A Variational Bayes Generalized EM Algorithm

Given the mean-field approximation to the conditional distribution f(Z, |, ), the evidence lower bound
(ELBO) of the log marginal likelihood can be derived as follow.
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Maximizing the ELBO is equivalent to minimizing the KL divergence between ¢(Z, 7) and (0, Z, 7|E).The
optimal optimal solutions are as follow (Wang & Blei, 2013; Beal, 2003).
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Notice that the optimal variational distribution of Z,, is a multinomial distribution with even probabilities
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Drnge X 7 : Lk - s :Vl b efm(98mk) and the optimal variational distribution of 7 is a dirichlet
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distribution with concentration parameter ay = o + Z 1 Ez(Znk). We carried out the E-step as follow.
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2. Iterate over the following steps until convergence

(a) dp = a+ M P for all k



(b) Calculate Ex(logmy) = ¢(Gr) — (X r, x) = ¥(ar) — Y(Ka+ M), ¢ is the Digamma function.
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3. Upon convergence, we can evaluate Ez(Zx) = pmi and Ex(log ) = ¢(ay) — (Ka + M)

B Gradients in Hamiltonian Monte Carlo-within Gibbs Algorithm

Let zp, € {1,..., K} be the cluster assignment of the m-th edge. Let M;; := {m : e;,1 = i} and M,y =
{m : e;m2 = i}. The gradients with respect to (U,V, R, S, W) are the same as in the LSEC paper (Sewell,
2021). The partial gradient of the log reduced conditional with respect to (S;,U;) is given by
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The partial gradient of with respect to W, is given by
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C Sensitivity Results of Applying the GEM Algorithm to UK
Faculty Network

We carried out a sensitivity analysis for the GEM algorithm varying the number of cluster K € {10, 20, 30},
number of dimension p € {2,3,4}, the initial value of a (random draw from prior vs. set as prior mode),
and the hyperparameters of the priors on the 7’s {0.1,1}. Higher values of K implies more superfluous
clusters to empty out, and thus, requires a larger value of b,. We set b, to be 200,400, and 600 for
the value of K being 10,20, and 30, respectively. We found that changing the initialization of a and the
hyperparameters values did not have any major impact on the clustering results (Figure 1). Figure 2 showed
the clustering results of varying K and p, while assuming that a was initialized at the prior mode and
ay = by = as = bs = ay = by = ag = bg = 1. There were minimal changes to the clustering results,
except for when p = 4 and K = 30, the algorithm yielded an extra sub-cluster (yellow).
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Figure 1: Sensitivity results of applying aLSEC to UK Faculty data set assuming different hyperparameters
of the precision parameters and initialization mechanism for «, while assuming K = 10,p = 3. Edge colors
correspond to different edge clusters. The three hollow shapes represent the three schools. The two solid
circles represent the two individuals who did not mention their schools.
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Figure 2: Sensitivity results of applying aLSEC to UK Faculty data set assuming different value of K, p,
while setting hyperparameters of the precision parameters to be 0.1 and initializing & = a,/bs. Edge colors
correspond to different edge clusters. The three hollow shapes represent the three schools. The two solid
circles represent the two individuals who did not mention their schools.
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