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This supplement discusses several topics related to the main paper, and can be treated as an
extended Appendix. Appendix A proposes an alternative estimation approach for Normal LSM
and LSM models using Nonnegative Matrix Factorization. Appendix B contains two concentration
inequalities for LSM networks using this alternative estimation approach, followed by auxiliary
lemmas. Appendix C discusses estimation while accounting for certain diagonal 0’s for within com-
munity subnetworks, along with how to adapt the estimation procedures when there are repeated
values. Appendix D.1 explains how modularity may fail to characterize the kinds of communi-
ties discussed in the main paper. Appendix D.2 introduces a greedy, agglomerative approach to
community detection by trying to maximize the measure L. Appendix D.3 considers community
detection as a spatial clustering problem, and Appendix D.4 includes an algorithm built upon spec-
tral clustering to try to maximize L. Appendix D.5 shows that the real parts of the first several
eigenvectors of a normalized version of the network also appear to capture community information.
Appendix E displays additional simulated networks and results. Finally, Appendix F extends both
H-functions and the kinds of “errors” which may be observed in LSMs or NSMs.

A Estimation for Normal LSM and LSM

A.1 Estimation for Normal LSM

Recall from Section 2 that a Normal LSM has the form

f(Wuv) = γ + αΦ−1
1 (Ψu) + βΦ−1

1 (Ψv) + σεuv

= γ + αZu + βZv + σεuv.

It is for now assumed that no transformation is needed, that is, f(Wuv) = Wuv. We also assume
for simplicity that γ = 0. Then, the model (12) can be expressed after exponentiation as

eWuv = eαZueβZveσεuv = eαZueβZve
σ2

2

(
eσεuv

Eeσεuv

)
, (A.1)

where the last term within the parentheses has an expected value of 1. The structure of (A.1)
enables the use of rank-one Nonnegative Matrix Factorization (NMF) to estimate the parameters
of interest. NMF approximates the matrix represented by eWuv as the decomposition ab′ where
a = (au) and b = (bv) are column vectors with positive entries. Taking the log of this approximation
yields the approximate identity

log(au) + log(bv) ≈ αZu + βZv +
σ2

2
, (A.2)

which suggests the following estimators for the model parameters of interest:
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α̂ = SD(log(a)), β̂ = SD(log(b)),

Ẑu = log(au)−log(a)
α̂ , Ψ̂u = Φ1(Ẑu), Ẑv = log(bv)−log(b)

β̂
, Ψ̂v = Φ1(Ẑv),

where SD stands for the standard deviation, and log(x) indicates the sample mean of log(x). In
light of (12), we also set σ̂ = SD(Wuv − α̂Ẑu − β̂Ẑv). An adjustment for subnetworks where all
nodes are in the same community is given in Appendix C below.

A.2 Extension to LSM

The difference between (12) and (7), ignoring extra subscripts, is that rather than having standard
normal random variables ascribed to each node, (7) includes random variables h1(Ψu) and h2(Ψv)
with possibly different forms, albeit with identical first 2 moments. The procedure described in
Appendix A.1 will still apply with one exception. The relation (A.2) cannot directly estimate Ẑu

or Ẑv, but rather ĥ1(Ψu) and ĥ2(Ψv). After getting these estimates, a distribution can be fit to the
data points while assuming that Ψu and Ψv are truly distributed uniformly over the unit interval.
The best fitting distribution can then be inverted to estimate Ψ̂u and Ψ̂v. Finally, the parameter

σ is estimated to be the standard deviation of Wuv − α̂ĥ1(Ψu)− β̂ĥ2(Ψv).

B Concentration inequality for Normal LSM

In Section 4, we introduced methods for estimating sociability parameters for certain kinds of
network generating models. It would be helpful to ensure these estimates are actually capturing
the underlying “error-free” network generating mechanisms, what we refer to as the network’s SC.
As there are several introduced models, the accuracy of the estimation results may depend on the
specific functional forms of a given network. We present below a result on estimation accuracy of the
SC for a Normal LSM network (12). The estimation procedure is formulated through theoretical
means; it remains to be seen how the procedure compares to the practical estimation approach
taken in Sections 4 and 6. The proof of the result adapts ideas from Noroozi et al. (2021).

In the theorems that follow, we assume there are true communities (with number of communities
K∗) but the estimates P̂ do not necessarily use these true communities, but rather chooses a
partition that minimizes the resulting estimate’s Frobenius distance to the observed matrix with
an added penalty term based on the number of nodes and estimated number of communities, K̂.
The penalty term is necessary in these proofs, because if no penalty were included, we could simply
let each node be its own community (setting K̂ = n), then perfectly find a formula for each single
edge weight that connects each pair of communities/nodes. Having each node serve as a different
community defeats the purpose of clustering nodes into communities. If we did so, we would have
2 free parameters to fit each edge. Though this procedure would make the Frobenius norm 0, this
would surely be overfitting.

Including the penalty leads to a different clustering more in the spirit of the models introduced
in the paper, which still yields a concentration inequality. We do not use the measure of clustering
quality discussed in the paper as a means of estimating P̂ , instead comparing the minimizing esti-
mate to the observed network. Establishing the theoretical consistency of the community detection
approach, as well as the non-asymptotic upper bound on the proportion of the misclassified nodes
are outside the scope of this paper, but are topics which merit further investigation.
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B.1 Concentration for Normal LSM with known σ2
max

Theorem B.1 Let A be a Normal LSM network such that every edge weight is generated as in
(12), and P∗ be the network such that each edge weight has the same generating process as the
corresponding edge weight in A, but with every σ value set to 0. In particular, all {εuv} are i.i.d.
standard normal random variables that are independent of all other model parameters, and all
{Ψ} ∼ U(0, 1). Also let P̂ be the estimated network (of the form (12) with σ = 0) induced by the
clustering of nodes that minimizes

||A− P̂ ||2F + Pen(n, K̂), (B.1)

where K̂ is the number of different communities in this “best” clustering, and

Pen(n,K) = 6σ2
max

(
C1nK + C2K

2 log(n)
)

+ (6C3 +
2

c
)σ2
max(log(n) + n log(K)), (B.2)

where n is the number of nodes in the network, K is the number of communities in the clustering,
c is some constant such that 0 < c < 1, σ2

max < ∞ is the largest variance parameter of any
generating function for edges in network A, and C1 and C2 are as given in Lemma B.1. Then, for
some constant C3 and any t > 0,

P
(
||P̂ − P∗||2F ≤ (1− c)−1Pen(n,K∗) +

C3

c
σ2
maxt

)
≥ 1− 3e−t. (B.3)

Dividing by the number of edges n2, the distance from the estimate to the truth continues to
shrink on a per edge basis. As an immediate consequence of the theorem, if K

√
log(n)/n→ 0, the

estimates are consistent.

Proof: It is first useful to define the P̂ induced by a particular clustering. Assuming we have
clustered all nodes of A into K̂ estimated communities, we denote the subnetwork including only

edges connecting nodes in estimated community k̂ to nodes in estimated community l̂ as A(k̂,l̂).

Letting 1n be a length n column vector of 1’s, define Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) as the projection of A(k̂,l̂)

of the form (12) with σ = 0 which minimizes the Frobenius norm to the observed subnetwork,
which can be written as

Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) = γ̂(k̂,l̂)
1n̂k̂

1
′
n̂l̂

+ α̂(k̂,l̂)Ẑ(k̂,l̂)
1
′
n̂l̂

+ β̂(k̂,l̂)
1n̂k̂

Ẑ(l̂,k̂)′, (B.4)

such that

γ̂(k̂,l̂), α̂(k̂,l̂), β̂(k̂,l̂), Ẑ(k̂,l̂), Ẑ(l̂,k̂) = argmin
γ,α,β,Z1,Z2

||A(k̂,l̂) − (γ1n̂k̂1
′
n̂l̂

+ αZ11
′
n̂l̂

+ β1n̂k̂Z
′
2)||F . (B.5)

For identifiability purposes, we also mandate the following constraints:∑
Ẑ(k̂,l̂) = 0,

∑
Ẑ(l̂,k̂) = 0, SD(Ẑ1) = 1, SD(Ẑ2) = 1, α̂(k̂,l̂) ≥ 0, β̂(l̂,k̂) ≥ 0.

(B.6)
For this proof, we need not explicitly express every component quantity in (B.5), but note that

Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) has rank≤ 3 by construction. In the between estimated community subnetworks

where k̂ 6= l̂, the estimates P̂ (k̂,l̂) = Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)).
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However, for within estimated community subnetworks where k̂ = l̂, we must define

Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) slightly differently, so as to ignore any influence from certain 0’s on the di-

agonal of A(k̂,k̂). In that case, we keep the pertinent constraints while modifying (B.4) and (B.5)
as follows:

Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) = γ̂(k̂,k̂)
1n̂k̂

1
′
n̂k̂

+ α̂(k̂,k̂)Ẑ(k̂,k̂)
1
′
n̂k̂

+ α̂(k̂,k̂)
1n̂k̂

Ẑ(k̂,k̂)′, (B.7)

such that

γ̂(k̂,k̂), α̂(k̂,k̂), Ẑ(k̂,k̂) = argmin
γ,α,β,Z

||
(
A(k̂,k̂) − (γ1n̂k̂1

′
n̂k̂

+ αZ1′n̂k̂
+ α1n̂k̂Z

′)
)
u>v
||F . (B.8)

This is the projection which minimizes the Frobenius norm to the original subnetwork only with

respect to off-diagonal entries, i.e. where u 6= v. Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) also has rank ≤ 3, but this
projection does not necessarily have 0’s on the diagonal. This gives rise to within community edge

estimates, P̂ (k̂,k̂), which is equal to Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)) in the off diagonal entries, but replaces the
diagonal entries with 0’s (which are correct by construction). We also represent this estimate as

Π0(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)), where the 0 subscript indicates the diagonals are forced to 0. P̂ (k̂,k̂) is not

a projection of A(k̂,k̂), but is closer to A(k̂,k̂) in Frobenius norm than Π(A(k̂,k̂), Ẑ(k̂), Ẑ(k̂)), which is

itself the best projection of A(k̂,k̂) with respect to the Frobenius norm for off diagonal entries.
The projections defined on the observed network and the estimated communities differ from

the projections we define on P∗ and the estimated communities. In defining Π(P
(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂)),

or Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)), we treat the Ẑ values as fixed, using the estimated values from

Π(A(k̂,l̂), Ẑ(k̂), Ẑ(l̂)), and only allowing γ̂(k̂,l̂), α̂(k̂,l̂), and β̂(k̂,l̂) values to vary.
With these preliminaries in place, we follow the proof of Theorem 1 in Noroozi et al. (2021).

By assumption,
||A− P̂ ||2F + Pen(n, K̂) ≤ ||A− P∗||2F + Pen(n,K∗).

Letting
Ξ = A− P∗, (B.9)

writing Tr(M) for the trace of matrix M , and assuming the network has been rearranged into
blocks by estimated communities, adding and subtracting P∗ within ||A − P̂ ||2F on the left-hand
side gives

||P̂ − P∗||2F ≤ 2Tr(Ξ′(P̂ − P∗)) + Pen(n,K∗)− Pen(n, K̂). (B.10)

Noting 2Tr(Ξ′(P̂ − P∗)) = 2
K̂∑

k̂,l̂=1

Tr
(

Ξ(k̂,l̂)′(P̂ (k̂,l̂) − P (k̂,l̂)
∗ )

)
, adding and subtracting

Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) to within estimated community subnetworks and Π(P

(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂)) to be-

tween estimated community subnetworks yields for the trace term in (B.10):

2
∑
k̂ 6=l̂

Tr
(

Ξ(k̂,l̂)′Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))
)

+ 2

K̂∑
k̂=1

Tr
(

Ξ(k̂,k̂)′Π0(Ξ(k̂,k̂), Ẑ(k̂), Ẑ(k̂))
)

+ 2
∑
k̂ 6=l̂

Tr
(

Ξ(k̂,l̂)′(Π(P
(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂))− P (k̂,l̂)

∗ )
)

+ 2

K̂∑
k̂=1

Tr
(

Ξ(k̂,k̂)′(Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂))− P (k̂,k̂)

∗ )
)
.

(B.11)
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We handle the four sums in (B.11) separately. Note that in the between community subnetworks,

Tr
(

Ξ(k̂,l̂)′Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))
)

= ||Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂)))||2F since Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) is a projection.

Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂)) has rank ≤ 3 as noted above, so

2||Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))||2F ≤ 6||Π(Ξ(k̂,l̂), Ẑ(k̂), Ẑ(l̂))||2op ≤ 6||Ξ(k̂,l̂)||2op, (B.12)

where ||M ||op denotes the usual spectral norm of matrix M . The second inequality holds because
the spectral norm is sub-multiplicative, and for a projection matrix P , ||P ||op ≤ 1.

When k̂ = l̂,

Tr
(

Ξ(k̂,k̂)′Π0(Ξ(k̂,k̂), Ẑ(k̂), Ẑ(k̂))
)

= Tr
(

Ξ(k̂,k̂)′Π(Ξ(k̂,k̂), Ẑ(k̂), Ẑ(k̂))
)
,

as Tr(M ′N) =
∑
u,v
MuvNuv and the diagonal of Ξ(k̂,k̂) is all 0’s because there are no self loops in

either A or P∗. With this equivalence, the same argument culminating in (B.12) also holds for
within community subnetworks.

To derive a bound on the first two sums of (B.11), from Lemma B.2, we have

P

 K̂∑
k̂,l̂=1

||Ξ(k̂,l̂)||2op ≤ σ2
max(C1nK̂ + C2K̂

2 log(n) + C3(t+ log(n) + n log(K̂)))

 ≥ 1− e−t. (B.13)

Moving to the last two sums in (B.11), these can be rewritten in terms of the whole network
instead of estimated subnetworks. Slightly abusing notation, let Π(P∗, {k̂}) represent the full

network matrix where all entries are given by the value dictated by Π(P
(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂)) for between

estimated community edges, and by Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) for within estimated community edges.

The last two sums in (B.11) can be represented as

2Tr
(

Ξ′(Π(P∗, {k̂})− P∗)
)

= 2||Π(P∗, {k̂})− P∗||F |〈Ξ, H({k̂})〉|, (B.14)

where

H({k̂}) =
Π(P∗, {k̂})− P∗
||Π(P∗, {k̂})− P∗||F

.

Since for any a, b and for c > 0, 2ab ≤ ca2 + b2

c ,

2Tr
(

Ξ′(Π(P∗, {k̂})− P∗)
)
≤ c||Π(P∗, {k̂})− P∗||2F +

|〈Ξ, H({k̂})〉|2

c
. (B.15)

Denoting the set of partitions of the nodes into exactly K communities as GK , for any fixed partition
G ∈ GK ,

∑
u,v(H(G)uv)

2 = 1, and the matrix Ξ consists of independent normally distributed errors
with finite variances. Representing the true communities of nodes u and v as i and j, respectively,
since |〈Ξ, H(G)〉| = vec(Ξ)′vec(H(G)), observe that,

P
(
|〈Ξ, H(G)〉|2 > t

)
= P

(
n∑

u,v=1

σijεuvH(G)uv)
2 > t



= 2P

 n∑
u,v=1

σijεuvH(G)uv >
√
t

 ≤ 2P
(
N (0, σ2

max) >
√
t
)
≤ 2e−t/2σ

2
max . (B.16)
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Applying the union bound,

P
(
|〈Ξ, H({k̂})〉|2 − 2σ2

max(log(n) + n log(K̂)) > 2σ2
maxt

)
≤ P

(
max

1≤K≤N
max
G∈GK

(
|〈Ξ, H(G)〉|2 − 2σ2

max(log(n) + n log(K))
)
> 2σ2

maxt

)
≤ 2nKne−2σ2

max(log(n)+n log(K)+t)/2σ2
max = 2e−t. (B.17)

The squared Frobenius norm matrix ||Π(P∗, {k̂})− P∗||2F in (B.15) can be written as

∑
k̂ 6=l̂

||Π(P
(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂))− P (k̂,l̂)

∗ ||2F +
K̂∑
k̂=1

||Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂))− P (k̂,k̂)

∗ ||2F . (B.18)

When k̂ 6= l̂, ||Π(P
(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂))−P (k̂,l̂)

∗ ||F ≤ ||P̂ (k̂,l̂) −P (k̂,l̂)
∗ ||F because Π(P

(k̂,l̂)
∗ , Ẑ(k̂), Ẑ(l̂)) is the

best projection of P
(k̂,l̂)
∗ onto the estimated Ẑ(k̂,l̂) and Ẑ(l̂,k̂) values. When k̂ = l̂, Π(P

(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂))

is also the best projection of P
(k̂,k̂)
∗ onto the Ẑ(k̂,k̂) values with respect to only the off diagonal

entries, and the diagonal entries of both Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) and P

(k̂,k̂)
∗ are all 0. Therefore,

||Π0(P
(k̂,k̂)
∗ , Ẑ(k̂), Ẑ(k̂)) − P (k̂,k̂)

∗ ||F ≤ ||P̂ (k̂,k̂) − P (k̂,k̂)
∗ ||F . Combining this point with those given in

(B.14)–(B.17),

P

(
2Tr

(
Ξ′(Π(P∗, {k̂})− P∗)

)
≤ c||P̂ − P∗||2F +

2σ2
max(log(n) + n log(K̂) + t)

c

)
≥ 1− 2e−t.

(B.19)
Let Ω denote the set on which, for a particular t, both events in (B.13) and (B.19) occur. Then

P (Ω) ≥ 1− 3e−t. Therefore on Ω, by using (B.10),

||P̂ − P∗||2F ≤6σ2
max(C1nK̂ + C2K̂

2 log(n) + C3(log(n) + n log(K̂) + t))

+ c||P̂ − P∗||2F +
2σ2

max(log(n) + n log(K̂) + t)

c
+ Pen(n,K∗)− Pen(n, K̂). (B.20)

Letting 0 < c < 1 and Pen(n,K) as in (B.2), we derive (B.3), that is

P
(
||P̂ − P∗||2F ≤ (1− c)−1Pen(n,K∗) +

C3

c
σ2
maxt

)
≥ 1− 3e−t.

This theorem indicates that in the Normal LSM setting, by choosing an appropriate penalty, one
can choose a clustering and the number of clusters such that, with high probability, ||P̂ −P ||2F , the
squared Frobenius distance between the true generating process and the estimate thereof induced
by this “best” clustering, is bounded above by a multiple of the penalty using the true number of
communities, accounting for the scale of the σ values in the network. As might be expected, in a
network with many nodes, many communities, and large σ values, the total distance between the
estimate and generating process for the network enforced by this bound can become large. One
drawback is this result relies on employing a penalty which includes σ2

max, a value which cannot in
all cases be assumed to be known.
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B.2 Case with unknown σ2

In practice, we do not know the value of σ2
max. If instead we assume that throughout the whole

network, there is a single value of σ2, we can also estimate that value using the data. Furthermore,
letting K̂ = n and putting each node into its own community, the estimate P̂ will appear to be
error free. For any network of interest, this is overfitting, so it is reasonable to set some restriction
on the number of communities relative to the number of nodes. The following theorem extends
Theorem B.1 under these new assumptions, where we do not require prior knowledge of σ2

max.

Theorem B.2 In the same setting as Theorem B.1, assume the choice of K̂ is restricted such that

C1nK̂ + C2K̂
2 log(n) + C3(log(n) + n log(K̂)) ≤ n(n− 1)

4
, (B.21)

where the constants C1, C2, C3 are derived in the same manner as in Theorem B.1, but take on
slightly different values here. Additionally, assume network A has a constant variance parameter
σ2. Let P̂ be the estimated network induced by the clustering of nodes that minimizes

||A− P̂ ||2F + σ̂2Pen(n, K̂), (B.22)

where

σ̂2 =
||A− P̂ ||2F
n(n− 1)

, (B.23)

and the penalty is given by

Pen(n,K) = 4(C1nK + C2K
2 log(n) + C3(log(n) + n log(K))). (B.24)

Then, for t > 0, ε ∈ [0, 1/2),

P
(
||P∗ − P̂ ||2F ≤

σ2

1− c
(Ct+ (1 + ε)Pen(n,K∗))

)
≥ 1− 3e−t − e−

3
32
ε2n(n−1). (B.25)

Proof: By assumption,

||A− P̂ ||2F + σ̂2Pen(n, K̂) ≤ ||A− P∗||2F + σ2
∗Pen(n,K∗),

where σ̂2 =
||A−P̂ ||2F
n(n−1) as in (B.23), and σ2

∗ =
||A−P∗||2F
n(n−1) . The above is equivalent to

||A− P̂ ||2F

(
1 +

Pen(n, K̂)

n(n− 1)

)
≤ ||A− P∗||2F

(
1 +

Pen(n,K∗)

n(n− 1)

)
.

Then, following the proof of Theorem B.1 leading to (B.10), we have

||P∗ − P̂ ||2F

(
1 +

Pen(n, K̂)

n(n− 1)

)

≤ 2Tr(Ξ′(P̂ − P∗))

(
1 +

Pen(n, K̂)

n(n− 1)

)
+
||A− P∗||2F
n(n− 1)

(
Pen(n,K∗)− Pen(n, K̂)

)
.
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Dividing both sides by 1+ Pen(n,K̂)
n(n−1) and following the arguments culminating in (B.20) but adjusting

constants as necessary, with probability ≥ 1− 3e−t:

(1− c)||P∗ − P̂ ||2F

≤ σ2(C1nK̂ + C2K̂
2 log(n) + C3(log(n) + n log(K̂)) + Ct) +

σ2
∗Pen(n,K∗)

1 + Pen(n,K̂)
n(n−1)

− σ2
∗Pen(n, K̂)

1 + Pen(n,K̂)
n(n−1)

≤ σ2(C1nK̂ +C2K̂
2 log(n) +C3(log(n) +n log(K̂)) +Ct) +σ2

∗Pen(n,K∗)−
σ2
∗Pen(n, K̂)

1 + Pen(n,K̂)
n(n−1)

, (B.26)

where the denominator from the second to last term was dropped in the last inequality.
Note that σ2

∗ is the average of n(n−1)
2 squared N (0, σ2) random variables, so its distribution is

2σ2

n(n−1)χ
2
n(n−1)

2

. Using a result from Johnstone (2001), for ε ∈ [0, 1/2),

P
(
(1− ε)σ2 ≤ σ2

∗ ≤ (1 + ε)σ2
)
≥ 1− e−

3
32
n(n−1)ε2 . (B.27)

Putting together (B.26) and (B.27), for ε ∈ [0, .5), with probability ≥ 1− 3e−t − e−
3
32
ε2n(n−1),

(1− c)||P∗ − P̂ ||2F ≤ Cσ2t+ (1 + ε)σ2Pen(n,K∗)

+ σ2
∗

 C1

1− ε
nK̂ +

C2

1− ε
K̂2 log(n) +

C3

1− ε
(log(n) + n log(K̂))− Pen(n, K̂)

1 + Pen(n,K̂)
n(n−1)

 .

(B.28)

Using (B.21), (B.24), and ε < 1/2, the term in parentheses in (B.28) is bounded by

2(C1nK̂ + C2K̂
2 log(n) + C3(log(n) + n log(K̂)))− Pen(n, K̂)

2
≤ 0.

Hence, with probability ≥ 1− 3e−t − e−
3
32
n(n−1)ε2 ,

||P∗ − P̂ ||2F ≤
Cσ2t+ (1 + ε)σ2Pen(n,K∗)

(1− c)
.

B.3 Auxiliary results

The following results were used in the proof of Theorem B.1.

Lemma B.1 Let Ξ be a symmetric n×n matrix with 0’s on the diagonal and independent N (0, σ2
uv)

entries above the diagonal, where all σ2
uv ≤ σ2

max. Let Ξ be partitioned into K2 submatrices
Ξ(k,l), k, l = 1, . . . ,K For some constants C1, C2, and t > 0,

P

 K∑
k,l=1

||Ξ(k,l)||2op ≤ σ2
max(C1nK + C2K

2 log(n) + C3t)

 ≥ 1− e−t. (B.29)
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Proof: For a fixed partition, let ξ and µ be vectors with entries ξk,l = ||Ξ(k,l)||op and µk,l =
E||Ξk,l||op and η = ξ − µ. Then,

K∑
k,l=1

||Ξ(k,l)||2op = ||ξ||2 ≤ 2||η||2 + 2||µ||2.

We start by bounding ||µ||2. Using Theorems 1.1 and 3.1 from Bandeira and van Handel (2016),
letting nk and nl denote the number of rows and columns respectively in Ξ(k,l),

µk,l = E||Ξ(k,l)||op ≤ (1 + ε)

(
√
nkσmax +

√
nlσmax +

6√
log(1 + ε)

σmax
√

log(min(nk, nl))

)
for any 0 < ε ≤ 1/2. In other words,

µk,l ≤ C0σmax(
√
nk +

√
nl +

√
log(min(nk, nl)) ),

µ2
k,l ≤ 3C2

0σ
2
max(nk + nl + log(min(nk, nl))),

||µ||2 ≤ 3C2
0σ

2
max

K∑
k,l=1

(nk + nl + log(min(nk, nl))) ≤ 6C2
0σ

2
maxnK + 3C2

0σ
2
maxK

2 log(n). (B.30)

Next, for 1 ≤ k ≤ l ≤ K, ηk,l = ξk,l − µk,l are all independent random variables since all errors are
assumed to be independent. By Theorem 5.8 of Boucheron et al. (2013),

P(|ηk,l| ≥ t) = P(|ξk,l − µk,l| ≥ t) ≤ 2e
−t2

4σ2max ,

so ηk,l is sub-gaussian. Since E(ηk,l) = 0, using sub-gaussianity, from Proposition 2.5.2 of Vershynin
(2018), there exists a constant C ≤ 288e such that

E(etηk,l) ≤ e
Cσ2maxt

2

2 .

Let η̃ be the sub-vector of η which includes the ηk,l values for 1 ≤ k ≤ l ≤ K. Then, Theorem 2.1
of Hsu et al. (2012) ensures that, for any square matrix M , using the same constant C,

P
(
||Mη̃||2 > Cσ2

max(Tr(M ′M) + 2
√
Tr((M ′M)2)t+ 2||M ′M ||opt)

)
≤ e−t.

Letting M = IK(K+1)/2, this becomes

P
(
||η̃||2 ≥ Cσ2

max(K(K + 1)/2 +
√

2K(K + 1)t+ 2t
)
≤ e−t,

and since ||η||2 ≤ 2||η̃||2,

P
(
||η||2 ≤ 2Cσ2

maxK(K + 1) + 6Cσ2
maxt

)
≥ 1− e−t. (B.31)

Combining (B.30) and (B.31),

P
(
|ξ||2 ≤ 12C2

0σ
2
maxnK + 6C2

0σ
2
maxK

2 log(n) + 4Cσ2
maxK(K + 1) + 12Cσ2

maxt
)
≥ 1− e−t.

Collecting terms yields (B.29).

The following lemma is nearly identical to Lemma 6 in Noroozi et al. (2021), and serves the
same purpose, to translate the bound in Lemma B.1, which is conditional on a particular partition,
into an unconditional bound.
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Lemma B.2 For any t > 0,

P

 K̂∑
k̂,l̂=1

||Ξ(k̂,l̂)||2op ≤ σ2
max(C1nK̂ + C2K̂

2 log(n) + C3(t+ log(n) + n log(K̂)))

 ≥ 1− e−t. (B.32)

Proof: Denoting the set of partitions of the nodes into K communities as GK , for any fixed
partition G ∈ GK , from Lemma B.1,

P

 K∑
k,l=1

||Ξ(k,l)||2op ≥ σ2
max(C1nK + C2K

2 log(n) + C3x)

 ≤ e−x.
Taking a union bound over all possible partitions and setting x = t+ log(n) + n log(K)

P

 K̂∑
k̂,l̂=1

||Ξ(k̂,l̂)||2op − σ2
max(C1nK̂ + C2K̂

2 log(n) + C3(t+ log(n) + n log(K̂))) ≥ 0



≤ P

 max
1≤K≤n

max
G∈GK

K∑
k,l=1

||Ξ(k,l)||2op − σ2
max(C1nK + C2K

2 log(n) + C3(log(n) + n log(K))) ≥ σ2
maxC3t


≤

n∑
K=1

∑
G∈GK

P

 K∑
k,l=1

||Ξ(k,l)||2op − σ2
max(C1nK + C2K

2 log(n) + C3(log n+ n log(K))) ≥ σ2
maxC3t


≤ nKne−t−log(n)−n log(K) = e−t

C Additional estimation details

C.1 Pre-estimating the diagonal for within community NMF

When applying the methodology described in Appendix A.1 to a set of edges within the same
community, symmetry ensures that a = b, so there are no conflicts among estimators. There is,
however, a need to resolve the fact that no self loops (Wuu = 0) may impact the estimates of a
and α for the within community setting i = j. To avoid this impact, the values of the diagonal
entries Wuu should be imputed before computing the NMF. Were self loops allowed, the expected
value a self loop would be E(Wuu|Z) = 2αZu, so we can estimate this value while accounting for
all diagonal zeros and estimates of other Z’s by setting

Wuu =

(
2
∑

v∈i,u 6=v
Wuv

)
−
(

1
ni−2

∑
v∈i,u 6=v

∑
q∈i,q 6=u,v

Wvq

)
ni − 1

, (C.1)

where ni is the number of nodes in community i. Essentially, this takes twice the average within
community edge weight for a particular node u and subtracts out twice the average non-diagonal
edge weight connecting the other nodes in community i. This approximates twice the impact node
u while negating the collective impact of the other nodes.
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C.2 Handling repeated edge weight values

In Section 4.1, when estimating the uniformly distributed values of Ĝ(w) in (16) and Ψ̂
(j)
u in (18), we

make an adjustment if we observe the same value multiple times. Let W1 < W2 be two consecutive
sorted values of Wuv’s in the same pair of communities, with Ĝ(W1) = k

n+1 and Ĝ(W2) = k+m
n+1 ,

where m > 1. That is, there are m different edges in the set {Wuv : u ∈ i, v ∈ j, Wuv = W2}.
Then, we set

Ĝ(W2) =
k + m

2 + 1
2m

n+ 1
. (C.2)

The purpose of (C.2) is to make all the new {Ĝ(Wuv) : u ∈ i, v ∈ j, Wuv = W2} values to be at least
halfway between Ĝ(W1) and the original Ĝ(W2) value, but where more duplicate values will bring
this value down further. When there are no duplicate values (i.e. W1 < W2 < W3 < . . . < Wn),
this formula leaves Ĝ(W2) intact. When duplicate values are present, there will still be duplicate
values after applying (C.2), but they are moved to a different location between k

n+1 and k+m
n+1 .

If the Dj(u) values repeat in (17), we make an analogous adjustment to (18).

D Additional community detection details

In this appendix, more information is provided about community detection for the kinds of networks
described in the main paper, including motivating ideas, algorithms, and some discussion of why
existing community detection methods may be inappropriate in this setting.

D.1 Limitations of modularity

Many clustering algorithms on networks attempt to maximize modularity, but this may not be
the appropriate measure to use for dense networks. To see this, consider the network shown
in Figure 10. That figure begins on the left with a network where σ = 0 with 74 nodes in 2
communities exhibiting within community positive association and between community negative
association. Within community edges are drawn from a uniform distribution with a maximum of
150, while between community edges are drawn from a uniform distribution with a maximum of
100. Node sociability parameters for both communities range from .05 to .95 in increments of .025.
The H-function in the original network is the same as that used for the rightmost plot in Figure 2,
though since the between community edges have negative association, the inputs to that H-function
are 1 − Ψu and 1 − Ψv. While the network is not strictly assortative, after accounting for node
sociabilities and using the appropriate inputs, edges between nodes in the same communities have
50% greater weights than edges between nodes in different communities. In this sense there is some
notion of homophily that is absent in other regimes where modularity fails. Ordered as in the figure,
one can visually identify 2 distinct communities. The second plot from the left in the figure is the
estimate of the left plot using the community assignments when clustering nodes using the walktrap
algorithm of Pons and Latapy (2006) with four steps, which returns three communities, not two.
The third plot is the estimate of the first plot using the community assignments by calculating
the leading non-negative eigenvector of the modularity matrix of the graph. The fourth plot is the
estimate of the first plot using the correct assignments. The modularity of the true communities on
this network is in fact slightly negative. This failure of community detection algorithms will feed
incorrect community labels to the estimation procedure, leading to estimates that don’t preserve
the structure of the original network, as seen in the figure.

The issue is modularity tries to identify highly interconnected nodes, where edge weights within
communities are expected to be higher than edge weights between communities. The methodology
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Figure 10: Reconstructing a network (left) based on different community assignments.

described above needs clusters to have a different property to work appropriately, namely that the
nodes in each community should obey a kind of monotonicity. Nodes in the same community should
have similar patterns of connecting to nodes in other communities, and their own community. In
the network in Figure 10, all nodes in community 1 “prefer” other nodes in community 1 with high
sociability (Ψ) values, but “prefer” nodes in community 2 with low sociability values. This shared
ordering of preferences over nodes in each community is crucial for ensuring that the estimation
procedure will get appropriate orderings of local sociability statistics.

It is not difficult to construct networks where it would be useful to combine the community
detection using L with modularity. For example, assume communities i and j have positive as-
sociation both within community and between the communities, but the within community edges
are generally much larger than the between community edges. Also assume both i and j have
negative association with community k. Clustering nodes to simply share ordering of preferences
would separate nodes in community k but would not distinguish nodes in community i from nodes
in community j. Subsequently employing a modularity maximization algorithm on the estimated
community consisting of nodes in i and j would recover the true communities and lead to better
estimates for all of the edges within and between i and j.

D.2 Greedy algorithm for community detection

A direct algorithm for maximizing L in (23) is to try to iteratively combine nodes into communities
which will greedily make L larger. It is computationally impractical to test every possible partition
of nodes to maximize L. However, based on the structure of L, Algorithm 2 tries to combine
communities which are most correlated with one another.

At the start, each node is placed into its own estimated community. The “aggregate degree” of
each estimated community is defined as the total weight of the edges emanating from any node in
the estimated community, where edges are double counted if they connect two nodes in the same
estimated community. In Algorithm 2, the aggregate degree of an estimated community is equal to
the column sum of the estimated community’s corresponding column in the “communityAggregate”
matrix. When each node is in its own estimated community, the aggregate degree of the community
is the same as the degree of the node. In each “round,” the algorithm orders the estimated com-
munities by their aggregate degrees at the beginning of the round from largest to smallest. Then
the algorithm visits these estimated communities in order, and for each estimated community î,
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selects a candidate estimated community ĵ 6= î which maximizes

Cîĵ = corr

( ∑
u:u∈î

Wuv,
∑
q:q∈ĵ

Wqv

)
: v ∈ V

 ,

where
∑

u:u∈îWuv, v ∈ V , is a length n vector where each entry has the total edge weight connecting

nodes in estimated community î with each node in the network. Estimated communities î and ĵ are
merged if doing so does not decrease the measure L. If î and ĵ are merged, and if ĵ has not already
been visited by the algorithm this round, the algorithm will visit the combined î and ĵ when it
would have visited ĵ. Each round completes after the algorithm has completed all scheduled visits.

If at least two estimated communities have been merged, the algorithm proceeds to the next
round. If no communities have been merged, the algorithm does a sweep, calculating Cîĵ for all
estimated communities, and attempts to merge pairs of estimated communities in decreasing order
of C values. As soon as any pair of estimated communities are merged, the algorithm stops the sweep
and proceeds to the next round. Algorithm 2 terminates when it goes through a full round and a
sweep without merging any estimated communities, or when the number of estimated communities
reaches 1.

Two details of the algorithm should be explained further. First, the algorithm does not require
merging communities to increase L because at the outset, when all nodes are in their own esti-
mated community, combining two communities cannot increase L. Therefore, requiring a merger
to increase L would prevent the algorithm from gaining any traction. Second, why go through
each round instead of constantly sweeping, or better yet just combining the estimated communi-
ties which would most increase L? In addition to this proposal being computationally costly, it
may also lead to the initial formation of a single large but overly heterogeneous community since
communities can only contribute to L once they contain three or more nodes. As this is already
a greedy algorithm, we view our design as a means of not overlooking any estimated community,
and as a conservative precaution against premature optimization.

D.3 Spatial clustering

For another perspective on community detection, we represent the original network as a matrix,
and think of each row vector as a point in n-dimensional space corresponding to a particular node,
where n is the number of nodes in the network. Spatial clustering of the points then gives us
communities, which is motivated as follows. Consider two nodes u and v in the same community
with similar Ψ values. For any third node x ∈ j, as u ∈ i and v ∈ i, Hij(Ψu,Ψx) should be similar
to Hij(Ψv,Ψx), thus Wux should be close to Wvx. Therefore, nodes in the same community with
similar Ψ values are expected to have similar edge weights, so entries in their corresponding rows
should be similar in n − 2 dimensions (the exceptions being due to no self loops). Therefore, in
this n-dimensional space, two nodes with the same community and similar Ψ values should be
neighbors.

Spatial clustering can be achieved using many existing clustering algorithms. For certain meth-
ods, such as those based on distances, one may need to account for the zeros on the diagonal by
only calculating the distance between two nodes on the remaining n − 2 dimensions. However, as
with other spatial clustering problems, there is no algorithm which correctly clusters the nodes for
every possible network.
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Algorithm 2: Greedy algorithm using L

Result: { î }
Input: W

1 labels(0) = ~0n
2 labels(1) = {1, ..., n}
3 q=1
4 communityAggregate = W

5 while labels(q) 6= labels(q−1) do
6 q++

7 labels(q) = labels(q−1)

8 labelOrder = sort labels by decreasing column sum of communityAggregate
9 while length(labelOrder) > 0 do

10 labels(q), communityAggregate, labelOrder = attemptMerge(communityAggregate,

labels(q), labelOrder)
11 dequeue(labelOrder(1))

end

12 if labels(q) = labels(q−1) then

13 labels(q), communityAggregate = sweep(communityAggregate, labels(q))
end

end

14 finalClustering = labels(q)

Procedure attemptMerge(communityAggregate, labels(q), labelOrder)

15 newLabels = labels(q)

16 newOrder = labelOrder
17 A = newOrder(1)
18 B = argmax

B′ 6=A

corr([communityAggregate(A)], [communityAggregate(B’)])

// [communityAggregate(A)] represents the Ath column in the

communityAggregate matrix

19 mergedLabels = newLabels
20 mergedLabels(mergedLabels = B) = A
21 mergedOrder = newOrder
22 mergedOrder(mergedOrder = B) = A
23 if calculateMeasureL(W, mergedLabels) ≥ calculateMeasureL(W, newLabels) then
24 newLabels = mergedLabels
25 newOrder = mergedOrder
26 [communityAggregate(A)] += [communityAggregate(B)]
27 Remove [communityAggregate(B)] column from communityAggregate

end
28 return newLabels, communityAggregate,
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Procedure sweep(communityAggregate, labels(q))
29 correlationOrder = sort non-matching label pairs by decreasing correlations of columns

in communityAggregate
30 while length(correlationOrder) > 0 do

31 newLabels = labels(q)

32 A = correlationOrder(1, 1)
33 B = correlationOrder(1, 2)
34 mergedLabels = newLabels
35 mergedLabels(mergedLabels = B) = A
36 if calculateMeasureL(W, mergedLabels) ≥ calculateMeasureL(W, newLabels) then
37 newLabels = mergedLabels
38 [communityAggregate(A)] += [communityAggregate(B)]
39 Remove [communityAggregate(B)] column from communityAggregate
40 dequeueAll(correlationOrder)

else
41 dequeue(correlationOrder(1))

end

end
42 return newLabels, communityAggregate

D.4 Spectral clustering algorithm incorporating L

Appendix D.3 justifies the application of spatial clustering techniques for our networks of interest.
In this section, we focus on one spatial clustering algorithm, spectral clustering, which we employ in
tandem with the measure L in (23), used to choose both a particular number of estimated commu-
nities as well as the best clustering for that number of communities. If the number of communities
K is known, we can follow the methodology of Ng et al. (2001). Measure the distance between
every column in our network using a radial basis function kernel. Then construct a neighbors graph
based on these distances, and a Laplacian based on this neighbors graph. Finally, run K-means on
the Laplacian to get clusterings. This can all be done using the existing specc function from the
R package kernlab just by specifying the number of centers, as specc will automatically select a
scale parameter for the kernel. However, as this is not a deterministic algorithm, it can be helpful
to run several replicates and take clustering that maximizes L.

The remaining issue is how to choose the number of clusters, K, which is a priori unknown.
However, we can use the introduced measure L as a measure of clustering success, so we can impose
a simple stopping rule, which is shown in Algorithm 3.

D.5 Clustering using normalized network

Another approach to community detection which seems to return interesting results is as follows:
take the network as a whole and normalize each row in the original matrix by taking Nuv = Auv−Āu•

SD(Au•)
,

where Au• represents the row in A corresponding to node u. Next, calculate the eigenvalues
λ1, . . . , λn of the normalized network N , and note the index corresponding to the largest difference
in the absolute values of the real parts of these successive eigenvalues, argmax

1≤i≤n−1
|Re(λi)|− |Re(λi+1)|.

Keep only the real parts of the first several eigenvectors corresponding to eigenvalues λ1, . . . , λi,
and look for clusters in this lower dimensional space.
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Algorithm 3: Community detection using spectral clustering and stopping criterion

Result: { î }
Input: W , replicates
// replicates is the number of times to run specc for each value of K

1 ∆ = 1; K =0;
2 while ∆ > 0 do
3 K = K + +;
4 clusterGoodness(K) = −∞;
5 index = 0;
6 while index < replicates do
7 index++;
8 candidateClustering = specc(W , centers = K);
9 candidateGoodness =calculateMeasureL(W , candidateClustering);

10 if candidateGoodness > clusterGoodness(K) then
11 clusterGoodness(K) = candidateGoodness;
12 clustering(K) = candidateClustering;

end

end
13 ∆ = clusterGoodness(K) − clusterGoodness(K − 1)

end
14 finalClustering = clustering(K − 1)

A normalized version of the network presented in Figure 10 is shown in the left plot of Figure
11. In the right plot of Figure 11, each point plots a row of the real parts of the first 2 eigenvectors
of this row-normalized network, where the color of the point represents the true community of the
corresponding node.

Plotting each row of these eigenvalues appears to give clearly separate clusters. Normalizing the
network so all nodes have degree 1 doesn’t give the same results. The first eigenvector of the original
matrix often represents degree information, so the normalization to calculate N should discard that
degree information, but in the process, it also seems have some kind of downstream effect on other
eigenvectors which helps them to capture the underlying communities. This phenomenon is not
specific to the constructed network in Figure 10. Figure 12 shows a network generated via an NSM
with an H-function combining two exponential random variables, in the style of the third plot in
Figure 2, where within community connections show positive association and between community
connections show Simpson association, along with the eigenvectors from the normalized version of
that network. Again, the real parts of the eigenvectors of the normalized network show a clear
separating plane between the two communities, but it is not along one of the 2 dimensions, but
rather along a combination of them.

There is some intuition for why clustering based on normalizing the network might work. Ignor-
ing the diagonal, normalizing the matrix makes each column sum to 0, and have variance 1. Since
this is a dense weighted network, there is no true concept of a “hub,” but instead just a node that
has greater edge weights. For this reason, we have no reason to value one node/dimension over an-
other, and we can avoid having to find complicated kernels with different variances across different
dimensions. If we don’t normalize, the distance in only one dimension can totally dominate. In
the case where all associations are positive, when doing community detection, we want to ignore
degree in favor of preference, so it makes sense to divide by a standard deviation. In the case where
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Figure 11: Normalized network with implied clustering.

Figure 12: Network generated via NSM, with the clustering from its normalized version.
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some associations are negative (or Simpson), extreme Ψ values will indicate greater variance, but
again, we still want to ignore this for the purposes of community detection, so it still makes sense
to normalize. The reason to normalize is since each node is connecting to all (or most) others, we
want to ensure that we are accounting for a given node’s average edge weight and the variance of
the edge weights. In this way, we are still looking for patterns of preferences across other nodes.
By normalizing the columns, we can compare them to one another on an apples-to-apples basis.
A negative weight in the normalized matrix means that the edge between the reference node and
another node is less than the average weight emanating from the reference node. For the purposes
of community detection in this model, this is really what we care about, that is, patterns across
nodes in a given community that show preferences across nodes throughout the whole network.

These last points also indicate the zeros on diagonal can bring up issues. Imagine a situation
where every other edge weight emanating from a node is extremely large but low variance. The
0 will shrink the average and increase the standard deviation by a lot, but it’s purely artificial.
If we use a distance between nodes/columns to cluster, it is imperative to ignore both the rows
corresponding to those nodes. If there is actually a relatively large edge weight between them, that
edge weight will be subtracted and squared twice. This is also purely artificial due to no self loops.

E Additional simulations

E.1 H-Normal LSM with σ = 0

Figure 13 shows an H-Normal LSM with σ = 0, where the value for within community edges are
equal to 5 + 3Φ−1

1 (Ψu) + 3Φ−1
1 (Ψv). The between community edges, assuming u is in community 1

and v is in community 2, are equal to 8− 3Φ−1
1 (Ψu) + 1.5Φ−1

1 (Ψv). The original network is shown
on the left. In the middle is the reconstructed estimated network, which looks nearly identical to
the original network. σ̂ is essentially 0 for this network, so the MSE (as defined in (21)) for each
subnetwork is shown on the right.

Figure 13: H-Normal LSM with σ = 0, its estimate, and the subnetwork level MSE (21).

E.2 Varied network

Figure 14 adds more complexity and departs even further from an H-Normal NSM, this time with
200 nodes and four communities of possibly different sizes. In this case, nodes are not assigned Ψ

values but i.i.d. Gamma(shape = 5, scale = 10) random values Γ
(1)
u and Γ

(2)
u = 1/Γ

(1)
u . However,

within each community, Γ
(1)
u and Γ

(2)
u are normalized by dividing by

∑
u∈i Γ

(1)
u and

∑
u∈i Γ

(2)
u ,

18



respectively. Each pair of communities is also assigned independently a random Gamma(shape
=50
√

10, scale = 50
√

10) value Γij . There is no mathematical significance to these parameters,
they were chosen only to create a striking image. Within community edges are distributed according
to a negative binomial distribution where the target number of successful trials is 2 × Γii and the

probability of success in each trial is (1−Γ
(1)
u )(1−Γ

(1)
v ). “Adjacent” communities in the graph are

distributed according to a negative binomial where the target number of successful trials is 1.5×Γij

and the probability of success in each trial is (1−Γ
(2)
u )(1−Γ

(2)
v ). Connections between communities

1 and 3 or between communities 2 and 4 are distributed according to a Poisson distribution with

parameter 100 × ΓijΓ
(1)
u Γ

(1)
v . Finally, connections between 1 and 4 are normally distributed with

mean 10000× (Γ
(1)
u + Γ

(1)
v ) and variance 1. Though the original network looks noisy, the estimate

seems to capture a smooth approximation. In fact, in this network, σ̂ is indistinguishable from 0
everywhere, so the MSE (21) of each subnetwork, shown in the right plot of Figure 14, would be
used for the bootstrap.

Figure 14: From left to right: original, reordered, estimate, MSE (21) of each subnetwork.

E.3 Correlation matrix

In this network, we first generate 3 “lodestar” series L1,L2,L3 of length 1000 composed entirely
of i.i.d. U(0, 1) random variables. We create a network with 200 nodes where the first 50 nodes
each get a series which are (to different degrees) positively correlated with the first lodestar series,
and negatively correlated with the second lodestar series. This is done by calculating the series for
node u at time t as

u(t) = β1(u)L1(t) + β2(u)L2(t) + β3(u)L3(t) +
(
1−

√
β2

1(u) + β2
2(u) + β2

3(u)
)
εu(t),

where εu(t) ∼ U(0, .35) is an idiosyncratic term for each node at each time step. For the first
50 nodes, the β1(u) values are positive and increasing with u, while the β2(u) values are negative
and getting more negative with u, and β3(u) = 0. For the second 50 nodes, the β2(u) values are
positive and increasing with u, while the β1(u) values are negative and getting more negative with
u. The 101st to 150th nodes get series which are increasingly positively correlated to L3 series and
increasingly negatively correlated to L2. Finally, the last 50 nodes have series which are increasingly
negatively correlated to L3. Taking the correlations of the 200 series, we get the correlation matrix
on the left of Figure 15. Though the subnetwork between the first and fourth communities may
look disordered, because nodes within each community are relatively correlated with each other,
there is a discernible ordering in that between community subnetwork. Even so, from a practical
perspective, edge weights only take on a narrow range of values near 0 in that subnetwork.
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Figure 15: Correlation network. From left to right: original, estimate, σ̂ for each subnetwork, MSE
(21) of each subnetwork.

E.4 Edge weights with injected noise

In plot A of Figure 16, we start with the same underlying network as in Figure 3 but add Gaussian
noise ζuv centered at 0 with a variance of 36 to the final edge weights, not in “normal” space, so the
edge weights in the network can go below 0 and above 150. In plot B, the added Gaussian noise
ζuv has variance 100 for within community edges and variance 225 for between community edges.
In both cases, the reconstructed networks recover the underlying pattern, but the noisier network
is estimated more coarsely.

Figure 16: The network in plot A of Figure 3 with different values for σ2
ζ

Finally, in plot C, the same network is taken with σ = .05 everywhere and external noise is
included by adding ζuv with variance 36 to the final edge weights. Even in this last case, the
underlying signal is broadly recovered.
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Figure 17: From left to right: Network generated by multiplying sociability parameters. Network
generated by demeaning sociability parameters then multiplying. Reordering of second network
based on within estimated community degree.

E.5 Multiplying sociability parameters

It may be worth considering alternative models which can generate networks similar to LSMs and
NSMs. For example, if edge weights are generated by multiplying sociability parameters, some
surprising things happen. Ignoring diagonal zeros, if we take the values from .01 to 1 by .01 on
each axis and let the value in the matrix equal the product of the axes, that results in the leftmost
plot in Figure 17. In other words, if all values are positive, the result looks like the 4th plot in
Figure 2. But if we center each axis to be mean 0 and recalculate, that produces the second plot in
Figure 17. This is not the intended setting for the models discussed in this paper, but if we were
to treat these networks as such, in the first case, every node would be put into a single community.
In the second case, those nodes with negative values would be put in a separate community from
nodes with positive values. Using this split and reordering based on within community degree gives
the rightmost plot in Figure 17.

In principle, were noise added to the edge weights of this network, knowing the true generating
model type might improve estimation, as one may be able to smooth noise out over more observa-
tions by keeping all nodes in one large community. However, even using the “wrong” communities,
our estimation procedure appears to replicate the underlying network. Even though the generating
process for this network is the same across both estimated communities, separating the second net-
work into two communities is therefore a reasonable choice, especially since the two communities
can be so easily defined. This kind of pattern only arises when multiplying nodes with positive
sociabilities and others with negative sociabilities, not when all sociabilities have the same sign.
While multiplying sociabilities hints at the idea of negative association, networks generated from
these models are still restricted to symmetric contours of the type seen in the 4th plot of Figure 2.
However, simply multiplying sociability parameters can’t generate networks that have contours of
the type seen in the first 3 plots of Figure 2, nor can it give positive association patterns within a
community but negative association patterns between communities when there are more than two
communities.

F Higher dimensional H-functions and “failure”

Thus far, we have defined H-functions as a class of functions that take in two uniform random
variables and output another uniform random variable. This model can be extended to include a
broader class of functions.
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Figure 18: Discretized 3-dimensional H-functions where axes show x and y but η is drawn randomly
at each (x, y) pair. The 2-dimensional H-function with arguments x and y is the same as in the
third plot of Figure 2. From left to right: H-Normal NSM as in (9) with σ = .05. H-Normal NSM
with σ = .5. Failure with α = .95. Failure with α = .5.

Definition F.1 (d-dimensional H-function.) A function H : (0, 1)d → (0, 1) is a d-dimensional
H-function if the inputs are d uniform random variables, and the output is a uniform random
variable which is monotonic in each argument.

Note the H-Normal NSM (9) can be expressed in terms of a 3-dimensional H-function as:

Wuv = G−1 (H(Ψu,Ψv, ηuv)) (F.1)

with ηuv = Φ1(εuv) ∼ U(0, 1), where

H(x, y, η) = Φ1

(
1√

1 + σ2
Φ−1

1 (h(x, y)) +
σ√

1 + σ2
Φ−1

1 (η)

)
, (F.2)

where h(x, y) is a 2-dimensional H-function. The first two plots in Figure 18 show the values along
the x and y axes of functions which have the form of (F.2) where h(x, y) is in the schema of (15)
such that F1 and F2 are Exponential distributions, and F1,2 is a Gamma distribution. As “errors”
are injected at each (x, y) pair, this can also be seen as a subnetwork generated via an H-Normal
NSM where H(x, y) in (9) is that of the third plot in Figure 2, and η is injected at the edge level.

The specific H-Normal NSM (14) is a simple example which can be expressed in closed form as
a 3-dimensional H-function as in (F.2) where

H(x, y, η) = Φ1

(
1

√
1 + σ2

√
1 + ρ2

Φ−1
1 (x) +

ρ
√

1 + σ2
√

1 + ρ2
Φ−1

1 (y) +
σ√

1 + σ2
Φ−1

1 (η)

)
. (F.3)

In the network context, ρ defines the relative influence of each of the node sociabilities, while σ
controls the “signal-to-noise” ratio of this 3-dimensional H-function. If one imagines observing
several instances of the same network given by (F.1) with idiosyncratic η values, then increasing
σ would increase the variance of the individual edge weights from one instance to another. The
3-dimensional H-function (F.3) can be viewed as a composition of two 2-dimensional H-functions
as follows:

H(x, y, η) = Hσ2(Hρ2(x, y), η),

where Hρ2 and Hσ2 are both of the form (13) but with different variance parameters, as indicated
by their subscripts. All the observations about (F.3) do not depend on using 3-dimensional H-
functions built from normal distributions or even H-Normal NSMs, but rather one can use any
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Figure 19: 3-dimensional H-functions of the form (F.4), where axes represent values of x and y.

d-dimensional functions similar to (15) where d > 2, with suitable adjustments based on the chosen
distributions F1, F2, and F1,2.

One general method of creating higher dimensional H-functions is by chaining together lower
dimensional H-functions as follows:

H(x, y, η) = F1,2

(
F−1

1

(
F3,4(F−1

3 (x), F−1
4 (y))

)
, F−1

2 (η)
)
. (F.4)

In general, the inner functions F3, F4 do not need to share the same form as the outer functions
F1, F2. In the left plot of Figure 19, F3, F4 and F3,4 correspond to the third plot in Figure 2, η ∼
U(0, 1) for each edge, and F1, F2 and F1,2 correspond to the rightmost plot in Figure 2. The right
plot of Figure 19 swaps the roles of the inner and outer 2-dimensional H-functions in the left plot of
Figure 19. While building higher dimensional H-functions in this way provides a lot of flexibility,
this method may not give simple closed form expressions, and may not guarantee identifiability.

While the H-Normal NSM is a model with additive “error,” (F.1) is more general. The following
can be used to generate a different kind of “error,” one we shall call failure. In this context, let

H(x, y, η) = (h(x, y))αδ1−α, (F.5)

where α is a value between 0 and 1, h is a 2-dimensional H-function, and δ1−α is given by F−1
α (η)

where

Fα(x) =


0, x < 0,
x

1−α , 0 ≤ x ≤ 1− α,
1, x > 1− α.

Seen another way,

δ =

{
1 with probability α,

η
1

1−α with probability 1− α.

One can see that (F.5) satisfies the definition of a 3-dimensional H-function by taking the
Laplace-Stieltjes (LS) transform of the log of (F.5) with uniform inputs and recognizing that it
matches the LS transform of the log of a uniform distribution. For η ∼ U(0, 1), the model (F.5)
can also be written as

H(x, y, η)
d
=

{
h(x, y)α, with probability α,

h(x, y)αε, with probability 1− α,
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where ε is also a uniform random variable. When α = 1, there is no “error;” when α = 0, there
is no degree correction, and increasing α increases the “signal-to noise-ratio.” As a contrast to the
additive “error” regime, in the failure case, when α is large, several different instances of the same
network would share many of the exact same edge weights, as in expectation, 100 × (1 − α)% of
the edge weights are given precisely by h(x, y)α. The reason to call this kind of error “failure”
is that rather than defining a distribution that is concentrated near h(x, y) with relatively small
variation, even when α is large, there are infrequent occasions where the value will fall far below the
modal value of h(x, y)α. The injected error will never raise the value greater than h(x, y)α, which
also accounts for why the modal value lies at h(x, y)α rather than h(x, y). This kind of variation
is reminiscent of each component in a system possessing a particular capacity, but occasional
component failures cause that capacity to not be met. Figure 18 depicts different levels of σ and α
being injected into the third plot of Figure 2.

Consider the example of a road network, where the vertices are geographic locations, edges are
roads, and edge weights are the number of cars that travel along the road each day. In this case,
there should be degree correction, as there should be heavier traffic between certain locations than
others. However, in addition to random variation for travelers along each road (which could be
represented by additive “error”), on some days, whether due to accidents, construction, or some
other issue, the traffic along certain roads may fall dramatically. This latter case would be an
example of failure. In this case, it may be better to model the network using a 4-dimensional
H-function of the form

H(x, y, η1, η2) = (F1,2,3 (F1(x) + F2(y) + F3(η1)))αδ1−α
2 ,

which would incorporate additive “error” through η1, and failure through δ1−α
2 , which is a function

of η2. While this would be a valid 4-dimensional H-function in theory, in practice there may be
issues arising from dependence between inputs, such as the probability of failure being correlated
with the additive “error.” Furthermore, one may want to include other covariates in the H-function
which are not completely random, but rather systematic features, like time, that are different from
node sociabilities, for use with tensors rather than matrices. There are many other kinds of H-
functions that can incorporate various covariates and errors to model specific phenomena. Our
goal, however, is not to catalog these possibilities, but to illustrate the richness and generality of
the class of H-functions, particularly for generating random networks.
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