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S1 Materials and methods

S1.1 Sample networks and network feature extraction

In this study, we have used three data sets: call detail records (CDR), tumor gene expres-
sions, and a variety of benchmark social network data. Below we describe the sources
of these data sets and the processes used to construct networks from these data sets.
Feature-based classification is a two-step procedure, regardless of the application. First, we
identify and calculate a set of contextually important network features for each network as
described below. Second, we split the data into training and testing sets and then feed the
features into the classifier of choice. For a detailed schematic, see Fig. S1.

S1.1.1 Call activity social networks

For the social network setting we use the call detail record (CDR) data from the first,
second, and fourth quarter of the year 2014 from a European country’s leading telecom
operator, which at the time the data were collected had a 57% market share. In these
networks, undirected edges are placed between any two individuals who communicated
with one another either via phone calls or text messages on the given day. We use different
features of network structure and properties of network nodes to classify the networks into

∗ These authors contributed equally.
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Fig. S1. A schematic illustrating the steps in our network classification approach. Here {Gi}
represents a collection of networks with known class labels, xi j is the jth feature of the ith network,
and Xi = [xi j]

T is the (column) feature vector corresponding to the ith network. In principle one
can use any of several different classifiers, such as principal component analysis (PCA), k-means
clustering, k-nearest neighbor, and random forests.

days of the week and, more generally, into weekday (Monday through Friday) vs. weekend
(Saturday and Sunday) networks. Given the natural weekly periodicity in human behavior,
we would expect the structure of these networks to reflect changes in the day-by-day social
activity and communication patterns. We denote the number of days in the training set
with N. Let Xi = [xi1, . . . ,xip]

T be the p features of the network corresponding to the ith
day. National holidays were removed from the analysis because of likely anomalous social
behavior on those days.

For each day, the daily call network is constructed by assigning an edge between any
two individuals who are in contact by phone on that day. For each day’s network, a vari-
ety of network features are extracted: the network size (excluding all nodes with degree
0), average clustering coefficient, degree assortativity, fraction of nodes that are female,
fraction of edges that are male-female, average age difference over all edge pairs, the
fraction of edge pairs from the same zip code, the first four principal components from the
degree distribution, and the first four principal components from the clustering coefficient
distribution. These features are then used in the selected classifiers to predict whether
or not a social / communication network corresponds to a weekend or a weekday, or in
the 7-day classifier to a specific day of the week. Table S1 lists all features used in the
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weekday/weekend classification. A visualization of the classification results are presented
in Fig. 1, with feature importance of the random forest model in Fig. S2.

As indicated above, the features used for classification tasks in the CDR data also
includes the four principal components of the degree distribution and of the distribution
of the local clustering coefficient. That is, after extracting the daily networks, we compute
the distribution of degree Pi(k j) and local clustering coefficient Pi(C j) for each network,
indexed by i for the day and j for the bin in the respective histogram. For each day, Pi(k j)

and Pi(C j) distributions includes 80 bins and 20 bins respectively, where k j ∈ [0,80] and
C j ∈ [0,1]. There were only few nodes with degree higher than 80, these were removed
from the degree distribution to avoid long strings of zeros in the distribution. In place of
using the complete set of Pi(k j) (length 80) and Pi(C j) (length 20) values as features, we
reduce the dimensions (length) using principal component analysis (PCA). Specifically,
we treat Pi(k j) and Pi(C j) as the input matrices for the PCA and then compute the first
four principal components. Table S1 lists the four principal components as DegPC1-4 and
ClusPC1-4 while Fig. S3 (a) and (b) plots their values. For comparison, in Fig. S3 (c) we
show the first four principal components of the whole feature set used in the classification
of CDR data (see Table S1 for the list). We observe in Fig. S3 (a-c) that plots of the
first principal components (pc1) vs. the second principal components (pc2) distinguishes
weekend days and weekdays very well. The first four principal components describe 62%
(degree distribution), 90% (local clustering coefficient) and 96% (combined features) of
the variances in the respective distributions.

Fig. S2. (a) Feature importance in the weekend-weekday classification random forest: Feature
importance is calculated from the mean decrease in tree leaf impurity over the full random forest
as measured by the Gini index. Percentages are the decrease in impurity for each feature, scaled so
they sum to 100%. Three redundant features are not displayed due to their strong correlation with the
NumNodes feature. (b) KNN day-of-week classification: Each set of bars represents accuracy over
multiple realizations of the seven days of the week and the combined accuracy over seven days (grey
bars), using a single indicated feature. The last block, highlighted in grey, represents accuracy using
all selected features. The green line represents the null rate of classification. (c) KNN weekend-
weekday classification: Bars represent accuracy of classifying weekdays and weekend days using
the indicated features. The green line again represents the null rate.

S1.1.2 Biological networks

Tumor gene expression data was downloaded from The Cancer Genome Atlas for 1217
patients with cancer of the lung (lung adenocarcinoma), brain (glioblastoma multiforme),
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or ovary (ovarian serous cystadenocarcinoma). For each sample we reconstructed a bi-
partite network with edge weights corresponding to the strength of regulation between a
transcription factor and a gene, across 10,903 genes and 113 transcription factors (Kuijjer
et al., 2015). Given that gene expression levels would be expected to differ by tumor
site, we would expect the properties of the bipartite regulatory networks to vary from
site to site. In this setting, N = 547 is the number of individuals in the training set and
Xi = [xi1, . . . ,xip]

T represent the p features of the ith sample, or individual.
For simplicity, we threshold edge weights in the bipartite network. For each edge, only

the top q% of edge weights across all 1217 networks are declared to be edges, where q ∈
[0,100] is the chosen threshold. In other words, for each possible edge, only the networks
with edge weights in the top 1217∗ (1−q) will be represented as an edge. A large q leads
to sparse networks whereas small q leads to dense networks. We use q = 95 but to test the
sensitivity to q we repeat the analysis using a variety of thresholds.

After the bipartite networks are constructed for each sample, each network is projected
onto two unipartite sets, giving gene-gene networks and transcription factor - transcrip-
tion factor networks. Projection edge weights are defined by the matrix product of the
bipartite adjacency matrix with its transpose. Selected features are then extracted from all
three network representations. On the bipartite networks, we use average degree, average
bipartite clustering coefficient, the mean and variance of node redundancy, and the mean
and variance of node closeness centrality. On the unipartite projections, we use the average
degree, the number of triangles, average clustering coefficient, and degree assortativity.
These features are used to predict what type of cancer tumor the sample was taken from
in the remaining 546 samples in the test set. Table S1 lists all features used in the tumor
classification.

S1.1.3 Benchmark online and acting social networks

We also compare our approach to six benchmark social network classification tasks pre-
viously considered in the literature (Niepert et al., 2016). The online forum Reddit con-
tains many discussion threads about assorted topics. Social networks were constructed for
each thread by considering users as nodes and by placing an undirected edge between
two users when one had responded to the other in that thread. Some subreddits have
more specialized topics. The REDDIT-BINARY data set is used to classify threads as
either belonging to a question/answer-based subreddit or a discussion-based subreddit.
The REDDIT-MULTI-5K data set contains 5,000 thread networks across five different
subreddits and the REDDIT-MULTI-12K data set contains 12,000 thread networks from
eleven different subreddits. In both data sets, the aim is to classify a thread into its correct
subreddit.

COLLAB is a scientific-collaboration data set, where ego-based networks of researchers
from three different fields are constructed with edges to other researchers the ego has
collaborated with. The goal is to classify these ego-networks into their correct field.

The IMDB-BINARY data set constructs ego-based networks around every actor where
edges are formed between actors that appear in the same movie together. Networks are
constructed for two genres, Action and Romance (ignoring any movie in the union of the
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Fig. S3. Principal Component Analysis (PCA) of the CDR data. (a) The first four PCA
components for local clustering coefficient distributions of daily networks. (b) The first four PCA
components for degree distributions of daily networks. (c) The first four PCA components for feature
vectors constructed from features listed in Table S1.
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Feature label Feature name

NumNodes Number of nodes

NumEdges Number of edges

NumTri Number of triangles

ClustCoef Global clustering coefficient

DegAssort Degree assortativity coefficient(Newman, 2003)

AvgDeg Average degree

FracF Fraction of nodes that are female

FracMF Fraction of edges that are male-female

AvgAgeDif Average age difference (absolute value) over edges

FracSameZip Fraction of edges that share the same ZIP code

DegPC1-4 Principal components of degree distribution

ClusPC1-4 Principal components of clustering distribution

Table S1. Description of feature labels for weekday/weekend classification. A more
detailed description for the feature labels used in Fig. 1, S2, S3 (c) and S4. This includes
some redundant features such as NumTri, NumEdges, and DegPC1, all of which are
strongly correlated (ρ > 0.9) with NumNodes.

two), with the aim of classifying each ego-network into the correct genre. The IMDB-
MULTI data set is similar, but considers three genres, Comedy, Romance, and Sci-Fi.

These six benchmark data sets were previously used to test the classification perfor-
mance of two graph kernel approaches, Graph Kernels (GK) and Deep Graph Kernels
(DGK) (Yanardag & Vishwanathan, 2015), and an approach using convolutional neural
networks (PSCN) (Niepert et al., 2016). We compare our approach with the GK, DGK
and PSCN results reported in Niepert et al. (2016). For each network, we extracted six
features to use in our classification: number of nodes, number of edges, average degree,
degree assortativity, number of triangles, and the global clustering coefficient. Following
the reporting of results in Niepert et al. (2016), the accuracy of each of our classifiers was
evaluated using 10-fold cross validation.
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S1.2 Data driven network classification

S1.2.1 Spatial classifiers: KNN and K-means

For the KNN classifier, we start with a training set T containing the feature vectors Xi =

[xi1, . . . ,xip]
T , where p is the number of features in the ith sample. Each feature vector Xi in

T is preassigned a known class Yi ∈ {1, . . . ,c}. These classes could be days of the week as
in CDR data set or disease sites as in the cancer data set. We find the k-nearest neighbors
of a new feature vector X j in the prediction set P using Euclidean distance d(Xi,X j) =√

∑
l=p
l=1(xil− x jl)2 and classify it into the Yj class, Yj ∈ {1, . . . ,c} by the majority vote

among the k-nearest neighbors.
In contrast, k-means clustering provides an unsupervised classification system, wherein

one partitions the complete set of feature vectors {Xi}N
i=1 into a set C = {C1,C2, . . . ,Ck} of

k≤ N clusters. These clusters are found by minimizing the square of the distance from the
data points X j to the center of a cluster i.e., solving

arg minCi

k

∑
i=1

∑
X j∈Ci

(||X j−µi||)2,

where µi, i = 1, . . . ,k is the position of cluster Ci. After this clustering, available known
classification properties within each cluster can be assessed by various measures. Fig. S4
shows an output of the k-means clustering for the CDR data, classifying Saturdays, Sun-
days and the weekdays.

We refer the reader to Friedman et al. (2001) for a far more complete description of
different methods for classifying and assessing classifications.

S1.2.2 Random forest classifier

With p features extracted, classification trees (Friedman et al., 2001) can be used to identify
the subset of features that are important in distinguishing classes of networks (i.e. weekend
days from weekdays). To begin construction of a tree, the data is split into the two groups
that best separate the classes. Specifically, let

R1( j,s) = {Xi : xi j < s} and R2( j,s) = {Xi : xi j ≥ s} (1)

be the regions that separate the data into two groups. Consider, for example, the classifica-
tion of CDR social networks into weekend days and weekdays. Letting p̂k be the fraction of
data points in region Rk that are weekdays, the regions that best separate the weekend days
from the weekdays are determined by minimizing p̂1(1− p̂1)+ p̂2(1− p̂2) with respect to
j and s. The p̂k(1− p̂k) function here is known as the Gini index, penalizing the kth region
if p̂k is far from 0 or 1, as this indicates that the region does not separate the weekdays
from weekend days very well. The minimization of the Gini index only considers each
individual branch of the classification tree at a time.

This process is repeated on the two resulting branches. This is repeated further until the
data has been split too many times and there is only one data point in one of the branches,
at which point the splitting on that branch terminates. For the minimization occuring at
each branching, the random forest approach is as described above except we only consider
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Public Holidays

01 January 2013: New Year's day (*)
28 March 2013: Maundy Thursday (+)
29 March 2013: Good Friday (+)
31 March 2013: Easter (+)
01 April 2013: Easter Monday (+)
01 May 2013: Labour Day (*)

09 May 2013: Ascension Day (+)
17 May 2013: Norway National Holiday (*)

19 May 2013: Whitsun (+)
20 May 2013: Whit Monday (+)
25 December 2013: Christmas (+)
26 December 2013: St. Stephen's Day (+)

+  Religious Holidays
*  Non-Religious Holidays

+

*

+

+

*

+

30
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+

31

*

+
29

30

31

+

+

January February March

April May June

October November December

k-means cluster 1

k-means cluster 2

k-means cluster 3

Cluster 1 Cluster 2 Cluster 3
Mo  94.4%   0.0%   5.6%
Tu  97.4%   0.0%   2.6%
We  97.3%   0.0%   2.7%
Th 100.0%   0.0%   0.0%
Fr  97.3%   0.0%   2.7%
Sa   0.0%   5.3%  94.7%
Su   0.0% 100.0%   0.0%

Fig. S4. Classification of days from daily call record data using k-means clustering. The feature
vector in this case was composed of features listed in Table S1. Holidays were removed from the
data prior to running the classification routine.

a random subset m ≤ p of the features (we use m = 4 ≈ √p) while also bootstrapping
the data at each branching. This introduces randomness into the tree building process, and
B = 10,000 such random classification trees are built. In order to classify a new data point,
x, let Ĉb(x) be the class prediction of the bth random forest tree. The classification of x is
determined to be the majority vote over all {Ĉb(x)}B

1 .
To apply this procedure to more than two outcomes (seven day classification as opposed

to weekend versus weekday), the procedure is similar except the Gini index becomes
∑

7
k=1 p̂rk(1− p̂rk) where p̂rk represents the proportion of data points in region r that repre-

sent day of the week k. The classification tree is built using odd days over all three available
quarters, and the model is tested on the even days.

This same approach can applied to the biological network context to predict tumor
type. For tumor type we consider three possible outcomes: brain, lung, and ovary. In our
implementation, p is the same so again we use m = 4≈√p.
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S2 Further exploration of CDR data set

In this section, we discuss further details of the CDR data. We analyze some of the struc-
tural properties of the extracted networks and discuss network sampling.

S2.1 Degree Distribution

To further identify differences between the days of the week, we have estimated the degree
distributions p(k) for individual days, fitting them to lognormal distributions:

p(k) =
1

kσ
√

2π
e
−(lnk−µ)2

2σ2 . (2)

Table S2 provides the values of the fitted parameters and their estimated confidence inter-
vals, whereas in Fig. S5 we have plotted the empirical and fitted degree distributions. In
particular, we observe in Fig. S5 that weekends appear to have distinct distributions from
the weekdays. The parameters of the fitted distributions are similarly distinct for weekdays
compared to weekends (see Table S2).

S2.2 Distribution of Age and Clustering

Age plays a significant role in the way people use mobile phones, hence we might expect
that communication patterns are influenced by user age. Average age difference across
communication ties emerged as an important feature for the CDR data set (see Fig. S2). In
Fig. S6, we plot the distribution of age in the data and the corresponding average clustering
in the network corresponding to a particular age group. One of the striking features here is
that weekend and weekday networks show distinct patterns for average clustering versus
age. We also observe rather higher clustering for ages below 20, probably implying that
these users interact within small tightly knit local network neighborhoods. In addition,
most communication occurs between individuals of similar age, while there also appears
to be a generational gap in high frequency communication between people approximately
25 years apart (see Fig. S7), which likely reflects parent-child communication.

S2.3 Network sampling

The accuracies obtained above and in the main text are due, in no small part, to the large
quantity of available data. However, in many scenarios the study design does not allow
the luxury of the full network from such a massive sample size. In this case, one must
use a subsample of the network. To investigate the effect of network subsampling on
predictive power, we compare the performance of two subsampling procedures, sampling
on geography and snowball sampling. Sampling on geography (via ZIP codes) selects
a subset of individuals who live in close proximity to one another, whereas snowball
sampling starts with a seed node in the network and branches out from that node following
its edges, going several edges away from the seed node, recruiting the nodes along the path
to the sample.
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Fig. S5. Degree distribution for each day of the week. Thick lines are fitted distributions given by
Eq. 2, with values of the fitted parameters given in Table S2.

Day µ σ p-value

Monday 1.794 ± 0.004 0.693 ± 0.003 0.656
Tuesday 1.885 ± 0.004 0.710 ± 0.003 0.449
Wednesday1.860 ± 0.004 0.710 ± 0.003 0.989
Thursday 1.853 ± 0.004 0.708 ± 0.003 0.811
Friday 1.851 ± 0.004 0.702 ± 0.003 0.709
Saturday 1.650 ± 0.004 0.603 ± 0.003 0.360
Sunday 1.636 ± 0.004 0.613 ± 0.003 0.498

Table S2. Values of fitted log-normal parameters and 95% confidence intervals. The
confidence intervals were constructed assuming the asymptotic normality of the maximum
likelihood estimate. The p-values are obtained employing two-sample Kolmogorov-
Smirnov tests under the null hypothesis that the fitted distribution and the sample
distribution are the same continuous distribution. The test indicates that the fitted and
sample distributions can not be statistically distinguished from one another.
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Fig. S6. Distribution of age and average clustering. Here we consider three networks, one built
from the whole data set across the three quarters of the year (whole network), one built across the
data set but limited to week days (weekdays network), and finally one built across the data set but
limited to weekends (weekends network). The grey histogram gives the distribution of age in the
CDR data set. Blue dots are the average local clustering coefficients for nodes with the given age for
the whole network data, whereas green squares and red diamonds represent the average clustering
coefficients for the weekday and weekend networks, respectively.

We fit the following model:

1
MRi +δ

= β0 +β1Xi +β2ZiXi + εi (3)

where MRi is the misclassification rate based the ith subsample, Xi is the average daily
network size (number of nodes) based on the ith subsample, Zi is an indicator for if the ith
observation was based on a ZIP code subsample, δ = 0.01 is a shift used to avoid division
by 0, and E[εi] = 0 with Var(εi) = σ2

i . In addition, we force β0 = (5/7+ δ )−1 to reflect
the fact that when sample size is 0 the misclassification rate is 5/7 (corresponding to the
classifier that predicts every day to be a weekday). Due to strong heteroskedastic errors in
this model and a strong presence of outliers, model (3) is fit using least-absolute-deviations
regression (Barrodale & Roberts, 1973). We test for a difference in the misclassification
rates when comparing snowball to ZIP code sampling. This test corresponds to the hy-
potheses H0 : β2 = 0 and HA : β2 6= 0. To perform inference on β̂2 we simulate the null
distribution of β̂2 by permuting sampling-type labels (Zi). Due to ZIP code and snowball
samples having different distributions in average network size (ZIP code samples tend to be
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Fig. S7. Frequency of communication between age groups. The full social network from the
combined Q1, Q2, and Q4 of 2013 is used to count the number of age-age network edges. High
frequency age-age connections are dark red, with less common age-age pairings in light red. The
dark diagonal corresponds to communications within the same age group. The red intensity of the
(i, j) cell is (xi j/maxi j xi j)

4 where xi j is the total number of edges people of age i share with people
of age j.

larger), we put observations in bins of width 20 and permute Zi labels only on observations
within each bin. This preserves the distribution of average network size amongst both types
of sampling procedures.

The misclassification rate of the weekend/weekday random forest classifier for all con-
sidered snowball and ZIP code subsamples are displayed in Fig. S8. After fitting model
(3), which relates network size and subsampling procedure to misclassification rate, we
found that β̂2 = −0.03. This implies that when holding the network size fixed, the slope
of the expected misclassification rate on the inverse scale is −0.03 lower for ZIP code
sampling than it is for snowball sampling. This change in slope is significant (p-value =

6.5 ·10−5), implying that, on average, snowball sampling yields networks that have features
that inform classification of weekends and weekdays better than those from ZIP code
samples of equivalent sample size.
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There is a clear tendency for the ZIP code subsamples to have higher misclassification
rates relative to the size of the subsample than is the case for snowball subsamples. A
large part of the reason for this greater misclassification in ZIP code subsamples could
be because the feature measuring the fraction of ties that are within the same ZIP code
holds no meaning for ZIP code subsamples (trivially the fraction is always one). As seen
in Fig. S2, this feature is vitally important to classification of weekends from weekdays, so
ZIP code subsamples suffer without it.

To perform a snowball sample based on a given day’s network, a random seed node
is selected and all nodes within a distance of 4 are included in the subsample. This is
repeated for each day in the data set as well as for radii of 5 and 6. In each case, if the
resulting network has fewer than 50 nodes, a new random seed node is selected until the
subsample of sufficient size is acquired. ZIP code subsamples include all individuals from
the same ZIP code regardless of their social connections. Each ZIP code in the country
matching with at least 50 active customers in the data set was used as a separate subsample.
Altogether there were 247 snowball subsamples and 293 ZIP code subsamples included in
the analysis. The same binary random forest classification procedure was replicated for
each subsample as was performed on the full data set, and the resulting misclassification
rates for each subsample were recorded.
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Fig. S8. Misclassification rates of classifiers built on network subsamples. Each point represents
a random forest classifier built from a subsample of the full network. Networks are constructed
on a daily basis. The inverse-transformed misclassification rate is used to fit the regression model.
Snowball samples with radii 4, 5, and 6 are included. Each subsampled network has varying network
size on any given day because the networks are constructed using edge lists, so if a node in the
original subsampled network has degree 0 on a particular day, then that node will not appear in that
day’s network. A smooth is fit to each point cloud, one for snowball subsamples and one for ZIP
code subsamples.


