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A Details of estimation

In this section we supply details of estimation in support of Algorithm 1, beginning with
the initialization of ρ . We then provide details of computing the expectations of ℓy need
for β maximization, and then details of computing the expectations of ℓy need for ρ maxi-
mization. We close the section with the handling of missing data in the EMM algorithm.

A.1 Initialization of ρ estimator

An EM algorithm may take many iterations to converge, and selecting a starting point near
the optima may significantly reduce the number of iterations required. We present a method
of initializing ρ̂(0) using a mixture estimator. By examining the eigenvalues of Ω, it can be
shown that ρ lies in the interval [0,1/2) when Ω is positive definite for arbitrary n (Marrs
et al., 2017). Thus ρ̂ = 0.25 is a natural naive initialization point as it is the midpoint of
the range of possible values. However, we also allow the data to influence the initialization
point by taking a random subset A of Θ2 of size 2n2, and estimating ρ using the data
corresponding to relations in A . Then, the final initialization point is defined as a mixture
between the naive estimate ρ̂ = 0.25 and the estimate based on the data. We weight the
naive value as if it arose from 100n samples, such that the weights are even at n = 50, and
for increasing n, the data estimate dominates:

ρ̂
(0) =

100n
4(100n+ |A |)

+
|A |

(100n+ |A |)

(
1

|A | ∑
jk,lm∈A

E[ε jkεlm |y jk,ylm]

)
. (A 1)

We compute the average 1
|A | ∑ jk,lm∈A E[ε jkεlm |y jk,ylm] using the linearization approach

described in Section A.3.

A.2 Implementation of β expectation step

Under general correlation structure, computation of the expectation E[ε |y] (step 1 in Al-
gorithm 1, where we drop conditioning on ρ(ν) and β

(ν) to lighten notation) for even small
networks is prohibitive, since this expectation is an

(n
2

)
-dimensional truncated multivariate

normal integral. We exploit the structure of Ω to compute E[ε |y] using the law of total
expectation and a Newton-Raphson algorithm.

First, we take a single relation jk and use the law of total expectation to write

E[ε jk |y] = E[E[ε jk |ε− jk,y jk] |y], (A 2)

where ε− jk is the vector of all entries in ε except relation jk. Beginning with the innermost
conditional expectation, the distribution of ε jk given ε− jk and y jk is truncated univariate
normal, where the untruncated normal random variable has the mean and variance of ε jk

given ε− jk. Based on the conditional multivarite normal distribution and the form of the
inverse covariance matrix Ω

−1 = ∑
3
i=1 piSi, we may write the untruncated distribution
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directly as

ε jk |ε− jk ∼ N(µ jk,σ
2
n ), (A 3)

µ jk =−σ
2
n 1T

jk (p2S2 + p3S3) ε̃− jk,

σ
2
n =

1
p1

,

where 1 jk is the vector of all zeros with a one in the position corresponding to relation
jk and, for notational purposes, we define ε̃− jk as the vector ε except with a zero in the
location corresponding to relation jk. We note that the diagonal of the matrix p2S2+ p3S3

consists of all zeros so that µ jk is free of ε jk.
We now condition on y jk. For general z ∼ N(µ,σ2) and y = 1[z >−η ] we have that

E[z |y] = µ +σ
φ(η̃)

Φ(η̃)(1−Φ(η̃))
(y−Φ(η̃)), (A 4)

where η̃ := (η +µ)/σ . Now, taking z = (ε jk |ε− jk), we have that

E[ε jk |ε− jk,y jk] = µ jk +σn

(
φ(µ̃ jk)

(
y jk −Φ(µ̃ jk)

)
Φ(µ̃ jk)(1−Φ(µ̃ jk))

)
, (A 5)

where µ̃ jk := (µ jk +xT
jkβ )/σn.

We now turn to the outermost conditional expectation in (A 2). Substituting the expres-
sion for µ jk into (A 5), we have that

E[ε jk |y] =−σ
2
n 1T

jk (p2S2 + p3S3)E[ε |y]+σnE

[
φ(µ̃ jk)

(
y jk −Φ(µ̃ jk)

)
Φ(µ̃ jk)(1−Φ(µ̃ jk))

∣∣∣y] . (A 6)

This last conditional expectation is difficult to compute in general. Thus, in place of µ̃lm,
we substitute its conditional expectation E[µ̃lm |y]. Letting wlm := E[εlm |y] and w be the
vector of the expectations {wlm}lm, we define the following nonlinear equation for w:

0 ≈ g(w) := (−I+B)w+σn

(
φ(w̃)(y−Φ(w̃))

Φ(w̃)(1−Φ(w̃))

)
, (A 7)

where we define B := −σ2
n (p2S2 + p3S3), w̃ := (Bw+Xβ )/σn, and the functions φ(.)

and Φ(.) are applied element-wise. The approximation in (A 7) refers to the approximation
made when replacing µ̃ jk with its conditional expectation E[µ̃ jk|y]. We use a Newton-
Raphson algorithm to update w (Atkinson, 2008), initializing the algorithm using the
expectation when ρ = 0,

w0 :=
φ(Xβ )(y−Φ(Xβ ))

Φ(Xβ )(1−Φ(Xβ ))
. (A 8)

The Newton-Raphson algorithm re-estimates w based on the estimate at iteration ν , ŵ(ν),
until convergence:

ŵ(ν+1) = ŵ(ν)−
(

∂

∂wT g(ŵ(ν))

)−1

g(ŵ(ν)). (A 9)

The inverse in (A 9) is of a matrix that is not of the form ∑
3
i=1 aiSi. To reduce the

computational burden of the Netwon method updates, we numerically approximate the
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inverse in (A 9). First, we define v(w jk) = σn
φ(w jk)(y jk−Φ(w jk))

Φ(w jk)(1−Φ(w jk))
, where we define the vector

v(w) = {v(w jk)} jk, and write the derivative

∂

∂wT g(w) = B− I+DB. (A 10)

where we define

D = diag
{

−w jkφ jk(y jk−Φ jk)−φ2
jk−φ2

jk(y jk−Φ jk)(1−2φ jkΦ jk)

Φ jk(1−Φ jk)

}
jk
.

where we let φ jk = φ(w jk) and Φ jk =Φ(w jk). The term DB arises from differentiating v(w)

with respect to w. Using the expression in (A 10), we are then able to write the second term
in (A 9) as(

∂

∂wT g(ŵ)

)−1

g(ŵ) = (B− I+DB)−1 ((B− I)w+ v(w)) ,

= B−1 (I+D−B−1)−1
((B− I)w+ v(w)) . (A 11)

We notice that the matrix I+D is diagonal, but not homogeneous (in which case we com-
pute (A 11) directly, with limited computational burden, by exploiting the exchangeable
structure). Instead, defining Q = (1+ δ )I−B−1 and M = D− δ I, which is diagonal, we
make the approximation that(

I+D−B−1)−1
= (Q+M)−1 ≈ Q−1 −Q−1MQ−1,

which is based on a Neumann series of matrices and relies on the absolute eigenvalues of
M being small (Petersen et al., 2008). We choose δ to be the mean of the minimum and
maximum value of D. This choice of δ minimizes the maximum absolute eigenvalue of
M, and thus limits the approximation error. Since the inverse of Q may be computed using
the exchangeable inversion formula discussed in Appendix B (in O(1) time), the following
approximation represents an improvement in computation from O(n3) to O(n2) time:(

∂

∂wT g(ŵ)

)−1

g(ŵ)≈ B−1 (Q−1 −Q−1MQ−1)((B− I)w+ v(w)) .

A.3 Approximation to ρ expectation step

The maximization of the expected likelihood with respect to ρ relies on the computation of
γi = E[εT Siε |y]/|Θi|, for i ∈ {1,2,3} (step 2 in Algorithm 1). Under general correlation
structure, computation of the expectation {γi}3

i=1 for even small networks is prohibitive.
To practically compute {γi}3

i=1, we make two approximations, which we detail in the
following subsections: (1) compute expectations conditioning only on the entries in y
that correspond to the entries in ε being integrated, and (2) approximating these pairwise
expectations as linear functions of ρ .
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A.3.1 Pairwise expectation

Explicitly, the pairwise approximations to {γi}3
i=1 we make are:

γ1 =
1

|Θ1| ∑jk
E[ε2

jk |y]≈
1

|Θ1| ∑jk
E[ε2

jk |y jk], (A 12)

γ2 =
1

|Θ2| ∑
jk,lm∈Θ2

E[ε jkεlm |y]≈ 1
|Θ2| ∑

jk,lm∈Θ2

E[ε jkεlm |y jk,ylm],

γ3 =
1

|Θ3| ∑
jk,lm∈Θ3

E[ε jkεlm |y]≈ 1
|Θ3| ∑

jk,lm∈Θ3

E[ε jkεlm |y jk,ylm],

where Θi is the set of ordered pairs of relations ( jk, lm) which correspond entries in Si

that are 1, for i ∈ {1,2,3}. These approximations are natural first-order approximations:
recalling that y jk = 1[ε jk > −xT

jkβ ], the approximations in (A 12) are based on the notion
that knowing the domains of ε jk and εlm is significantly more informative for E[ε jkεlm |y]
than knowing the domain of, for example, εab.

The approximations in (A 12) are orders of magnitude faster to compute than the expec-
tations when conditioning on all observations E[ε jkεlm |y]. In particular, when i ∈ {1,3},
the expectations are available in closed form:

E[ε2
jk |y jk] = 1−η jk

φ(η jk)(y jk −Φ(η jk))

Φ(η jk)(1−Φ(η jk))
,

E[ε jkεlm |y jk,ylm] =
φ(η jk)φ(ηlm)(y jk −Φ(η jk))(ylm −Φ(ηlm))

Φ(η jk)Φ(ηlm)(1−Φ(η jk))(1−Φ(ηlm))
,

where we define η jk = xT
jkβ and the indices j,k, l and m are distinct. When i = 2, that

is, |{ j,k}∩{l,m}|= 1, the expectation depends on a two dimensional normal probability
integral:

E[ε jkεlm |y jk,ylm] =

ρ

(
1−

η̄ jkφ(η jk)

L jk,lm
Φ

(
η̄lm − ρ̄ η̄ jk√

1−ρ2

)
− η̄lmφ(ηlm)

L jk,lm
Φ

(
η̄ jk − ρ̄ η̄lm√

1−ρ2

))
(A 13)

+
1

L jk,lm

√
1−ρ2

2π
φ

√η2
jk +η2

lm −2ρ η jkηlm

1−ρ2

 , |{ j,k}∩{l,m}|= 1,

L jk,lm = P
(
(2y jk −1)ε jk >−η jk ∩ (2ylm −1)εlm >−ηlm

)
,

where η̄ jk = (2y jk −1)η jk, e.g., and ρ̄ = (2y jk −1)(2ylm −1)ρ .

A.3.2 Linearization

The computation of E[ε jkεlm |y jk,ylm] in (A 13) requires the computation of O(n3) bivariate
truncated normal integrals L jk,lm, which are not generally available in closed form. We
observe empirically, however, that the pairwise approximation to γ2 described in Sec-
tion A.3.1 above, γ2 ≈ 1

|Θ2| ∑ jk,lm∈Θ2
E[ε jkεlm |y jk,ylm], is approximately linear in ρ . This

linearity is somewhat intuitive, as the sample mean 1
|Θ2| ∑ jk,lm∈Θ2

E[ε jkεlm |y jk,ylm] has
expectation equal to ρ , and is thus an asymptotically linear function of ρ . As the sam-
ple mean 1

|Θ2| ∑ jk,lm∈Θ2
E[ε jkεlm |y jk,ylm] concentrates around its expectation, it concen-
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trates around a linear function of ρ , and it is reasonable to approximate the sample mean
1

|Θ2| ∑ jk,lm∈Θ2
E[ε jkεlm |y jk,ylm] as a linear function of ρ . To do so, we compute the ap-

proximate values of γ2 at ρ = 0 and if ρ = 1. In particular,

γ2 ≈ a2 +b2ρ, (A 14)

a2 =
1

|Θ2| ∑
jk,lm∈Θ2

E[ε jk |y jk]E[εlm |ylm],

=
1

|Θ2| ∑
jk,lm∈Θ2

φ(η jk)φ(ηlm)(y jk −Φ(η jk))(ylm −Φ(ηlm))

Φ(η jk)Φ(ηlm)(1−Φ(η jk))(1−Φ(ηlm))
,

c2 =
1

|Θ2| ∑
jk,lm∈Θ2

E[ε jkεlm |y jk,ylm]
∣∣∣
ρ=1

,

b2 = c2 −a2.

To compute c2, we must compute the value of E[ε jkεlm |y jk,ylm] when ρ = 1. Computing
E[ε jkεlm |y jk,ylm] is simple when the values y jk = ylm, as in this case E[ε jkεlm |y jk,ylm] =

E[ε2
jk |y jk = ylm] since, when ρ = 1, ε jk = εlm. Approximations must be made in the cases

when y jk ̸= ylm. There are two such cases. In the first, there is overlap between the domains
of ε jk and εlm indicated by y jk = 1[ε jk > −η jk] and y jk = 1[εlm > −ηlm], respectively.
We define the domain for ε jk indicated by y jk as U jk := {u ∈ R : u > (1− 2y jk)η jk}. As
an example, there is overlap between U jk and Ulm when y jk = 1,ylm = 0 and ηlm < η jk.
Then, the dersired expectation may be approximated E[ε jkεlm |y jk,ylm]≈E[ε2

jk |ε jk ∈U jk∩
Ulm]. In the second case, when y jk ̸= ylm and U jk ∩Ulm =, we make the approximation by
integrating over the sets U jk and Ulm. That is, by taking

E[ε jkεlm |y jk,ylm]

≈ E[ε2
jk |ε jk ∈U jk] P(ε jk ∈U jk)+E[ε2

lm |εlm ∈Ulm] P(εlm ∈Ulm).

To summarize, we compute c2 in (A 14) when ρ = 1 by using the following approximation
to E[ε jkεlm |y]

∣∣∣
ρ=1

:
E[ε2

jk |ε jk > max(−η jk,−ηlm)], y jk = 1 and ylm = 1,

E[ε2
jk |ε jk < min(−η jk,−ηlm)], y jk = 0 and ylm = 0,

E[ε2
jk |ε jk ∈U jk ∩Ulm], U jk ∩Ulm ̸= /0,

E[ε2
jk |ε jk ∈U jk] P(ε jk ∈U jk)+E[ε2

lm |εlm ∈Ulm] P(εlm ∈Ulm) U jk ∩Ulm = /0.

A.4 Missing data

In this subsection, we describe estimation of the PX model in the presence of missing data.
We present the maximization of ℓy with respect to β first. Second, we discuss maximization
of ℓy with respect to ρ . Finally, we give a note on prediction from the PX model when data
are missing.

Update β :
To maximize ℓy with respect to β (Step 1 of Algorithm 1) in the presence of missing
data, we impute the missing values of X and y. We make the decision to impute missing
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values since much of the speed of estimation of the PX model relies on exploitation of the
particular network structure, and, when data are missing, this structure is more difficult to
leverage. We impute entries in X with the mean value of the covariates. For example, if x(1)jk

is missing, we replace it with the sample mean 1
|M c| ∑lm∈M c x(1)lm , where the superscript (1)

refers to the first entry in x jk and M is the set of relations for which data are missing.
If y jk is missing, we impute y jk with 1[w jk > −η̄ ], where η̄ = 1

|M c| ∑lm∈M c xT
lmβ̂ and we

compute w = E[ε |y] using the procedure in Section A.2. We initialize this procedure at
w(0), where any missing entries jk ∈ M are initialized with w(0)

jk = 0. Given the imputed
X and y, the estimation routine may be accomplished as described in Algorithm 1.

Update ρ:
To maximize ℓy with respect to ρ (Step 2 of Algorithm 1), we approximate {γi}3

i=1 using
only observed values. Using the pairwise expressions in (A 12), the expressions for the
expectation step under missing data are

γ1 ≈
1

|M c| ∑
jk∈M c

E[ε2
jk |y jk], (A 15)

γ2 ≈
1

|A (s)| ∑
jk,lm∈A (s)

E[ε jkεlm |y jk,ylm].

γ3 ≈
∑ jk,lm∈Θ3 E[ε jk |y jk]E[εlm |ylm]1[ jk ∈ M c]1[lm ∈ M c]

∑ jk,lm∈Θ3 1[ jk ∈ M c]1[lm ∈ M c]
,

≈ 1
|Θ3|

((
|Θ1|
|M c| ∑

jk∈M c

E[ε jk |y jk]

)2

− |Θ1|
|M c| ∑

jk∈M c

E[ε jk |y jk]
2

− |Θ2|
|A (s)| ∑

jk,lm∈A (s)

E[ε jk |y jk]E[εlm |ylm]

)
,

where we only subsample pairs of relations that are observed such that A (s) ⊂ Θ2 ∩M c.
Then, given the values of {γi}3

i=1 in (A 15), the maximization of ℓy with respect to ρ (Step
2 in Algorithm 1) may proceed as usual.

Prediction:
Joint prediction in the presence of missing data is required for out-of-sample evaluation of
the EMM estimator, for example, for cross validation studies in Section 8. In this setting,
model estimation is accomplished by imputing values in X and y earlier in this section
under the ‘Update β ’ subheading. Then, prediction may be performed by proceeding as
described in Section 6 with the full observed X matrix and imputing the missing values in
y (again as described above in this section under the ‘Update β ’ subheading).

B Parameters of undirected exchangeable network covariance matrices

In this section, we give a 3×3 matrix equation to invert Ω rapidly. This equation also gives
a basis to compute the partial derivatives

{
∂φi
∂ p j

}
, which we require for the EMM algorithm.
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We define an undirected exchangeable network covariance matrix as those square, pos-
itive definite matrices of the form

Ω(φ) =
3

∑
i=1

φiSi.

We find empirically that the inverse matrix of any undirected exchangeable network covari-
ance matrix has the same form, that is Ω

−1 = ∑
3
i=1 piSi. Using this fact and the particular

forms of the binary matrices {Si}3
i=1, one can see that there are only three possible row-

column inner products in the matrix multiplication ΩΩ
−1, those pertaining to row-column

pairs of the form (i j, i j), (i j, ik), and (i j,kl) for distinct indices i, j,k, and l. Examining the
three products in terms of the parameters in φ and p, and the fact that ΩΩ

−1 = I, we get
the following matrix equation for the parameters p given φ

C(φ)p = [1,0,0]T , (B 1)

where the matrix C(φ) is given by φ1 2(n−2)φ2
1
2 (n−2)(n−3)φ3

φ2 φ1 +(n−2)φ2 +(n−3)φ3 (n−3)φ2 +
( 1

2 (n−2)(n−3)−n+3
)

φ3
φ3 4φ2 +(2n−8)φ3 φ1 +(2n−8)φ2 +

( 1
2 (n−2)(n−3)−2n+7

)
φ3

 .
Then, we may invert Ω with a 3× 3 inverse to find the parameters p of Ω

−1. Explicitly
solving these linear equations, the expressions for p are given by

p1 = 1− (2n−4)p2, (B 2)

p2 =
1+(n−3)p3

(2n−4)ρ −n+2−1/ρ
,

p3 =
−4ρ2

(n−3)4ρ +(1+(2n−8)ρ)((2n−4)ρ −n+2−1/ρ)
.

Taking only the largest terms in n, one may approximate the values in p as follows, which
will be useful in following theoretical development:

p1 ≈
1

1−2ρ
+O(n−1), (B 3)

p2 ≈
−1

n(1−2ρ)
+O(n−2),

p3 ≈
2

n2(1−2ρ)
+O(n−3).

The equation in (B 1) allows one to compute the partial derivatives
{

∂φi
∂ p j

}
. First, based

on (B 1), we can write C(p)φ = [1,0,0]T . Then, we note that the matrix function C(φ)

in (B 1) is linear in the terms φ , and thus, we may write C(p) = ∑
3
j=1 p jA

(n)
j for some

matrices
{

A(n)
j

}3

j=1
that depend on n. Differentiating both sides of C(p)φ = [1,0,0]T with

respect to p j and solving gives

∂φ

∂ p j
=−C(p)−1A(n)

j C(p)−1[1,0,0]T ,

which holds for all j ∈ {1,2,3}.
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C Theoretical support

In this section, we outline proofs suggesting that the estimators resulting from the EMM
algorithm are consistent.

C.1 Consistency of β̂EMM

The estimator of β resulting from the EMM algorithm, β̂EMM , depends on the estimated
value of ρ , ρ̂EMM , through the covariance matrix Ω. Explicitly, given Ω, the EMM estima-
tor

β̂EMM = (XT
Ω

−1X)−1XT
Ω

−1Ê[z | y], (C 1)

where Ê[z | y] represents the estimation and approximation of E[z | y] described in the
EMM algorithm. This estimator is difficult to analyze in general, because, in principle,
̂E[z jk | y] depends on every entry in y, and the effects of the approximations are difficult to

evaluate. Instead of direct analysis, to evaluate consistency of β̂EMM , we define a bounding
estimator that is easier to analyze,

β̂bound = (XT
Ω

−1X)−1XT
Ω

−1u, u jk = E[z jk | y jk]. (C 2)

It is immediately clear that β̂bound is unbiased, since E[u jk] = xT
jkβ . Further, the approxi-

mations made in the EMM algorithm are meant to bound ||β̂EMM −β ∗
MLE ||22 ≤ ||β̂bound −

β ∗
MLE ||22, where β ∗

MLE is the true maximum likelihood estimator. That is, the expectation
estimator we compute Ê[z | y] takes into account correlation information through Ω, and is
thus closer to the true expectation, E[z | y], than u. Then, we also have that β̂EMM is closer
to β ∗

MLE than β̂bound . Then, consistency of β̂bound implies consistency of β̂EMM , since we
assume that the true MLE is consistent.

We now establish consistency of β̂bound . We make the following assumptions:

1. The true model follows a latent variable model,

P(yi j = 1) = P
(
xT

i jβ + εi j > 0
)
, (C 3)

E[ε jk] = 0.

where ε is not necessarily normally distributed.
2. The design matrix X is such that the expressions n−(1+i)XT SiX, for i ∈ {1,2,3},

converge in probability to constant matrices.
3. The fourth moments of X and ε are bounded, ||x jk||4 ≤C1 < ∞ and E[ε4

jk]≤C2 < ∞.
4. The estimator of ρ is such that Ω(ρ̂) converges in probability to some positive

definite matrix.
5. The independence assumption for relations that do not share an actor holds, such that

ε jk is independent εlm whenever actors j, k, l, and m are distinct.

The first assumption defines the meaning of the true coefficient β . The second assump-
tion is a standard condition required for most regression problems; a similar condition
is required for consistency of any estimator which accounts for correlation in generalized
linear model. We evaluate the second assumption in the following section, when we analyze
ρ̂EMM . The fourth assumption defines the minimal independence structure.
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We start by noticing that u = Xβ + ε , such that

β̂bound = β +

(
n−2

3

∑
i=1

piXT SiX

)−1(
n−2

3

∑
i=1

piXT Siv

)
, v jk = E[ε jk | y jk]. (C 4)

Then, as noted in the previous paragraph, the bounding estimator is unbiased, E[β̂bound ] =

β . It remains to establish sufficient conditions for which β̂bound converges to its expectation
in probability. Noting the orders of {pi}i in (B 3), we immediately have that n−2XT Ω−1X
converges in probability to a constant. A sufficient condition to establish that

(
n−2

∑
3
i=1 piXT Siv

)
converges in probability to its expectation (zero) is that its variance tends to zero. Expand-
ing this variance expression,

var

(
n−2

3

∑
i=1

piXT Siv

)
= n−4

3

∑
i=1

3

∑
j=1

pi p jXT SiE[vvT ]S jX, (C 5)

= n−4
3

∑
i=1

3

∑
j=1

pi p j ∑
jk,lm∈Θi

∑
rs,tu∈Θ j

x jkxT
rsE[vlmvtu].

By assumption, every term in the sum expression in (C 5) is bounded. Also by assumption,
the expectation E[vlmvtu] is zero whenever the relations lm and tu do not share an actor.
Using the expressions in (B 3) (pi ∝ n2|Θi|−1) and counting terms,

var

(
n−2

3

∑
i=1

piXT Siv

)
∝ n−4

3

∑
i=1

3

∑
j=1

n2

|Θi|
n2

|Θ j|
|Θi||Θ j|

n
= O(n−1).

Thus, the variance of β̂bound converges to zero, so that β̂bound converges in probability to
the true β , as does β̂EMM .

C.2 Consistency of ρ̂EMM

Using the expressions in (B 3) and differentiating the expected log-likelihood with respect
to ρ , the maximum likelihood estimator is

ρ̂MLE =
1
2
+

1
n3 E[εT S2ε | y]− 1

n2 E[εT
ε | y]− 2

n4 E[εT S3ε | y]+O(n−1). (C 6)

In the EMM algorithm, we approximate the expectations in (C 6) using pairwise condition-
ing. Then, we have that

ρ̂EMM =
1
2
+

1
n3 ∑

jk,lm∈Θ2

E[ε jkεlm | y jk,ylm]−
1
n2 ∑

jk
E[ε2

jk | y jk] . . .(C 7)

. . .− 2
n4 ∑

jk,lm∈Θ3

E[ε jk | y jk]E[εlm | ylm]+O(n−1).

According to the exchangeability assumption of the errors, the pairwise expectations are
known, and the EMM estimator of ρ is unbiased, E[ρ̂EMM] = E[ε jkεlm] = ρ . The EMM
estimator ρ̂EMM , converges to its expectation when the sums of conditional expectations
in (C 7) converge to their expectations. This occurs when the variances of these sums tend
to zero. This fact can be established by similar counting arguments as in the previous
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subsection. For example,

var

(
1
n3 ∑

jk,lm∈Θ2

E[ε jkεlm | y jk,ylm]

)
= n−6

∑
jk,lm∈Θ2

∑
jk,lm∈Θ2

(E[E[ε jkεlm | y jk,ylm]E[εrsεtu | yrs,ytu]]−ρ
2),

= n−6 |Θ2||Θ2|
n

= O(n−1),

since E[ε jkεlm | y jk,ylm] is independent E[εrsεtu | yrs,ytu] whenever all the indices { j,k, l,m,r,s, t,u}
are distinct. Thus, each of the sums of expectations in (C 7) has variance that tends to zero,
so that they converge to their marginal expectations, and ρ̂EMM is consistent.

C.3 Consistency under misspecification

In the discussion of consistency of the EMM estimator, we did not require the assumption
of latent normality, nor of exchangeability of the latent errors (we do require a small
assumption that the sequence of constants n−3E[εT S2εlm] converges to some constant on
[0,1/2)). Hence, when the data generating mechanism is non-Gaussian and non-exchangeable,
we expect ρ̂EMM to converge to the pseudo-true ρ . The pseudo-true ρ is the value which
minimizes the Kullback-Leibler divergence from the modeled (Gaussian, exchangeable)
distribution to the true distribution (Huber, 1967; Dhaene, 1997). In the discussion of
consistency of β̂EMM , we only require that ρ̂EMM converges to a fixed value on the interval
[0,1/2), such that Ω(ρ) is positive definite. Again, when the data generating mechanism is
non-Gaussian and non-exchangeable, we expect β̂EMM to converge to the pseudo-true β .
When the true data generating mechanism is Gaussian (but not necessarily exchangeable),
the limiting pseudo-true value for β̂EMM should be the true value.

D Simulation studies

In this section we present details pertaining to the second simulation study in Section 7.

D.1 Evaluation of estimation of β

See Section 7.2 for a description of the simulation study to evaluate performance in estimat-
ing β . We provide further details in the rest of this paragraph. We generated each {x1i}n

i=1
as iid Bernoulli(1/2) random variables, such that the second covariate is an indicator
of both x1i = x1 j = 1. Each of {x2i}n

i=1 and {x3i j}i j were generated from iid standard
normal random variables. We fixed β = [β0,β1,β2,β3]

T = [−1,1/2,1/2,1/2]T throughout
the simulation study. When generating from the latent eigenmodel in (5), we set Λ = I,
σ2

a = 1/6, σ2
u = 1/

√
6, and σ2

ξ
= 1/3.

To further investigate the source of poor performance of the amen estimators of the social
relations and latent eigenmodels, we computed the bias and the variance of estimators
when generating from the PX model and the latent eigenmodel in Figures D 1 and D 2,
respectively. Figures D 1 and D 2 show that the variances of the amen estimators of the
social relations and latent eigenmodels are similar to the PX model, however, that the bias
of the amen estimators are substantially larger.

Both the EMM estimator of the PX model and amen estimator of the social relations
model provide estimates of ρ . We computed the RMSE for each estimator, for each X
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Fig. D 1. PX model: Scaled bias and variance of estimators of β for a given X when generating

from the PX model. Variability captured by the boxplots reflects variation with X.
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Fig. D 2. LE model: Scaled bias and variance of estimators of β for a given X when generating

from the latent eigenmodel. Variability captured by the boxplots reflects variation with X.

realization, when generating from the PX model. In Figure D 3, the RMSE plot for ρ̂

shows that the MSE, and the spread of the MSE, decreases with n for the EMM estimator,
suggesting that the EMM estimator of ρ is consistent. As with the β parameters, the amen
estimator displays substantially larger RMSE than the EMM estimator of ρ .

D.2 Remaining coefficients in t simulation

We simulated from the PX model, modified to have heavier-tailed t5 error distribution.
The scaled RMSE when estimating all entries in β is given in Figure D 4. All coefficient
estimators, for both PX: EMM and standard probit regression, appear consistent, but the
PX: EMM has lower RSME.
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Fig. D 3. RMSE, scaled by n1/2, of the EMM estimator and amen estimator of the social relations
model of ρ when generating from the PX model. Variability captured by the boxplots reflects
variation in n1/2RMSE with X.

β0 β1 β2 β3
Fig. D 4. t model: Scaled RMSE, for PX: EMM and standard probit regression, when generating

from the PX model modified to have latent errors with heavier-tailed distribution.

E Analysis of political books network

In this section, we present additional predictive results and verify the efficacy of an approx-
imation made by the EMM algorithm when analyzing the political books network data set.

E.1 Prediction performance using ROC AUC

In Section 8, we use area under the precision-recall curve to evaluation predictive perfor-
mance on the political books network data set. Figure E 1 shows the results of the cross
validation study, described in Section 8, as measured by area under the receiver operating
characteristic (ROC AUC). The conclusions are the same as those given in Section 8:
the PX model appears to account for the inherent correlation in the data with estimation
runtimes that are orders of magnitude faster than existing approaches.

E.2 Linear approximation in ρ in EMM algorithm

In Section 5.2, we discuss a series of approximations to the E-step of an EM algorithm to
maximize ℓy with respect to ρ . One approximation is a linearization of the sample average

1
|Θ2| ∑ jk,lm∈Θ2

E[ε jkεlm |y jk,ylm] with respect to ρ . In Figure E 2, we confirm that this ap-
proximation is reasonable for the political books network data set. Figure E 2 shows that the
linear approximation to 1

|Θ2| ∑ jk,lm∈Θ2
E[ε jkεlm |y jk,ylm] (dashed blue line), as described in

detail in Section A.3, agrees well with the true average of the pairwise expectations (solid
orange line).
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Fig. E 1. Out-of-sample performance in 10-fold cross validation, as measured by area under the
precision-recall curve (ROC AUC), plotted against mean runtime in the cross validation for Krebs’
political books network. The estimators are standard probit assuming independent observations (Std.
probit), the proposed PX estimator as estimated by EMM (PX: EMM), the social relations model as
estimated by amen (SRM: amen), and the latent eigenmodel as estimated by amen (LE: amen).

Fig. E 2. The average of all pairwise expectations 1
|Θ2| ∑ jk,lm∈Θ2 E[ε jkεlm |y jk,ylm] is shown in

orange, and the linear approximation to this average, described in Section 5, is shown in dashed
blue. In addition, pairwise conditional expectations E[ε jkεlm |y jk,ylm] are shown in light gray, for a
random subset of 500 relation pairs ( jk, lm) ∈ Θ2.




