
Online Appendix A: Generalizing from the SATE to the PATE

A General Framework

Consider the case in which we sample n units from a larger finite population of size N . S, R,
and T are random variables that represent sample selection, survey response, and treatment
assignment, respectively. Let Si = 1 if unit i is in the sample, and Si = 0 if it is not.
Similarly, let Ri = 1 if unit i responds to the survey and Ri = 0 if it does not. Finally, let
Ti = 1 if unit i receives an experimental treatment and Ti = 0 if it does not.

The potential outcomes variables Yit represent the value of the outcome of interest when
Ti = t for t = 0, 1. We define the treatment effect for unit i as the difference in unit-level
outcomes under treatment and control,

τi ≡ Yi1 − Yi0, (1)

and the population average treatment effect (PATE ) as these individual treatment effects
averaged over all units in the population,

τ̄ ≡ 1

N

N∑
i=1

τi. (2)

Not all sampled individuals will respond to a survey. Under a stochastic non-response
model, we assume that units i have an unknown, nonzero probability of responding φi.

1

When i is selected at random from the population, it responds with probability φi and does
not respond with probability 1−φi. The response indicator Ri is observed for sampled units
only, and the realized sample size is

nr =
N∑
i=1

SiRi.

1Note that φi = 0 corresponds to permanent exclusion of a unit from the sample. This noncoverage
can arise due to sampling, i.e. units that share some characteristic(s) xi = x are never sampled, or due
to selection, i.e. the units never opt-in to the survey. Weighting methods can reduce noncoverage error in
population estimates when at least some units with characteristic(s) xi = x are sampled and respond to
the survey, i.e. P (R = 1|xi = x) = φi > 0. Hence, all units in a target population must have a nonzero
probability of being selected and responding in order to recover an unbiased estimate for that population.
When this assumption is not satisfied, researchers should redefine the target population to that for which
0 < φi ≤ 1.
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Further, we only observe response under treatment and control, Yit, for units that re-
spond. We now define the sample average treatment effect (SATE ) as the individual-level
treatment effects averaged over units in the realized sample,

τ̄r ≡
1

nr

nr∑
i∈{Ri=1}

τi. (3)

In general, the expected value of this quantity is not equal to τ̄ (Bethlehem 1988). Rather,
the expected value of theSATE is a biased estimate of the PATE,

E(τ̄r) = τ̃ ,

where

τ̃ =
1

N

N∑
i=1

φi
φ̄
τi

and

φ̄ =
1

N

N∑
i=1

φi.

Bethlehem (1988) derives an expression for the bias in τ̄r as an estimate of τ̄ , and shows that
it is approximately equal to

B(ˆ̄τ) =
ρφ,τσφστ

φ̄
, (4)

where ρφ,τ is the correlation between individual-level treatment effects and response prob-
abilities, σφ is the standard deviation of the response probabilities φi, and στ is the standard
deviation of the treatment effects τi.

From (4), we can see that the SATE is an unbiased estimate of the PATE when any
one of the following conditions hold:

1. When there is a constant treatment effect, i.e. τi = τ ∀i, then στ = 0 and the bias is
zero.2

2. When the response probability is the same for all sampled units, i.e. φi = φ ∀i, or
when there is no non-response, then σφ = 0 and the bias is zero.

2This is what Schouten, Cobben, and Bethlehem (2009) term “strong representativeness,” and is equiva-
lent to the missing-completely-at-random (MCAR) assumption (Little and Rubin 2002).
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3. When there is no correlation between the treatment effects and response probabilities,
i.e. ρφ,τ = 0, the bias is also zero.

We can also see from the expression above that the bias increases as (a) the correlation
between treatment effects and response propensities increases, and (b) response rates de-
crease, i.e. the mean of φi decreases. Note that because ρφ,τ is independent of the sample
size, increasing the sample size does not reduce non-response bias.

Weighting to Recover the PATE

Often researchers will have some information about non-respondents and/or the population,
which they can use to correct for non-response bias. We can account for this auxiliary
information by redefining

φi = φ(xi) = P (Ri = 1|xi = x),

where X is the set of covariates known for the full sample or the entire population. Suppose
we use this information to post-stratify the sample into classes, or strata h = 1, 2, . . . , H.
The bias of the post-stratified estimator is now given by

B(ˆ̄τ) =
1

N

H∑
h=1

ρφh,τhσφhστh
φ̄h

. (5)

This estimator is unbiased if the response probabilities within each stratum are constant,
i.e. if units can be assumed to be a truly random sample of their corresponding class.
If φh = 1

Nh

∑
i∈h

φih = φ ∀h then σφh = 0 and the bias vanishes.3 We can reduce non-

response bias–even if we do not eliminate it completely–using weighting methods as long
as the correlation between response and treatment effect is attenuated or the variability of
response propensities is lower within weighting classes (Bethlehem 1988).

It is evident from the preceding discussion that the most effective variables to use when
creating weighting classes are those that are correlated with both the outcome variables
and the individual-level treatment effects (Kalton 1983; Kalton and Flores-Cervantes 2003).
Unfortunately, it is often the case that hypothesized treatment effect moderators can only
be measured in-sample (i.e. with surveys). Data on the distribution of these variables
among non-respondents or the whole population is rarely available to researchers. In these
situations, non-response bias in sample estimates will be reduced to the extent that the
variables used to construct the weights are correlated with the treatment effect moderators,
but some bias will remain.

3This is what Schouten, Cobben, and Bethlehem (2009) term “weak representativeness.”
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It is also possible that researchers may unintentionally exacerbate imbalances due to
selection on treatment effect moderators when adjusting a sample to other population char-
acteristics, or even when information about marginal distributions is available but cell pro-
portions or probabilities must be estimated (Shin, n.d.). Note that for the stratified SATE,
i.e.

τ̂st =
H∑
h=1

whτ̂h,

where wh are the estimated cell weights with corresponding Wh true cell weights, the bias

is

[
H∑
h=1

(wh −Wh)τ̄h

]2
(Cochran 1977). The further the estimated weights deviate from the

true weights, the larger the bias, irrespective of sample size.
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Online Appendix B: Data Collection Procedures 

 

The survey of the literature was limited to the three leading, general-interest political 

science journals: American Political Science Review, American Journal of Political Science, and 

The Journal of Politics. Google Scholar searches for each of these journals were conducted to 

locate all articles that used data from four commonly used online data sources for population-

based survey experiments: Knowledge Networks (now known as GfK Custom Research), 

YouGov/Polimetrix, Survey Sampling International (SSI), and Amazon's Mechanical Turk 

(MTurk).  

Four searches were conducted, with the following search terms: 

 "Knowledge Networks" OR "GfK" OR "KN" OR "TESS" OR "Time-sharing 

Experiments" 

 "YouGov" OR "Polimetrix" OR "CCES" OR "Cooperative Congressional Election 

Study" OR "CCAP" OR "Cooperative Campaign Analysis Project" 

 "SSI" OR "Survey Sampling International" OR "Survey Sampling Inc." OR "Survey 

Sampling, Incorporated" 

 "Mechanical Turk" OR "MTurk" OR "Turk" OR "Amazon" OR "Amazon's" 

Restrictions for the searches were made in the Google Scholar fields for “Return articles 

dated between” and “Return articles published in,” with respective restrictions of 2000 and 2015 

and the name of the journal. For the initial coding, the search date was July 1, 2015; the full set 

of data from 2015 was subsequently obtained and coded on April 1, 2016. 

Each article returned in the search was assessed for whether the article was a false positive. 

The first round of false positive removals was for the journal. For example, the search for 
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“Journal of Politics” returned journals such as the Journal of Politics & International Affairs and 

the Australian Journal of Politics and History. Subsequent rounds of false positive removals 

were conducted for articles in which a search term had an alternate meaning (e.g., Amazon 

rainforest, Supplemental Security Income). 

For each non-false positive article, the following elements were independently coded for 

each survey experiment in the article by two of the four authors: 

1. journal name 

2. article name 

3. author name(s) 

4. year published 

5. journal volume 

6. journal number 

7. survey company 

8. a dichotomous variable for whether the article had a survey experiment 

9. a dichotomous variable for whether the article indicated the weighting used (weighted, 

unweighted, or both) 

10. for articles that indicated the weighting used, a trichotomous variable to describe 

unweighted results (0=no unweighted results or values are reported, 1=unweighted values 

are reported, and 2=unweighted values are not reported but the article indicates that 

results are the same with and without weights) 

11. for articles that indicated the weighting used, a trichotomous variable to describe 

weighted results (0=no weighted results or values are reported, 1=weighted values are 

reported, and 2=weighted values are not reported but the article indicates that results are 



the same with and without weights) 

12. direct quote excerpts from the article that described the weighting process 

For searches for whether the article indicated that weighting was employed, descriptions of 

weighting were searched for in each article with the search terms “weight” and “stratification.” 

For item 9 above, results reported in online appendices were considered to have been indicated 

only if the results were mentioned in the main text of the article. Finally, we removed all 

observational studies that did not include a survey experiment. 

The agreement rate across the full set of codings was 92%; for the 9 cases where two authors 

disagreed, all four authors discussed each case as a group and agreed upon a coding.  

  



Online Appendix C: Weighting Methods 

 

Weight construction usually proceeds in separate stages to address different sources of 

bias: sampling, non-coverage, and non-response (Kalton and Kasprzyk 1986; Brick and Kalton 

1996). Base weights represent the probability of inclusion in the sample, typically calculated as 

inverse-sampling probabilities. These tend to be fixed for the population and do not depend on 

the final composition of the sample. Weights based on selection probabilities are sufficient for 

producing unbiased population estimates from a truly random sample (e.g., Horvitz and 

Thompson 1952). However, estimates will be biased if there is non-response correlated with the 

outcome variable (e.g., Bethlehem 1988; Cole and Stuart 2010).  

Thus, the second stage of weight construction adjusts the base weights to reflect the 

characteristics of the full sample, including non-respondents. The last stage of weight 

construction accounts for incomplete coverage of population subgroups. The weights are once 

again adjusted, now to conform to known population totals. The choice of procedure to adjust for 

non-coverage or non-response depends on the extent to which the distribution of relevant 

characteristics is known for non-respondents or for the population. We discuss three commonly 

used techniques—post-stratification, raking, and inverse-propensity weighting—but many others 

exist (see Brick and Kalton 1996; Kalton and Flores-Cervantes 2003).  

Post-stratification. In post-stratification, the sample is divided into strata h and units in 

the strata are weighted such that the sum of the weights in each stratum equals the population 

totals for that stratum (Kish 1965; Holt 1979; Little 1993). The post-stratified estimator for the 

SATE is a weighted average of the stratum-specific SATE (Miratrix et al. 2013). Post-

stratification requires knowing unconditional cell probabilities or population counts for the 



characteristics being adjusted, and can fail if there are deep interactions with few observations in 

a cell. Units in cells with a small number of observations will have large weights which may 

yield unstable estimates, thought trimming can help in this regard (Kalton and Flores-Cervantes 

2003). Post-stratification can also fail when the population and sample characteristics are 

measured differently and there is no one-to-one correspondence between strata and cell 

probabilities.  

Raking. An alternative to post-stratification is raking (Deming and Stephan, 1940; 

Deville, Sarndal, and Sautory, 1993; Ireland and Kullback, 1968; Oh and Scheuren, 1983). 

Raking is used when the unconditional cell probabilities are unknown but the marginal 

distributions are known. This method can also be useful in cases where cell sizes are small. 

Researchers can simply collapse across categories or cells. For instance, surveys that adjust for 

non-response and weight to population demographics (e.g., from the Census) usually do not 

know the joint distribution of the interacted categories. Indeed, raking is often the method of 

choice of survey firms that conduct probability samples and provide researchers with pre-

computed survey weights.  

Raking assumes mutual independence (e.g., no interactions) between the classification 

variables, which has the advantage of leading to less variability in weight estimates. However, 

this assumption is often implausible and the estimated cell probabilities can differ substantially 

from the true population parameters (Shin, n.d.). If raking weights are treated as ground truth and 

subsequently used in post-stratification adjustment, then the raked mean will be biased regardless 

of sample size and its variance will underestimate the true error (Shin, n.d.; Cochran, 1977).  

Inverse-propensity score weights. Both raking and post-stratification have the 

disadvantage of requiring discrete or coarsened auxiliary variables. Propensity score methods, in 



contrast, can incorporate continuous predictors and high-dimensional interaction terms to 

estimate the probability of survey response (see Rosenbaum and Rubin, 1983). Conditional on 

the propensity score, the distribution of covariates between respondents and non-respondents is 

equal. Any model that estimates the predicted probability of non-response can be used to 

calculate the propensity score, such as generalized regression (e.g., logistic regression), 

regression trees, random forests, neural networks, etc. One major disadvantage with IPSW 

methods is that it cannot ensure that the sample marginal joint distributions match those of the 

population (see e.g. Hazlett, n.d.).  

Other methods. Post-stratification, raking, weight class estimators, and generalized 

regression estimators are special cases of the calibration estimator, which forces the sum of the 

adjusted weights to equal the population totals for each auxiliary variable used in estimation 

while minimizing the distance between the adjusted and unadjusted (inverse-sampling 

probability) weights (see Brick, 2013; Lumley et al., 2011). Many of the aforementioned 

methods can also be combined, such as using post-stratification for cells with large sample sizes 

and another method such as raking for cells with small sample sizes. More generally, researchers 

can combine methods to automatically build strata, such as matching (Stuart, 2010; Diamond and 

Sekhon, 2013; Sekhon and Grieve, 2012), with weighting or balancing methods to adjust strata 

characteristics to the observed population characteristics. 
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