
Resilience of Single-Layer and Multiplex Networks
Following Sudden Changes to Tie Costs

SI APPENDIX

Paul E. Smaldino∗

Cognitive and Information Sciences, University of California, Merced

Raissa D’Souza
Department of Computer Science and Department of Mechanical and Aerospace Engineering,

University of California, Davis

Zeev Maoz
Department of Political Science, University of California, Davis

I. EXPLORATION OF ISOLATED EFFECTS

A. Isolated effects: Triangle benefits only

We first examine single-layer networks (for which no
spillover is possible) in which there are additional bene-
fits to closed triangles. Network statistics are presented
in Fig. 1. Under low costs, many triangles form, and the
average degree of the network increases as triangles are
incentivized more (Fig. 1A). This is because closed trian-
gles scaffold the creation of addition triangles by provid-
ing affordances (e.g., new two-stars), forming a cascade.
Such a cascade does not go on indefinitely, however. The
costs of ties can set a practical limit, especially when
each new edge must yield an increase in utility. The HL
condition closely tracks the LL condition, because both
conditions result from dynamics under low tie costs.

For values of d below a critical threshold, the LH con-
dition tracks the HH condition. This is because the shock
in which tie costs increase causes agents to drop ties, and
triangles cannot be maintained. Past the critical thresh-
old (d = 0.8 in our runs), some amount of resilience oc-
curs. Some nodes are dropped, but the network is denser
than networks that began with high tie costs. This first
threshold is when the benefit of a closed triangle can
offset the higher tie cost, so that a node in a closed tri-
angle need not drop any ties. Past a second threshold
(d = 1.2 in our runs), when the benefits to closed trian-
gles are high enough, networks in the LH condition are
indistinguishable from networks in the LL condition. See
below for a derivation of these thresholds. Examining
the average clustering of the network mirrors this finding
(Fig. 1B). When triangles are incentivized and tie costs
permit their closure, clustering maximizes fairly rapidly.
Fig. 2 illustrates the types of network structures that
emerge under each shock condition and varying benefits
to closed triangles. Examining the average node util-
ity at equilibrium, we also observe that resilience allows
post-shock LH nodes to maintain higher utility even after
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costs increase than they would if costs had always been
high.

B. Isolated effects: Spillover benefits only

We next consider a two-layer multiplex (and will do
so for all subsequently presented results). Like incen-
tives for closed triangles in a single-layer network, incen-
tives for spillover ties provide a minimal model of struc-
tural entrenchment in a multiplex network. In general,
we see a similar pattern of resilience for spillover as we
did for triangles (Fig. 3). Unlike with triangles, however,
the average degree under low tie costs does not continue
to increase with the benefit to spillover ties (Fig. 3A).
Rather, it plateaus. This is because spillover ties do not
scaffold the creation of additional spillover ties, as clos-
ing triangles does. In other words, the existence of a
spillover tie does not provide new opportunities for ad-
ditional spillover ties. The critical threshold for some
resilience in the LH condition is the same for spillover as
for triangles, which is unsurprising when the benefit of
a spillover tie can prevent a node from needing to drop
a tie due to increased costs. Unlike with triangles, the
network is not fully resilient until a much higher spillover
benefit has been reached as compared with the triangle
case (e = 2 in our runs). This is because each tie can only
confer one unit of spillover benefit, whereas a single tie
can be part of many triangles. See below for derivation
of critical thresholds.

Past the first critical threshold, the average degree of
the HL condition is slightly lower than for the LL condi-
tion. This is because all ties will be spillover ties under
high costs and large e. This ends up making it more dif-
ficult for some nodes to find partners who would accept
their offer to form a tie. The reason is that fewer would-
be partners stand to increase their utility from adding a
tie. Interestingly, the average utility received by a node
at equilibrium in the LH condition is not any higher than
that of a node in the HH condition. That is, nodes who
end up in a high-cost environment experience no benefits
nor costs, in the short run, on the basis of whether tie
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FIG. 1. Isolated effects: triangle benefits only (e = 0). (A–C) Average results for each of four shock conditions on a 40-node
network. (A) Average node degree ± SD, (B) Average node clustering ± SD, (C) Average node utility at equilibrium ± SE,
(D) Average resilience for LH condition, showing insensitivity to network size.

costs were initially high or low. This contrasts the case
where we examine variations in triangle benefits. The
difference is due to the fact that the benefit of additional
spillover ties is compensated by the higher costs of more
ties.

The network structures that emerge from spillover in-
centives are quite different from those that emerge from
triangle incentives (Fig. 4). Under low tie costs, incen-
tives for triangles created several tightly clustered but
completely discrete communities. Incentives for spillover,
on the other hand, tends to create fully connected graphs
that exhibit low levels of triadic closure (Fig. 3B). This
structure is not fully recovered in the LH shock condition.
Rather, an intermediate structure emerges composed of
several isolated chains or circles.

II. EXPLANATION OF TRANSITION POINTS

A. When resilience begins.

Here we derive conditions for when, on average, kLH >
kHH . We consider only the isolated effects conditions for
clarity. In addition, we focus on a minimal type of re-
silience observed in our simulations: when two or more
edges are not possible under high tie costs but are present
following a shock to high costs from initially low tie costs.

Different types of resilience for different degree thresholds
are also possible, as shown in later sections of this Ap-
pendix.

First, let us condition only triangle benefits (e = 0) un-
der a single-layer network. Figure 5 indicates the thresh-
old parameter values for additional ties. We see that
under low tie costs, there is always the incentive to have
at least two social ties, while under high costs, only one
tie is incentivized. Under low tie costs, the utility for
two and three ties is identical, and so adding a third tie
only occurs if d > 0, which is what we observed (main
text, Fig. 2). When tie costs increase from low to high,
we see that the triangle benefits must be quite high to
maintain three ties, unless the individual node already
has three triangles. Thus, there is often a reduction from
four or three ties to two. However, two ties can be stable
as long as d ≥ 0.8 and the agent is in a closed trian-
gle, because only when it is below this threshold is there
a strict increase in agent utility from dropping an edge.
More generally, this minimal level of resilience between
two and one network ties will be seen when the following
two conditions are met: (1) a second edge will never be
added de novo under high tie costs but will always be
favored under low tie costs, and (2) the benefit to trian-
gles ensures that, if a closed triangle exists, dropping an
edge, and hence losing the triangle, will not be favored
under either ties cost level.
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FIG. 2. Isolated effects: triangle benefits only (e = 0). Representative single-layer networks that emerge as a result of varying
incentives for closed triangles, d. Unconnected nodes do occasionally occur but are not represented in these plots.

Condition 1 is met when

1− clow < 2− 4clow,

or when clow < 1/3, and, correspondingly, chigh ≥ 1/3.
Condition 2 is met when

d ≥ 3chigh − 1.

Under the value we used, chigh, the threshold value of d is
0.8, which is exactly what we observed in our simulations.

The logic of this analysis is easily extended to the case
of spillover benefits only (d = 0, e > 0), although there
are are a greater number of relevant ego networks, mak-
ing the transition diagram quite complicated. See Figure
6. The presence of a spillover benefit for either of a node’s
ties allows a second tie to be maintained after a shock
from low to high tie costs. This logic also explains the
diagonal threshold line seen in Figure 4B (main text) in
the LH shock condition. The resiliency effects of triangle
and spillover benefits are additive, such that if an agent

possesses both a spillover edge and a closed triangle, it
is resilient to shocks as long as the total d+ e is greater
than the threshold, which in this case is 0.8.

B. When resilience is perfect.

When does kLH = kLL? In our simulations, we observe
that, when triangle or spillover benefits are sufficiently
large, resilience is perfect, and the average degree of the
network does not diminish when a network formed under
low tie costs experiences a sudden increase to tie costs.
What this means is that the incentives are such that a
stable state reached under low tie costs will not become
unstable when tie costs are suddenly made high.

This is most easily illustrated by considering the case
of spillover benefits only (d = 0; see Figure 6). Under
low tie costs, nodes will often reach degree 4 (Note that
this is the average degree for Layer 1 only. When the
layers have the same incentives, network statistics are
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FIG. 3. Isolated effects: spillover benefits only (d = 0). (A–C) Average results for each of four shock conditions on a 40-node
network. (A) Average node degree pm SD, (B) Average node clustering ± SD, (C) Average node utility at equilibrium ± SE,
(D) Average resilience for LH condition, showing insensitivity to network size. All but (C) are from Layer 1 only.

the same for both layers.). However, such a high degree
is unstable unless all edges are spillover edges. And be-
cause it is not always possible to increase the degree of
a node and increase the number of spillover edges simul-
taneously, degree 3 (and even degree 2) is the common
and stable network state for low tie costs (see main text
Figures 4 and 5). Although degree 3 is stable under low
tie costs, it is unstable after post-shock high tie costs
unless e ≥ 2.0, which is the threshold point for perfect
resilience. If e is less than this, a node’s degree will de-
crease to k = 2 if e ≥ 0.8 (partial resilience), and k = 1
otherwise (no resilience). This argument can be extended
for all shock-related network dynamics for any incentive
parameter values.

C. When complete spillover occurs in HH
condition.

Under constant high tie costs (HH condition), there is
a threshold value of the spillover benefit, e, above which
all ties are spillover ties (see Figure 8 in the main text).
For our simulations, this value is e > 0.8. Such a state
occurs when the cost of adding a new tie that completes a
spillover edge is favored, but subsequently dropping any
non-spillover ties is also favored. This is illustrated in
Figure 7.

III. PROBABILITY OF SPILLOVER PAIRS
FROM RANDOM PAIRING

Earlier in this Appendix, we calculated the threshold
transition parameter for when all ties will be spillover
ties. Before that, our simulations indicate that a smaller
number ties are spillover ties, except with e = 0, for
which spillover ties are rare. In such a case, spillover
ties are rare due to the fact that they will only occur
by chance, and the number occurring may be less than
expected in a purely random model due to high numbers
of isolated clusters that form when only triangle benefits
are present. In other cases, spillover ties follow a pattern
in which they are weakly incentivized, and therefore the
proportion corresponds to numbers higher than should
be expected by chance. What is this number?

We can calculate this for the special case in which each
node has degree of 1, which occurs under high tie costs.
Under random pairing, each node chooses the name node
as its neighbor in each layer with probability 1/(N − 1),
and this is equal to the expected proportion of edges
that will co-occur in both layers, i.e., the proportion of
spillover edges. For a 40-node network, as was used in
most simulations presented in the main text, this approx-
imately equal to 0.026.
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FIG. 4. Isolated effects: spillover benefits only (d = 0). Representative networks (Layer 1 only) that emerge as a result of
varying incentives for spillover ties, e. Unconnected nodes do occasionally occur but are not represented in these plots.

IV. EXPLANATION OF FIG. 4B IN THE MAIN
TEXT

Figure 4B, bottom row, in the main text shows a
curious result: the resilience of under HL shocks is
lower when structural benefits are significantly high—
specifically when d, e > 0.8. To explain this we note that
under such high structural incentives, many nodes will
form triangles even under high tie costs. Thus, when tie
costs are lowered, there are fewer new connections that
will be incentivized. Figure 8 provides an illustration of
how this can occur.

V. SUPPLEMENTAL SIMULATION RESULTS

A. Sensitivity to noise

When network dynamics exhibit resilience, post-shock
equilibria are metastable in LH conditions, befitting the

path-dependent nature of the equilibria (i.e., the net-
work states cannot be obtained from an empty network).
As such, random events—adding or dropping edges at
random—will eventually eliminate resilience, causing the
system to settle into a state resembling those obtained
under high initial tie costs. The key word here is eventu-
ally. To investigate the time scale of these dynamics, we
ran simulations in which adds and drops occurred with
probability ν (see details in main text). We found that
after shocks from low to high tie costs, the system moved
from the metastable (LH) higher-degree state to the sta-
ble (HH) low-degree state at a timescale that was approx-
imately t ∼ 1/ν. This was confirmed for ν ∈ [10−4, 10−1].
Our results therefore hold as long as most events are
strictly utility-increasing, relative to the characteristic
timescale of dynamics.
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FIG. 5. Individual utilities for triangle benefits only (e = 0), for different number of ties and triangles (∆), and utility-increasing
state transitions under LH shock conditions. Precise values are given for low tie costs, clow, and high tie costs, chigh, in blue and
red, respectively. Blue arrows indicate when adding (or dropping) an edge would result in a utility increase under low tie costs.
Red arrows indicate where dropping an edge would be incentivized under a post-shock tie-cost increase. Solid lines indicate a
move that is always favored (sometimes only when d > 0), dashed lines indicate moves dependent on the triangle benefit, d.
For the transition between 3 and 4 ties, only a subset of transition lines are shown for clarity. The remaining transitions can
be easily calculated with the values shown.

B. Sensitivity to population size

Our results were very robust to changes in population
size. This is largely because the numerical values of indi-
vidual incentives operated on the tie capacity of nodes,
independent of the size of the network. Larger network
created few shortages for social ties, and the so the aver-
age degree of agents tended to be slightly higher in larger
networks than in smaller networks, but this affect was
minimal (Figure 10). Average clustering was similarly
robust (Figure 11). For triangle benefits only, clustering
was slightly higher in very small networks, due to more
triangles forming through random chance as a result of
the small population. The same was true for the spillover
benefits only case. In this case, incentives tended to push
the network away from clustering. When network size
was very small, some additional clustering happened as

a result of change connections. This effect disappeared
for larger networks.

C. Sensitivity to tie costs

The results shown in the main text used parame-
ters chosen for maximal clarity. For example, when tie
costs were always high (HH condition), the equilibrium
degree was exactly one. However, the broader prin-
ciple of our results—namely, resilience from structural
entrenchment—should hold for a wide range of parame-
ters. To demonstrate this, we rand simulations for which
the “high” cost of social ties was sufficiently low to gen-
erate higher degree networks, and thus the possibility
of triangles. Figure 12 illustrates that, although the re-
silience effects are less stark, there are similar patterns
of resilience as seen with more extreme tie cost values.
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FIG. 6. All 34 possible ego networks (centered on the grey node) and corresponding utilities for spillover benefits only (d = 0).
Ties in layer 1 are indicated by solid blue lines, ties in layer 2 are indicated by dashed red lines. Utility values are given for
low tie costs (uL) and high tie costs (uH), based on the values for clow and chigh used in the main text. A transition diagram
for these networks under each cost and shock condition (LH, HL), similar to that shown in Figure 5, can be derived from these
states and corresponding utilities, though it will be considerably more complicated.



8

A
B

C

A
B

C

1

2

A
B

C

A
B

C

1

2

A
B

C

A
B

C

1

2

uA = 2(1 � c)

= 0.8

uA = 2 � 4c + 1 � c + e

= 3 � 5c + e

= e

uA = 2(1 � c) + e

= 0.8 + e

FIG. 7. The dynamics of spillover under high tie costs. Consider an agent A who has a tie with agent C in layer 1 and a tie
with agent B in layer 2 (top row).The agent can add a tie in one of the two layers to complete a spillover edge; in this case
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high tie costs, we observe a threshold value of e above which the average degree does not change (it remains k = 1), but for
which the proportion of spillover edges increases to unity. Below this threshold, there are still more spillover ties than expected
from random assortment, due to limited incentives to form spillover ties. Utilities calculated assume our simulation value of
chigh = 0.6.
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more quickly the system goes from the metastable LH condition (black line) to the stable HH condition (grey line).
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FIG. 10. Sensitivity to network size: average degree.
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FIG. 11. Sensitivity to network size: average clustering.
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FIG. 12. Average degree for all four shock conditions when chigh = 0.3 and clow = 0.2.


