviving population.

For the defined benefit system I invoke as in section 3 the “balanced target con-
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dition”, i.e. I assume that the target replacement rate q∗ is associated with a situa-

tion that there will not be any deductions (ΨDB(R∗) = 1) if everybody retires at the

target retirement age R∗. For the NDC system one knows from equation (37) that

a balanced budget with R = R∗,∀i requires that everybody gets a pension equal to

PNDC(R∗, a, t) = τW (t + a) (R
∗−A)h(R∗)
e(R
∗
)

. This should be equal to the DB pension with

R = R∗,∀i, i.e. to PDB(R∗, a, t) = q∗W (t + a). From these two expressions it follows

that q∗ = τ (R
∗−A)h(R∗)
e(R
∗
)

. Inserting this into equation (32) for PDB(R, a, t) leads to the DB

pension after evoking the stability condition:

PDB(R, a, t) = τW (t+ a)
(R∗ − A)h(R∗)

e(R∗)
ΨDB(R). (51)

This expression can now be compared to the pension of the benchmark NDC system (37)

(that leads to a balanced budget) to conclude that ΨDB(R) = R−A
R
∗−A

e(R
∗
)

e(R)
h(R)

h(R
∗
)

as stated in

equation (38).

One can use similar steps for the AR pension system. In particular, I assume that the

target accrual rate κ∗ is chosen in such a way that the system is balanced if everybody

retires at the target retirement age R = R∗,∀i. Inserting the implied target accrual rate

κ∗ = τ h(R
∗
)

e(R
∗
)

into equation (33) for PAR(R, a, t) leads to the AR pension after evoking the

stability condition:

PAR(R, a, t) = τW (t+ a)
(R− A)h(R∗)

e(R∗)
ΨAR(R). (52)

The deduction rate that is necessary for a balanced AR system can be calculated by setting

(52) equal to the NDC pension (37) and solving for ΨAR(R). This leads to ΨAR(R) =
e(R
∗
)

e(R)
h(R)

h(R
∗
)

as stated in equation (39). These and other important formulas are collected

in table S.1 of appendix S.2.2.

S.3 Proofs of the extensions of appendix S.1.2

In the main part of the paper I have assumed that all individuals have the same entry age

A, the same wage level W and the same life expectancy ω. In section S.1.2 I have already

summarized the results for some extensions of this basic framework in the case that there

are no long-run demographic changes (to life expectancy or to the average retirement

age). In this appendix I now provide the proofs for these already stated results.

In order to do so I have to broaden the basic framework and I now assume that the
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society is split in j = 1, 2, . . . J groups (with respective weight πj) where each group is

characterized by specific values for Aj, Wj and possibly also R∗j (i.e. the system might

prescribe group-specific target retirement ages).32 In a previous version of the paper

I also discussed the case with group-specific maximum ages ωj, This discussion is left

out in the following but the results are available upon request. A possible correlation

between income, entry age etc. is captured by the pattern of relative frequencies πj of

the different groups with
∑J

j=1 πj = 1. Although members of each group are identical

along all the above mentioned dimensions they might differ in their retirement age. In

particular, I assume that within each group j there are k = 1, 2, . . . K subgroups of

individuals with a retirement age Rk
j and a relative frequency φkj with

∑K
k=1 φ

k
j = 1. The

within-group differences in the retirement age are important in order to calculate the

appropriate deductions for early retirement at the age of Rk
j instead of R∗j . I now allow

for the case of a “biased NDC system”, i.e. P̂ k
j = τWjηj

R
k
j−Aj
ω−Rkj

. For

etaj > 1 the system is, e.g., more generous than the benchmark NDC system.

For the benchmark case with Rk
j = R∗j for all members k, revenues and expenditures

are given by I∗j = τWj(R
∗
j − Aj) and E∗j = P ∗j (ω − R∗j ) = τWjηj(R

∗
j − Aj) (where I

normalize the cohort size to Nj = 1). The deficit therefore comes out as D∗j = E∗j − I∗j =

τWj(ηj − 1)(R∗j − Aj) and the deficit ratio as d∗j = E∗j /I
∗
j = ηj − 1.

Members of group j differ, however, in their retirement ages Rk
j . One can use the same

steps as in section 3.2 of the paper to calculate the appropriate level of deductions Xk
j

that leaves the present value of payment streams unchanged for early or late retirement.

This leads to:

Xk
j = 1 +

R∗j −Rk
j

Rk
j − Aj

ηj − 1

ηj
− δ

2
(R∗ −Rk

j )
ω −R∗j + ηj(R

∗
j − Aj)

ηj(R
k
j − Aj)

. (53)

For ηj = 1 this is the same expression as (10) for the NDC system. The influence of

ηj on the budget-neutral deduction is not huge but still non-negligible. E.g., for δ = 0,

Aj = 20, ω = 80, R∗j = 65 and ηj = 1.25 one gets that Xk
j = 1.0046 (for Rk

j = 64). The

early retiree receives an extra supplement of about 0.5%. The reason for this is that the

32In fact, one could also introduce heterogeneous wage profiles. Assume that group j of the cohort born
in period t earned a wage Wj(a, t) = ξj(a, t)W (t + a) in each of its working period between age Aj and
age Rj where W (t) now is the aggregate wage in period t. For the NDC system the notional capital would

then be given by Kj(Rj , t) = τW (t + R)(Rj − Aj)EP j , where EP j ≡
(∫ Rj

Aj
ξj(a, t+ a) da

)
/(Rj − Aj)

stands for the average lifetime “earnings points” (to use an expression from the German pension system).
If group j had always earned average wages then ξj(a, t+ a) = 1,∀a and EP j = 1.
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normal NDC adjustment for early retirement lowers the annual pension payment and the

multiplicative reward ηj is thus applied to a smaller “base” which would—in the absence

of Xk
j —reduce the total pension payments for early retirees in group j.

Total revenues for the group j are given by Ij =
∑K

k=1φ
k
j τWj(R

k
j−Aj) = τWj(Rj−Aj),

where Rj ≡
∑K

k=1 φ
k
jR

k
j stands for the average retirement age among the members of group

j. Total expenditures, on the other hand, are given by Ej =
∑K

k=1(ω − Rk
j )P

k
j , where

P k
j = P̂ k

j X
k
j is the pension payment associated with retirement age Rk

j (including the

additional deduction Xk
j ). Using (53) one can conclude that (for δ = 0) (ω − Rk

j )P
k
j =

τWj(ηj(R
k
j−Aj)+(R∗j−Rk

j )(ηj−1)) and thus Ej = τWj(ηj(Rj−Aj)+(R∗j−Rj)(ηj−1)). It

follows that Dj = Ej − Ij = τWj(ηj − 1)(R∗j −Aj) which is the same as in the benchmark

with Rk
j = R∗j ,∀k. As far as the deficit ratio is concerned one has to note that total

revenues are given by Ij = τWj(Rj − Aj). For R∗j = Rj it is the case that dj = (ηj − 1)

(which is the same as in the benchmark). For a homogeneous target age R∗j = R∗,

however, this is only possible if the mean retirement age is the same across all groups j

which cannot be taken for granted.

The size of the overall deficit D =
∑J

j=1 πjDj depends on the correlation between

variables Aj, Wj and R∗j since D =
∑J

j=1 πjτWj(ηj − 1)(R∗j − Aj). In the absence of a

“bias” (i.e for ηj=1) one can observe, however, that these possible correlations do not

matter since each subgroup will have a balanced budget with Dj = 0 and thus also the

overall budget D will be balanced.

The “bonus” (or “social security wealth”) of the “biased NDC system” to different

individuals k in group j is given by:

Bk
j = (ω −Rk

j )P
k
j − τWj(R

k
j − Aj) = τWj(ηj − 1)(R∗j − Aj).

This is the same for different members of group j (i.e. it does not vary by the individual

retirement age Rk
j ).

The use of the “normal” deduction factor Xk
j = 1 instead of (53) leads to (ω−Rk

j )P
k
j =

τWjηj(R
k
j −Aj) and thus Ej = τWjηj(Rj −Aj) and Dj = τWj(ηj − 1)(Rj −Aj). This is

the same deficit as in the benchmark. Now, however, the “bonus” that the system pays to

different individuals is not identical for all members k but rather Bk
j = τWj(ηj − 1)(Rk

j −
Aj). The difference is not huge (about 2.3% for Rk

j = 64 and 12.5% for Rk
j = 60), but

certainly not completely irrelevant.
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