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A Overview

We detail the methods used for our simulations and finite sample implementation in Sec-
tion B and provide additional simulation results in Section C. All of the proofs of the
paper’s results that were not given in the main text can be found in Section D.

Code will be made available at https://github.com/RJTK/granger_causality.

B Pairwise Recovery Methods with Finite Datasets

In this section we provide a review of our methods for implementing Algorithm 1 given
a finite sample of T data points. We apply the simplest reasonable methods in order to
maintain a focus on our main contributions (i.e., Algorithm 1), more sophisticated schemes
can only serve to improve the results. Textbook reviews of the following concepts are
provided e.g., by [67, 35], and elsewhere.

In subsection B.1 we define pairwise Granger causality hypothesis tests, in subsec-
tion B.2 a model order selection criteria, in subsection B.3 an efficient estimation algo-
rithm, in subsection B.4 the method for choosing an hypothesis testing threshold, and
finally in subsection B.5 the unified finite sample algorithm.

B.1 Pairwise Hypothesis Testing

In performing pairwise checks for Granger causality x j
PW→ xi we follow the simple scheme

of estimating the following two linear models:

H0 : x̂(p)
i (n) =

p

∑
l=1

bii(l)xi(n− l), (B 1)

H1 : x̂(p)
i| j (n) =

p

∑
l=1

bii(l)xi(n− l)+
p

∑
l=1

bi j(l)x j(n− l). (B 2)

We formulate the statistic

Fi j(p) =
T
p

(
ξi(p)
ξi j(p)

−1
)
, (B 3)

where ξi(p) is the sample mean square of the residuals4 xi(n)− x̂(p)
i (n),

ξi(p) =
1

T − p

T

∑
n=p+1

(xi(n)− x̂(p)
i (n))2,

and similarly for ξi j(p). We test Fi j(p) against a χ2(p) distribution.
If the estimation procedure is consistent, we will have the following convergence (in P

or a.s.):

Fi j(p)→
{

0; x j
PW9 xi

∞; x j
PW→ xi

as T → ∞. (B 4)

In our finite sample implementation (see Algorithm 2) we add edges to Ĝ in order of the
decreasing magnitude of Fi j instead of proceeding backwards through Pk−r in Algorithm

4 This quantity is often denoted σ̂ , but we maintain notation from Definition 2.2.

https://github.com/RJTK/granger_causality
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1. This makes greater use of the information provided by the test statistic Fi j, moreover,

if xi
GC→ x j and x j

GC→ xk, it is expected that Fk j > Fki, thereby providing the same effect as
proceeding backwards through Pk−r.

B.2 Model Order Selection

There are a variety of methods to choose the filter order p (see e.g., [46]), but we will
focus in particular on the Bayesian Information Criteria (BIC). The BIC is substantially
more conservative than the popular alternative Akaiake Information Criteria (the BIC is
also asymptotically consistent), and since we are searching for sparse graphs, we therefore
prefer the BIC, where we seek to minimize over p:

BICunivariate(p) = ln ξi(p)+ p
ln T

T
,

BICbivariate(p) = ln det Σ̂i j(p)+4p
ln T

T
,

(B 5)

where Σ̂i j(p) is the 2×2 residual covariance matrix for the VAR(p) model of (xi(n),x j(n)).
The bivariate errors ξi j(p) and ξ ji(p) are the diagonal entries of Σ̂i j(p).

We carry this out by a simple direct search on each model order between 0 and some
prescribed pmax, resulting in a collection pi j of model order estimates. In practice, it is
sufficient to pick pmax ad-hoc or via some simple heuristic e.g. plotting the sequence
BIC(p) over p, though it is not technically possible to guarantee that the optimal p is less
than the chosen pmax (since there can in general be arbitrarily long lags from one variable
to another).

B.3 Efficient Model Estimation

In practice, the vast majority of computational effort involved in implementing our estima-
tion algorithm is spent calculating the error estimates ξi(pi) and ξi j(pi j). This requires
fitting a total of N2 pmax autoregressive models, where the most naive algorithm (e.g.
solving a least squares problem for each model) for this task will consume O(N2 p4

maxT )
time, it is possible to carry out this task in a much more modest O(N2 p2

max)+O(N2 pmaxT )
time via the autocorrelation method [35] which substitutes the following autocovariance
estimates in the Yule-Walker equations:5

R̂x(m) =
1
T

T

∑
t=m+1

x(n)x(n−m)T; m = 0, . . . , pmax, (B 6)

It is imperative that the first index in the summation is m + 1, as opposed perhaps to
pmax and that the normalization is 1/T , as opposed perhaps to 1/(T − pmax), in order to
guarantee that R̂x(m) forms a valid (i.e., positive definite) covariance sequence. This results
in some bias, however the dramatic computational speedup is worth it for our purposes.

5 The particular indexing and normalization given in Equation (B 6) is critical to ensure R̂ is positive
semidefinite. The estimate can be viewed as calculating the covariance sequence of a signal
multiplied by a rectangular window.
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These covariance estimates constitute the O(N2 pmaxT ) operation. Given these particular
estimates, the variances ξi(p) for p = 1, . . . , pmax can be evaluated in O(p2

max) time each by
applying the Levinson-Durbin recursion to R̂ii(m), which effectively estimates a sequence
of AR models, producing ξi(p) as a side-effect (see [35] and [24]).

Similarly, the variance estimates Σ̂i j(p) (which include ξi j and ξ ji) can be obtained by
estimating (N+1)N

2 bivariate AR models, again in O(p2
max) time via Whittle’s generalized

Levinson-Durbin recursion6 [69].

B.4 Edge Probabilities and Error Rate Controls

Denote Fi j the Granger causality statistic of Equation (B 3) with model orders chosen by the
methods of Section B.2. We assume that this statistic is asymptotically χ2(pi j) distributed
(the expected result if the disturbances are Gaussian), and denote by G the cumulative
distribution function thereof. We will define the matrix

Pi j = G(Fi j), (B 7)

to be the matrix of pairwise edge inclusion P-values. This is motivated by the hypothesis
test where the hypothesis H0 will be rejected (in which case we will conclude that x j

PW→ xi)
if Pi j > 1−δ .

The value δ can be chosen by a variety of methods, in our case we apply the Benjamini
Hochberg criteria [10] [67] to control the false discovery rate of pairwise edges to a level
α (our experiments use the conventional value α = 0.05).

B.5 Finite Sample Recovery Algorithm

After the graph topology Ĝ has been estimated via Algorithm 2, we refit the entire model
with the specified sparsity pattern directly via ordinary least squares.

We note that producing graph estimates which are not strongly causal can potentially
be achieved by stacking models. That is, performing sequential estimates x̂1(n), x̂2(n), . . .
estimating a strongly causal graph with the residuals of the previous model as input, and
then refitting on the combined sparsity pattern.

C Simulation

We have implemented our empirical experiments in Python [40], in particular we leverage
the LASSO implementation from sklearn [58] and the random graph generators from
networkx [29]. Our first experiments use two6 separate graph topologies having N = 50
nodes. These are generated respectively by drawing a random tree and a random Erdos
Renyi graph then creating a directed graph by directing edges from lower numbered nodes
to higher numbered nodes.

6 We have made use of standalone tailor made implementations of these algorithms, available at
github.com/RJTK/Levinson-Durbin-Recursion.
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Algorithm 2: Finite Sample Pairwise Graph Recovery (PWGC)

input : Estimates of pairwise Granger causality statistics Fi j (eqn. B 3). Matrix
of edge probabilities Pi j (eqn. B 7). Hypothesis testing threshold δ

chosen via the Benjamini-Hochberg criterion (Section B.4)
output : A strongly causal graph Ĝ

initialize: S = [N] # unprocessed nodes

E = /0 # edges of Ĝ

k = 1 # a counter used only for notation

1 Wδ ←{(i, j) | Pji > 1−δ ,Fji > Fi j} # candidate edges

2 I0←
(

∑ j∈S:( j,i)∈Wδ
Pi j, for i ∈ S

)
# total node incident probability

3 P0←{i ∈ S | I0(i)< dmin(I0)e} # Nodes with fewest incident edges

4 if P0 = /0 then
5 P0←{i ∈ S | I0(i)≤ dmin(I0)e} # Ensure non-empty

6 while S 6= /0 do
7 S← S\Pk−1 # remove processed nodes

8 Ik←
(

∑ j∈S:( j,i)∈Wδ
Pi j, for i ∈ S

)
9 Pk←{i ∈ S | Ik(i)< dmin(Ik)e}

10 if Pk = /0 then
11 Pk←{i ∈ S | Ik(i)≤ dmin(Ik)e}
12

13 # add strongest edges, maintaining strong causality

14 Uk←
⋃k

r=1 Pk−r # Include all forward edges

15 for (i, j) ∈ sort
(
{(i, j) ∈Uk×Pk | (i, j) ∈Wδ} by descending Fji

)
do

16 if is strongly causal(E ∪{(i, j)}) then
17 # is strongly causal can be implemented by keeping

18 # track of ancestor / descendant relationships

19 E← E ∪{(i, j)}

20 k← k+1

21 return ([N],E)

We populate each of the edges (including self loops) with random linear filters con-
structed by placing 5 transfer function poles (i.e., p = 5) uniformly at random in a disc of
radius 3/4 (which guarantees stability for acyclic graphs). The resulting system is driven
by i.i.d. Gaussian random noise, each component having random variance σ2

i = 1/2+ ri

where ri ∼ exp(1/2). To ensure we are generating data from a stationary system, we first
discard samples during a long burn in period.

For both PWGC and adaLASSO we set the maximum lag length pmax = 10. Results are
collected in Figures C 1, C 2, ??, C 3.

In reference to Figure C 1 it should not be overly surprising that our PWGC algorithm
performs better than the LASSO for the case of a strongly causal graph, since in this case
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Fig. C 1: PWGC Compared Against AdaLASSO [74] (SCG)
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Comparison of PWGC and LASSO for VAR(p) model estimation. We make comparisons against

both the MCC and the relative log mean-squared prediction error ln trΣ̂v
ln trΣv

. Results in Figure C 1 are
for systems guaranteed to satisfy the assumptions required for Theorem 2.2.

the theory from which our heuristic derives is valid. However, the performance is still
markedly superior in the case of a more general DAG. We would conjecture that a DAG
having a similar degree of sparsity as an SCG is “likely” to be “close” to an SCG, in some
appropriate sense.

Figure C 3 illustrates the severe (expected) degradation in performance as the number of
edges increases while the number of data samples T remains fixed. For larger values q in
this plot, the number of edges in the graph is comparable to the number of data samples.

We have also paid close attention to the performance of PWGC in the very small sample
(T ≤ 100) regime (see Figure 7), as this is the regime many applications must contend
with.

In regards to computational scalability, we have observed that performing the O(N2)

pairwise Granger causality calculations consumes the vast majority (> 90%) of the com-
putation time. Since this step is trivially parallelizable, our algorithm also scales well with
multiple cores or multiple machines. Figure 6 is a demonstration of this scalability, where
we are able to estimate graphs having over 1500 nodes (over 2.25× 106 possible edges)
using only T = 500 data points, granted, an SCG on this many nodes is extremely sparse.
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Fig. C 2: PWGC vs adaLASSO (DAG, q = 2

N )
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Figure C 2 provides results for systems which do not guarantee the assumptions of Theorem 2.2,
though the graph has a similar level of sparsity.

D Proofs

This appendix is devoted to proofs of some of the intermediate results in the paper as well
as a proof of the man result.

We begin with some basic lemmas in Section D.1. Section D.2 proves some of the
more interesting intermediate results about pairwise causation and finally, Section D.3
establishes the main theorem. An analysis of Example 2.3, which suggests that persistent
systems are likely ubiquitous in practice, is provided in Section D.4.

D.1 Lemmas and Preparation

This section states a number of lemmas that are used in later proofs, but which either did
not fit into the main body of the paper.

Lemma D.1 (Adjacency Matrix Powers). Let S be the transposed adjacency matrix7 of the
Granger causality graph G . Then, (Sk)i j is the number of paths of length k from node j to
node i. Evidently, if ∀k ∈ N, (Sk)i j = 0 then j 6∈A (i).

7 We are using the convention that Bi j(z) is a filter with input x j and output xi so as to write the action
of the system as B(z)x(t) with x(t) as a column vector. This competes with the usual convention
for adjacency matrices where Ai j = 1 if there is an edge (i, j). In our case, the sparsity pattern of
Bi j is the transposed conventional adjacency matrix.
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Fig. C 3: Fixed T,N, increasing edges q (DAG)
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Figure C 3 provides a comparison between PWGC and AdaLASSO as the density of graph edges
(as measured by q) increases. For reference, 2

N = 0.04 has approximately the same level of sparsity
as the SCGs we simulated. As q increases, the AdaLASSO outperforms PWGC as measured by the
MCC. However, PWGC maintains superior performance for 1-step-ahead prediction. We speculate
that this is a result of fitting the sparsity pattern recovered by PWGC via OLS which directly seeks

to optimize this metric, whereas the LASSO is encumbered by the sparsity inducing penalty.

Proof
This is a well known theorem, proof follows by induction.

Lemma D.2. Consider distinct nodes i, j in a Granger causality graph G . If j 6∈ A (i),

then H
(v j)

n ⊥H
(i)

n , and therefore for any causal filter Φ(z) we have

Ê[Φ(z)v j(n) |H (i)
n−1] = 0,

〈xi(n),Φ(z)v j(n)〉= 0.

Proof
Fix m, l ≥ 0, then by expanding with Equation (8)

E[xi(n−m)v j(n− l)] = E[
(
Aii(z)vi(n)+ ∑

k∈A (i)
Aik(z)vk(n)

)
v j(n− l)]

= 0.

This follows since i 6= j and j 6∈A (i) and v(n) is isotrophic and uncorrelated. �
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Remark D.1. In order to prove Proposition 2.4 we require some additional notation, as
well as another representation theorem. The difficulty addressed by the following Defini-
tion D.1 and Lemma D.3 is that in the representation of x j(t) in terms of its parents (i.e.,
Equation (7))

xi(n) = vi(n)+Bii(z)xi(n)+ ∑
k∈pa(i)

Bik(z)xk(n),

the filter Bii(z) need not be stable. That is, the inverse filter (1−Bii(z))−1 need not exist.
An example of this issue is furnished by

B(z) =
[

ρ −a
a 0

]
z−1,

for which, depending on the value of a, may still be stable even if |ρ| > 1. This implies
that it is not always possible to represent xi(n) in terms of vi(n) and xk(n),k ∈ pa(i) alone,
that is, as

xi(n) = (1−Bii(z))−1(vi(n)+ ∑
k∈pa(i)

Bik(z)xk(n)
)
.

The difficulty presented by the non-existence of such a representation may become
apparent upon studying the proof of Proposition 2.4.

Definition D.1 (Strongly Connected Components). In a graph G , the ordered (by the
natural ordering on N) subset S⊆ [N] is strongly connected if ∀i, j ∈ S : i∈A ( j), j ∈A (i).
We will denote by S( j) (which may be the singleton ( j)) the largest strongly connected
component (SCC) containing j. We will denote xS( j)(n) to be the ordered vector of pro-
cesses

xS( j)(n) =
(
xs(n) | s ∈ S( j)

)
,

whose indices are given the same (natural) ordering as S( j). Similarly, the sub-filter of B(z)
acting on xS( j)(n) will be denoted BS( j)(z).

Lemma D.3 (Expansion in SCCs). Given some j ∈ [N], the process xS( j)(n) can be repre-
sented by

xS( j)(n) = vS( j)(n)+BS( j)(z)xS( j)(n)+ ∑
s∈S( j)

k∈pa(s)∩S( j)c

Bsk(z)xk(n)e
S( j)
s , (D 1)

where eS( j)
s denotes the length |S( j)| canonical basis vector with a 1 in the component

corresponding to xs in the vector xS( j), and the summation is a double sum on s and k.
Moreover, the filter B(z) is stable with I−BS( j)(z) invertible:

(I−BS( j)(z))
−1 =

∞

∑
k=0

BS( j)(z)
k, (D 2)

therefore
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xS( j)(n) = (I−BS( j)(z))
−1(vS( j)(n)+ ∑

s∈S( j)
k∈pa(s)∩S( j)c

Bsk(z)xk(n)e
S( j)
s
)
. (D 3)

Proof

The representation follows directly from the VAR representation of x(n) (i.e., Equation (3))

x(n) = B(z)x(n)+ v(n),

which, when rearranged appropriately, can be written as

[
xS( j)(n)
xS( j)c(n)

]
= BS( j)(z)

[
xS( j)(n)
xS( j)c(n)

]
+

[
vS( j)(n)
vS( j)c(n)

]
..

where:

BS( j)(z) =
[

BS( j)(z) BS( j),S( j)c(z)
BS( j)c,S( j)(z) BS( j)c(z)

]
Theorem 2.1 is invoked in order to restrict the summation to k∈ pa(s) (since other elements
are 0).

Now, we can partition G into its maximal SCCs S1, . . . ,SK , (one of which is S( j)) and
then consider the DAG formed on N nodes with edges I→ J included on the condition that
∃ j ∈ SJ , i ∈ SI s.t. i ∈ A ( j). By topologically sorting this DAG, we obtain an ordering σ

of [n] such that Bσ (z) is block upper triangluar, with one of its diagonal blocks consisting
of the (possibly reordered) matrix BS( j)(z). So we have

∀ |z−1| ≤ 1 : detB(z) =
N

∏
i=1

detBSi(z) 6= 0

=⇒ ∀ |z−1| ≤ 1 : detBS( j)(z) 6= 0,

and therefore BS( j)(z) is stable, invertible, and Equation (D 2) holds. �

Lemma D.4 (Time Lag Cancellation). Suppose v(n) is a scalar process with unit vari-
ance and zero autocorrelation and let A(z),B(z) be nonzero and strictly causal (i.e., 1 ≤
m0(A)< ∞, 1≤ m0(B)< ∞) linear filters. Then,

〈F(z)A(z)v(n),B(z)v(n)〉= 0 ∀ strictly causal filters F(z) (D 4)

if and only if m0(A)≥ m∞(B).

Proof

We have
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〈A(z)v(n),B(z)v(n)〉=
∞

∑
l=1

∞

∑
m=1

a(l)b(m)E[v(n−m)v(n− l)] (D 5)

=
min(m∞(A),m∞(B))

∑
l=max(m0(A),m0(B))

a(l)b(l), (D 6)

(D 7)

since E[v(n−m)v(n− l)] = δm−l . This expression is 0 if and only if m0(A)≥ 1+m∞(B),
or m0(B)≥ 1+m∞(A), or the coefficients are orthogonal along the common support.

Specializing this fact to 〈F(z)A(z)v(n),B(z)v(n)〉 we see that the coefficients cannot be
orthogonal for every choice of F , and that supF m∞(FA) = ∞, leaving only the possibility
that

∀F m0(FA)≥ 1+m∞(B)
(a)⇐⇒ m0(A)≥ 1+m∞(B)−min

F
m0(F)

(b)⇐⇒ m0(A)≥ m∞(B),

where (a) follows since m0(FA) = m0(F)+m0(A), and (b) since minF m0(F) = 1. �

Corollary D.1. For k ∈A (i)∩A ( j), for all strictly causal F(z) we have,

Ê[F(z)A jk(z)vk(n) |H (i)
n−1] = 0

⇐⇒ 〈F(z)A jk(z)vk(n),Aik(z)vk(n)〉= 0

⇐⇒ m0(A jk)≥ m∞(Aik)

Proof
For the first equivalence we have for all causal F(z),

Ê[F(z)A jk(z)vk(n) |H (i)
n−1] = 0

⇐⇒ 〈F(z)A jk(z)vk(n),xi(n− l)〉= 0 ∀l ≥ 1

which can be expanded by Equation (8) to obtain (after cancelling all ancestors of i other
than k)

〈F(z)A jk(z)vk(n),Aik(z)vk(n− l)〉= 0 ∀l ≥ 1,

which by the Lemma is equivalent to m0(A jk)≥ m∞(Aik) as stated.
The final equivalence follows immediately from Lemma D.4.

D.2 Basic Results

This section restates and proves all of the basic results concerning the properties of pairwise
Granger causality and the representations of xi(t) in terms of A (i) and pa(i). These results
are fundamental in proving the main theorem, and may be of some independent interest.
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Proposition D.1 (Fully Unconnected Nodes Proposition 2.2). Consider distinct nodes i, j
in a Granger causality graph G . If

(a) j 6∈A (i) and i 6∈A ( j)
(b) A (i)∩A ( j) = /0

then H
(i)

n ⊥H
( j)

n , that is, ∀l,m∈Z+ E[xi(n− l)x j(n−m)] = 0. Moreover, this means that

j PW9 i and Ê[x j(n) |H (i)
n ] = 0.

Proof
We show directly that ∀l,m ∈ Z+ E[xi(n− l)x j(n−m)] = 0. To this end, fix l,m≥ 0, then
by expanding with Equation (8) we have

Exi(n− l)x j(n−m)

= E
(
Aii(z)vi(n− l)

)(
A j j(z)v j(n−m)

)
+ ∑

k∈A (i)
k 6=i

E[
(
Aik(z)vk(n− l)

)(
A j j(z)v j(n−m)

)
]

+ ∑
`∈A ( j)
6̀= j

E[
(
Aii(z)vi(n− l)

)(
A j`(z)v`(n−m)

)
]

+ ∑
k∈A (i)

k 6=i

∑
`∈A ( j)
6̀= j

E[
(
Aik(z)vk(n− l)

)(
A j`(z)v`(n−m)

)
].

Keeping in mind that v(n) is an isotropic and uncorrelated sequence we see that each of
these above four terms are 0: the first term since i 6= j, the second and third since j 6∈A (i)
and i 6∈A ( j) and finally the fourth since A (i)∩A ( j) = /0. �

Proposition D.2 (Not an Ancestor, No Common Cause; Proposition 2.3). Consider distinct
nodes i, j in a Granger causality graph G . If

(a) j 6∈A (i)
(b) A (i)∩A ( j) = /0

then j PW9 i.

Proof
By Theorem 2.1 it suffices to show that

∀ψ ∈H
( j)

n−1 〈xi(n)− Ê[xi(n) |H (i)
n−1],ψ− Ê[ψ |H (i)

n−1]〉= 0.

which by the orthogonality principle and by representing ψ ∈H
( j)

n−1 via the action of some
strictly causal filter Φ(z) on x j(n) is equivalent to

〈xi(n),Φ(z)x j(n)− Ê[Φ(z)x j(n) |H (i)
t−1]〉= 0. (D 8)

If we expand x j(n) using Equation (8), the left hand side of (D 8) becomes

〈xi(n), ∑
k∈A ( j)∪{ j}

(
Φ(z)A jk(z)vk(n)− Ê[Φ(z)A jk(z)vk(n) |H (i)

n−1]
)
〉.
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We see that this is 0 by Lemma D.2 since j 6∈A (i), and

A (i)∩A ( j) = /0 =⇒ ∀k ∈A ( j) : k 6∈A (i).

�

Proposition D.3 (Pairwise Causation and Confounders; Proposition 2.7). Fix i, j ∈ [N] and

suppose ∃k∈A (i)∩A ( j) which confounds i, j. Then, if Ti j(z) is not causal we have j PW→ i,

and if Ti j(z) is not anti-causal we have i PW→ j. Moreover, if Assumption 2.1 is satisfied, then

j PW→ i ⇐⇒ i PW→ j.

Proof
Recalling Theorem 2.1, consider some ψ ∈H

( j)
n−1 and represent it as ψ(n) = F(z)x j(n) for

some strictly causal filter F(z). Then

〈ψ(n)− Ê[ψ(n) |H (i)
t−1],xi(n)− Ê[xi(n) |H (i)

t−1]〉
(a)
= 〈F(z)x j(n),xi(n)− Ê[xi(n) |H (i)

t−1]〉
(b)
= 〈F(z)

(
A j j(z)v j(n)+ ∑

k∈A ( j)
A jk(z)vk(n)

)
,(1−Hi(z))

(
Aii(z)vi(n)+ ∑

`∈A (i)
Ai`(z)v`(n)

)
〉

(c)
= ∑

k∈A (i)∩A ( j)
〈F(z)A jk(z)vk(n),(1−Hi(z))Aik(z)vk(n)〉,

where (a) applies the orthogonality principle, (b) expands with Equation (8) with Hi(z)xi(n)=
Ê[xi(n) | H(i)

t−1], and (c) follows by performing cancellations of vk(n) ⊥ v`(n) and noting
that by the contra-positive of Proposition 2.5 we cannot have i ∈A ( j) or j ∈A (i).

Through symmetric calculation, we can obtain the expression relevant to the determina-
tion of i PW→ j for φ ∈H

(i)
n−1 represented by the strictly causal filter G(z) : φ(n) = G(z)xi(n)

〈φ(n)− Ê[φ(n) |H ( j)
t−1],x j(n)− Ê[x j(n) |H ( j)

t−1]〉
= ∑

k∈A (i)∩A ( j)
〈G(z)Aik(z)vk(n),(1−H j(z))A jk(z)vk(n)〉,

where H j(z)x j(n) = Ê[x j(n) |H ( j)
t−1].

We have therefore

( j PW→ i) : ∃F(z) s.t. ∑
k∈A (i)∩A ( j)

〈F(z)A jk(z)vk(n),(1−Hi(z))Aik(z)vk(n)〉 6= 0, (D 9)

(i PW→ j) : ∃G(z) s.t. ∑
k∈A (i)∩A ( j)

〈G(z)Aik(z)vk(n),(1−H j(z))A jk(z)vk(n)〉 6= 0. (D 10)

The persistence condition, by Corollary D.1, ensures that for each k ∈A (i)∩A ( j) there
is some F(z) and some G(z) such that at least one of the above terms constituting the sum
over k is non-zero. It remains to eliminate the possibility of cancellation in the sum.

The adjoint of a linear filter C(z) is simply C(z−1), which recall is strictly anti-causal if
C(z) is strictly causal. Using this, we can write
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∑
k∈A (i)∩A ( j)

〈F(z)A jk(z)vk(n),(1−Hi(z))Aik(z)vk(n)〉

= ∑
k∈A (i)∩A ( j)

〈Aik(z−1)(1−Hi(z−1))F(z)A jk(z)vk(n),vk(n)〉.

Moreover, it is sufficient to find some strictly causal F(z) of the form F(z)(1−H j(z))
(abusing notation) since 1−H j(z) is causal. Similarly for G(z), this leads to symmetric

expressions for j PW→ i and i PW→ j respectively:

∑
k∈A (i)∩A ( j)

〈Aik(z−1)(1−Hi(z−1))F(z)(1−H j(z))A jk(z)vk(n),vk(n)〉, (D 11)

∑
k∈A (i)∩A ( j)

〈Aik(z−1)(1−Hi(z−1))G(z−1)(1−H j(z))A jk(z)vk(n),vk(n)〉. (D 12)

Recall the filter from Assumption 2.1

Ti j(z) = ∑
k∈A (i)∩A ( j)

σ
2
k Aik(z−1)(1−Hi(z−1))(1−H j(z))A jk(z). (D 13)

Since each vk(n) is uncorrelated through time, 〈Ti j(z)vk(n),vk(n)〉 = σ2
k Ti j(0), and there-

fore we have j PW→ i if Ti j(z) is not causal and i PW→ j if Ti j(z) it not anti-causal. Moreover,

we have i PW9 j and j PW→ i if Ti j(z) is a constant. Therefore, under Assumption 2.1 j PW→
i ⇐⇒ i PW→ j.

This follows since if Ti j(z) is not causal then ∃k > 0 such that the zk coefficient of Ti j(z)
is non-zero, and we can choose strictly causal F(z) = z−k such that (D 11) is non-zero and

therefore j PW→ i.
Similarly, if Ti j(z) is not anti-causal, then ∃k > 0 such that the z−k coefficient of Ti j(z)

is non-zero, and we can choose strictly causal G(z) so that G(z−1) = zk, and then D 12 is

non-zero and therefore i PW→ j. �

D.3 The Main Theorem

Theorem D.1 (Pairwise Recovery; Theorem 2.2). If the Granger causality graph G for the
process x(n) is a strongly causal DAG and Assumption 2.1 holds, then G can be inferred
from pairwise causality tests. The procedure can be carried out, assuming we have an
oracle for pairwise causality, via Algorithm (1).

The proof of this main result will proceed in 5 steps which we state formally as lemmas.
The approach is to prove the correctness of Algorithm 1. Firstly, we characterize the sets
W and Pk appearing in Algorithm. Then, we establish a correctness result for the inner loop
on r, a correctness result for the outer loop on k, and finally that the algorithm terminates
in a finite number of steps.
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Lemma D.5 (W Represents Ancestor Relations). In Algorithm 1 we have (i, j) ∈W if and
only if i ∈A ( j). In particular, W ⊆ E .

Proof
Let j ∈ [n] and suppose that i ∈A ( j). Then i PW→ j by Proposition 2.6. Proposition 2.5 en-

sures that (i, j) are not confounded and Corollary 2.2 that j 6∈A (i) so j PW9 i by Proposition
and therefore 2.4 (i, j) ∈W .

Conversely, suppose (i, j) ∈W . Then since j PW9 i, Proposition 2.7 ensures that ( j, i) are
not confounded and so by Proposition 2.4 we must have i ∈A ( j). �

Definition D.2 (Depth). For our present purposes we will define the depth d( j) of a node
j in G to be the length of the longest path from a node in P0 to j, where d( j) = 0 if j ∈ P0.
It is apparent that such a path will always exist. For example, in Figure 4 we have d(3) = 1
and d(4) = 2.

Lemma D.6 (Depth Characterization of Pk and Sk). i ∈ Pk ⇐⇒ d(i) = k and j ∈ Sk ⇐⇒
d( j)≥ k.

Proof
We proceed by induction, noting that P0 is non-empty since G is acyclic and therefore G

contains nodes without parents. The base case i ∈ P0 ⇐⇒ d(i) = 0 is by definition, and
j ∈ S0 ⇐⇒ d( j)≥ 0 is trivial since S0 = [n]. So suppose that the lemma is true up to k−1.

(i ∈ Pk =⇒ d(i) = k): Let i ∈ Pk. Suppose that d(i) ≥ k+ 1, then ∃ j ∈ pa(i) such that
j 6∈ ∪r≥1Pk−r (otherwise d(i) ≤ k), this implies that j ∈ Sk with ( j, i) ∈W (by Lemma
D.5) which is not possible due to the construction of Pk and therefore d(i)≤ k. Moreover,
Pk ⊆ Sk ⊆ Sk−1 implies that d(i) ≥ k− 1 by the induction hypothesis, but if d(i) = k− 1
then i ∈ Pk−1 again by induction which is impossible since i ∈ Pk and therefore d(i) = k.

(s ∈ Sk =⇒ d(s) ≥ k): Let s ∈ Sk ⊆ Sk−1. We have by induction that d(s) ≥ k− 1, but
again by induction (this time on Pk−1) we have d(s) 6= k− 1 since Sk = Sk−1 \Pk−1 and
therefore d(s)≥ k.

(d(i) = k =⇒ i ∈ Pk): Suppose i ∈ [n] is such that d(i) = k. Then i ∈ Sk−1 by the
hypothesis, but also i 6∈ Pk−1 so then i ∈ Sk = Sk−1 \Pk−1. Now, recalling the definition of
Pk

Pk = {i ∈ Sk | ∀s ∈ Sk (s, i) 6∈W},
if s ∈ Sk is such that (s, i) ∈W then s PW→ i and i PW9 s so that by Proposition 2.7 there

cannot be a confounder of (s, i) (otherwise i PW→ s) so then by Proposition 2.4 we have
s ∈ A (i). We have shown that s ∈ Sk =⇒ d(s) ≥ k and so we must have d(i) > k, a
contradiction, therefore there is no such s ∈ Sk so i ∈ Pk.

(d( j)≥ k =⇒ j∈ Sk): Let j∈ [n] such that d( j)≥ k, then by induction we have j∈ Sk−1.
This implies by the construction of Sk that j 6∈ Sk only if j ∈ Pk−1, but we have shown that
this only occurs when d( j) = k−1, but d( j)> k−1 so j ∈ Sk. �

Lemma D.7 (Inner Loop). Fix an integer k ≥ 1 and suppose that (i, j) ∈ Ek−1 if and only
if (i, j) ∈ E and d( j)≤ k−1. Then, we have (i, j) ∈ Dkr if and only if (i, j) ∈ E , d( j) = k,
and d(i) = k− r.
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Proof
We prove by induction on r, keeping in mind the results of Lemmas D.5 and D.6. For the
base case, let r = 1 and suppose that (i, j) ∈ E with d( j) = k and d(i) = k− 1. Then, by
Corollary 2.4 (i, j) ∈W and by our assumptions on Ek−1 there is no i→ ·· · → j path in
Ek−1 and therefore (i, j) ∈ Dk1. Conversely, suppose that (i, j) ∈ Dk1. Then, d(i) = k− 1
and d( j) = k which, since (i, j) ∈W =⇒ i ∈A ( j) implies that i ∈ pa( j) and (i, j) ∈ E .

Now, fix r > 1 and suppose that the result holds up to r−1. Let (i, j) ∈ E with d( j) =
k and d(i) = k− r. Then, (i, j) ∈W and by induction and strong causality there cannot
already be an i→ ·· · → j path in Ek−1 ∪

(⋃r−1
`=0 Dkr

)
, therefore (i, j) ∈ Dkr. Conversely,

suppose (i, j) ∈ Dkr. Then we have d(i) = k− r, d( j) = k, and i ∈A ( j). Suppose by way
of contradiction that i 6∈ pa( j), then there must be some u ∈ pa( j) such that i ∈ A (u).
But, this implies that d(i)< d(u) and by induction that (u, j) ∈⋃r−1

`=1 Dk`. Moreover, since
d(u)< k (otherwise d( j)> k) each edge in the i→ ··· → u path must already be in Ek−1,
and so there must be an i→ ·· · → j path in Ek−1 ∪

(⋃r−1
`=0 Dkr

)
, which is a contradiction

since we assumed (i, j) ∈ Dkr. Therefore i ∈ pa( j) and (i, j) ∈ E . �

Lemma D.8 (Outer Loop). We have (i, j) ∈ Ek if and only if (i, j) ∈ E and d( j)≤ k. That
is, at iteration k,Ek and E agree on the set of edges whose terminating node is at most k
steps away from P0.

Proof
We will proceed by induction. The base case E0 = /0 is trivial, so fix some k ≥ 1, and
suppose that the lemma holds for all nodes of depth less than k.

Suppose that (i, j) ∈ Ek = Ek−1∪
(⋃k

r=1 Drk
)
. Then clearly there is some 1≤ r≤ k such

that (i, j) ∈ Dkr so that by Lemma D.7 we have (i, j) ∈ E and d( j) = k.
Conversely, suppose that (i, j) ∈ E and d( j) ≤ k. If d( j) < k then by induction (i, j) ∈

Ek−1 ⊆ Ek so suppose further than d( j) = k. Since i ∈ pa( j) we must have d(i) < k (else
d( j)> k) and again by Lemma D.7 (i, j) ∈⋃k

r=1 Dkr which implies that (i, j) ∈ Ek. �

Lemma D.9 (Finite Termination). Algorithm 1 terminates and returns the set Ek?−1 = E

for some k? ≤ n.

Proof
If N = 1, the algorithm is clearly correct, returning on the first iteration with E1 = /0. When
N > 1 Lemma D.8 ensures that Ek coincides with {(i, j) ∈ E | d( j)≤ k} and since d( j)≤
n− 1 for any j ∈ [n] there is some k? ≤ n such that Ek?−1 = E . We must have Sk? = /0
since j ∈ Sk? ⇐⇒ d( j)≥ k? (if d( j)> k−1 then Ek?−1 6= E ) and therefore the algorithm
terminates. �

D.4 Persistent Systems Example

Example D.1 (Ubiquity of Persistent Systems; Example 2.3). Consider a process x(n)
generated by the VAR(1) model8 having B(z) = Bz−1. If B is diagonalizable, and has at

8 Recall that any VAR(p) model with p < ∞ can be written as a VAR(1) model, so we lose little
generality in considering this case.
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least 2 distinct eigenvalues, then x(n) is persistent. A proof of this fact is provided in the
Appendix.

This example shows that the collection of finite VAR(p) systems which are not persistent
are pathological, in the sense that their system matrices have zero measure.

Proof
Pick any i ∈ [N], j ∈A (i)\{i}. Then the stability of B allows us to write

A(z) =
∞

∑
k=0

Bkz−k,

whereby we see that ∃k > 0 such that [Bk]i j 6= 0 (since j ∈A (i)). Then consider

[Brk]i j = eTi Brke j

(a)
=
(
(PTei)

TJrkP−1e j
)

= tr[(PTei)
TJrkP−1e j]

(b)
= tr[(Jrk)(vuT)],

where (a) utilizes the Jordan Normal Form of B, and (b) denotes u=PTei and v=P−1e j.
In order for m∞(Ai j) < ∞, there must be some N > 1 such that ∀r ≥ N, the above term is
0. This may be the case for instance if B is a nilpotent matrix.

Using the supposition that B is diagonalizable (i.e.,J is a diagonal matrix) with at least 2
distinct eigenvalues (in this case B is not nilpotent), we can then rewrite the above as

f (r) := tr[(Jrk)(vuT)] =
N

∑
ν=1

λ
rk
ν vν uν :=

N

∑
ν=1

λ
rk
ν βν

where λν denotes the eigenvalues of B and βν = uν vν . Note that f (0) = 0 since i 6= j and
u is a row of P and v is a column of P−1. Moreover, f (1) 6= 0 by hypothesis. But, in order
for f (r) = 0 ∀r ≥ N, it would need to be the case that

Dg(λλλ )r
λλλ =V z

had a solution in z for every r≥N, where V is an n×n−1 full-rank matrix whose columns
span the nullspace of β , and λλλ = (λ1, . . . ,λn). That is, iterates of Dg(λλλ ) applied to λλλ would
need to remain inside β ’s nullspace. This would imply that

VV †
λλλ

r+1 = λλλ
r+1,

i.e.,that λλλ
r+1 is an eigenvector of VV † for an infinite number of integers r (the exponen-

tiation is to be understood as a point wise operation). However, since there can only be a
finite number of (unit length) eigenvectors, this cannot be the case unless every eigenvalue
(λ1, . . . ,λn) were equal. �


