9 Appendix: Technical Details for DCCM

The predicted networks were generated using a Metropolis-Hastings algorithm with target distribution based on equation (25). Use of Metropolis-Hastings algorithm requires evaluation of the acceptance probability, as described in equations (7). Since (24) provides the probability mass function for $P_{\mathscr{C}_{t}}$, we only need to calculate $f\left(C_{g}, C_{h}\right)$.

Though our analysis considers mixing based on only political party membership, the equations below are generalized to allow for mixing between individuals based on an arbitrary number of covariate patterns. We present the quantities for the four cases that must be evaluated in order to calculate $f\left(c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}, c_{\eta\left(g p_{t} \mid g_{t-1}\right)}\right)$. Let edge (i, j) be the required edge toggle to move from g_{t}^{\prime} to $g p_{t}$ and let $S^{l, k}(g)=\left\{E_{i j}: E_{i j} \in g, m_{i}=l\right.$, and $\left.m_{j}=k\right\}$. The four cases are associated with whether (i, j) exists in g_{t}^{\prime} or g_{t-1} or both or neither.

Case 1: $(i, j) \in g_{t}^{\prime}$ and $(i, j) \in g_{t-1}$. Therefore,

$$
\begin{equation*}
\eta_{s}^{l, k}\left(g p_{t}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{s}^{l, k}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)-I_{\left\{m_{i}=l, m_{j}=k\right\}}, \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{d}^{l, k}\left(g p_{t} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{d}^{l, k}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)-I_{\left\{m_{i}=l, m_{j}=k\right\}} . \tag{31}
\end{equation*}
$$

Toggling any edge in $S^{l, k}\left(g_{t}^{\prime}\right) \cap S^{l, k}\left(g_{t-1}\right)$ would satisfy equations (30) and (31); since this logic holds for any $g \in c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}$ and $\left|S^{l, k}\left(g_{t}^{\prime}\right) \cap S^{l, k}\left(g_{t-1}\right)\right|$ is constant across $g \in c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}$,

$$
\begin{equation*}
f\left(c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}, c_{\eta\left(g p_{t} \mid g_{t-1}\right)}\right)=\eta_{d}^{m_{i}, m_{j}}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right) \tag{32}
\end{equation*}
$$

Case 2: $(i, j) \in g_{t}^{\prime}$ and $(i, j) \notin g_{t-1}$. Therefore,

$$
\begin{equation*}
\eta_{s}^{l, k}\left(g p_{t}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{s}^{l, k}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)-I_{\left\{m_{i}=l, m_{j}=k\right\}}, \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{d}^{l, k}\left(g p_{t} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{d}^{l, k}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right) \tag{34}
\end{equation*}
$$

Any edge from $S^{l, k}\left(g_{t}^{\prime}\right) / S^{l, k}\left(g_{t-1}\right)$ can be toggled to satisfy equations (33) and (34). Again, because this reasoning holds for any $g \in c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}$ and because $\left|S^{l, k}\left(g_{t}^{\prime}\right) / S^{l, k}\left(g_{t-1}\right)\right|$ is constant across $g \in c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}$,

$$
\begin{equation*}
f\left(c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}, c_{\eta\left(g p_{t} \mid g_{t-1}\right)}\right)=\eta_{s}^{m_{i}, m_{j}}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)-\eta_{d}^{m_{i}, m_{j}}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right) . \tag{35}
\end{equation*}
$$

Case 3: $(i, j) \notin g_{t}^{\prime}$ and $(i, j) \in g_{t-1}$. Therefore,

$$
\begin{equation*}
\eta_{s}^{l, k}\left(g p_{t}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{s}^{l, k}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)+I_{\left\{m_{i}=l, m_{j}=k\right\}}, \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{d}^{l, k}\left(g p_{t} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{d}^{l, k}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)+I_{\left\{m_{i}=l, m_{j}=k\right\}} . \tag{37}
\end{equation*}
$$

An edge from $S^{l, k}\left(g_{t-1}\right) / S^{l, k}\left(g_{t}^{\prime}\right)$ can be toggled to satisfy equations (36) and (37). Therefore,

$$
\begin{equation*}
f\left(c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}, c_{\eta\left(g p_{t} \mid g_{t-1}\right)}\right)=\eta_{s}^{m_{i}, m_{j}}\left(g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)-\eta_{d}^{m_{i}, m_{j}}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right) \tag{38}
\end{equation*}
$$

for similar reasons as the previous cases.
Case 4: $(i, j) \notin g_{t}^{\prime}$ and $(i, j) \notin g_{t-1}$. Therefore,

$$
\begin{equation*}
\eta_{s}^{l, k}\left(g p_{t}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{s}^{l, k}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)+I_{\left\{m_{i}=l, m_{j}=k\right\}} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{d}^{l, k}\left(g p_{t} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)=\eta_{d}^{l, k}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right) \tag{40}
\end{equation*}
$$

An edge from all possible edges connecting an m_{i} node to an m_{j} node that is not in $S^{l, k}\left(g_{t}^{\prime}\right) \cup S^{l, k}\left(g_{t-1}\right)$ can be toggled to satisfy equations (39) and (40). Therefore,
$f\left(c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}, c_{\eta\left(g p_{t} \mid g_{t-1}\right)}\right)=M_{m_{i}, m_{j}}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)-\left[\eta_{s}^{m_{i}, m_{j}}\left(g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)-\eta_{d}^{m_{i}, m_{j}}\left(g_{t}^{\prime} \mid g_{t-1}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)\right]$,
where

$$
M_{m_{i}, m_{j}}\left(g_{t}^{\prime}\right)= \begin{cases}{\left[\left(M_{m_{i}}\left(g_{t}^{\prime}\right) * M_{m_{j}}\left(g_{t}^{\prime}\right)\right)-\eta_{s}^{m_{i}, m_{j}}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right)\right]} & \text { if } \quad m_{i} \neq m_{j} \tag{42}\\ \binom{M_{m_{i}}\left(g_{t}^{\prime}\right)}{2}-\eta_{s}^{m_{i}, m_{j}}\left(g_{t}^{\prime}\right) * M_{m_{i}}\left(g_{t}^{\prime}\right) & \text { if } \quad m_{i}=m_{j}\end{cases}
$$

for similar reasons as the previous cases. The calculations for $f\left(c_{\eta\left(g p_{t} \mid g_{t-1}\right)}, c_{\eta\left(g_{t^{\prime} \mid} \mid g_{t-1}\right)}\right)$ are similar to $f\left(c_{\eta\left(g_{t}^{\prime} \mid g_{t-1}\right)}, c_{\eta\left(g p_{t} \mid g_{t-1}\right)}\right)$.

