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Supplementary Content 1:  

This content provides a more in-depth description of: (i) the impact of contact truncation on 

structural network properties; and (ii) the impact of network properties on spreading outcomes.  

The impact of contact truncation on structural network properties 

Degree distribution and assortativity. While the impact of FCD on the network degree 

distribution �� is almost always to reduce its mean and variance, its precise effect depends on 

both the first and second moment of the degree distribution and on the ratio of ��� to the mean 

degree ��. Loss of edges in high-variance networks may, however, be offset by degree- 

assortativity (Kossinets, 2006), often quantified by the Pearson correlation coefficient of degrees 

of connected nodes: � =
	
�(
���
��)

����
, where ��� is the fraction of all edges that join nodes of 

degree � and �, �� and �� are the fraction of edges that start and end, respectively, at nodes of 

degree � or �, respectively, and ��and ��are the standard deviations of distributions of �� and �� 

(Newman, 2003b). If the network is degree-disassortative, such as the scale-free Barabási-Albert 

network where ��~��� and 2 < γ < 3 (Barabási & Albert, 1999), then edges that might be 

censored by the adjacent high-degree node are less likely to also be censored by the adjacent 

low-degree node, and thus dropped entirely in the truncated network (Vázquez & Moreno, 2003). 

Degree-assortative, high-variance networks are thus likely to see the greatest change in ��; 

human contact networks are typically somewhat degree-assortative, and while communication 

contacts have fat-tailed degree distributions with high variance, physical contact networks are 

more degree-homogeneous (Onnela et al., 2007a; Onnela et al., 2007b; Salathé et al., 2010). The 

level of degree-assortativity in a network is not itself systematically affected by FCD, so long as 

edges are dropped without regard to the strength of each connection (Kossinets, 2006; Lee et al., 



2006). However, if individuals are more likely to report stronger connections, and ties between 

individuals of similar degree are more likely to be strong – which is suggested by the 

combination of findings that homophilous ties are more likely to be transitive (Louch, 2000; 

Marsden, 1987) and those with greater transitivity (Onnela et al., 2007b) tend to be stronger – 

then FCD might be expected to artificially inflate r. 

Clustering. Local clustering can be measured in at least two different ways: (i) Triadic 

clustering: the mean of local clustering coefficient #$, where #$ is the ratio of the number of ties 

present between all neighbors of node % and �$(�$ − 1)/2, the number of pairs of neighbors of % 

(Watts & Strogatz, 1998); (ii) Focal clustering: the level of global triadic closure, that is the ratio 

of triangles – where (), +), (), ,) and (+, ,) are all present – to paths of length two, i.e., if  

(), +) and (+, ,) exist, they form a path of length two (Newman, 2010). Clustering may also 

occur at higher levels of aggregation in the network, for example in the presence of network 

communities where, loosely speaking, the density of edges within a set of nodes belonging to a 

community is higher than the average density of edges across the whole graph (Fortunato, 2010; 

Porter et al., 2009). One way to quantify this community-level clustering is by modularity, 

- = ∑ (�// − �/0)/ , where �// is the proportion of edges in the network that connect nodes in 

community � to other nodes in community � and �/ is the proportion of ends of edges that are 

attached to nodes in community � (Newman, 2006). The value of modularity can be normalized 

using the degree distribution of the network as -1 = - 21 − ∑ 3�$�4 25⁄ 78(9$, 94)/ 25⁄ :⁄ , 5 is 

the number of edges in the network and 8(9$, 94) is equal to one if 9$ = 94 and zero otherwise. 

This normalization makes modularity values more readily comparable across networks 

(Newman, 2010). 



When truncation is unweighted, we expect FCD to reduce clustering at the triadic and 

community levels as it effectively results in random edge removal. When truncation is weighted, 

however, FCD might lead to an increase in clustering: if within-cluster edges are stronger than 

others, they are more likely to be preserved.  

Path lengths. In removing ties, unweighted FCD will reduce the fractional size of the largest 

connected component (LCC), ;<==, and will often increase the average path length between 

nodes of the LCC, ℓ<==, insofar as the increased length between some pairs of nodes due to loss 

of edges is not offset by reductions in length due to peripheral nodes being dropped altogether 

from the LCC. These results are seen asymptotically for random and power law graphs (Fernholz 

& Ramachandran, 2007), and via simulation of edge removal on empirical networks (Onnela et 

al., 2007a). If FCD is weighted, this second factor will be stronger, as peripherally (weakly) 

connected nodes are preferentially dropped from the LCC. In a network with a dense core, the 

;<== is likely to be better preserved in a degree-disassortative than in a degree-assortative 

network under FCD – due to the lower probability of ties within the core being dropped from 

both ends (Kossinets, 2006). This effect will be more pronounced if the ties within this core are 

also stronger than other ties, and thus more likely to be preserved.  

While the above discussion considers structurally shortest paths between pairs of nodes, random 

spreading processes rarely follow shortest paths between any two nodes % and ?. Because of this, 

the length of the shortest path between % and ? in a fully observed network typically 

underestimates the length of the path taken by a spreading process. Partial observation of the 

network, such as that induced by degree truncation, inflates the lengths of the observed shortest 

paths, but does of course not alter the length of the actual unobserved paths taken by the 

spreading process. For this reason, perhaps somewhat paradoxically, shortest paths inferred from 



partially observed networks can provide more accurate predictions of the path lengths taken by 

spreading processes than those based on fully observed networks (Onnela & Christakis, 2012). 

 

The impact of structural network properties on spreading processes 

Degree distribution and assortativity. In a network setting, @A can be viewed as the average 

number of edges through which an individual infects their neighbors across the whole period of 

their infectiousness, if all their neighbors are susceptible. The probability of infection for each 

node, B, can be conceptualized in terms of their degree and their neighbors’ infection statuses. In 

a degree-homogenous network, a degree infectivity epidemic will probabilistically take off if the 

infection probabilities across the degree distribution B(�) ≡ 〈�〉 ≥ 1, where 〈�〉 is the first 

moment (mean) of the degree distribution of all nodes in the network. In  degree-heterogeneous 

networks, the likelihood of epidemic take-off becomes a function of the first and second 

moments of the degree distribution (Pastor-Satorras & Vespignani, 2002), such that higher 

degree heterogeneity increases @A.Similarly, higher degree-assortativity increases the chances of 

epidemic take-off. The probabilistic threshold for epidemic take-off has a lower-bound of 〈�11〉, 

the average degree of nearest neighbors, which is also the driver of both degenerate results: 

〈�11〉 = 〈�〉 in a homogeneous network and 〈�11〉 → ∞ in an infinitely large scale-free network 

(Boguñá et al., 2003). This is intuitive, since the number of one’s neighbors bounds the number 

of infections one can generate. Degree-assortativity leads to faster take-off, but a lower attack 

rate, conditional on the number of nodes and ties within a network (Gupta et al., 1989). This 

result arises from a dense core of high-degree nodes in which infection is rapidly passed, in 

combination with longer paths to peripheral, low-degree nodes where chains of infection are 

more likely to die out. On scale-free networks, an epidemic will grow at a power law rate, such 



that early in the epidemic infection levels will be greater than is predicted by homogeneous 

models, in which growth rates are exponential (Vazquez, 2006). 

Clustering. The most straightforward effect of triadic clustering, for a given degree distribution, 

is to reduce the average number of infections each infected person causes. This reduction is due 

to newly-infected individuals having fewer susceptible neighbors: the contact who infected you 

is likely also have had the opportunity to infect your other contacts (Keeling, 2005; Miller, 2009; 

Molina & Stone, 2012). This does not strictly imply a lower @A, since @A refers to a completely 

susceptible population, however this phenomenon increases the epidemic threshold in the same 

manner that a fall in @A would (Molina & Stone, 2012). Similarly, the epidemic growth rate �A is 

somewhat slowed by this reduction in the proportion of susceptible alters (Eames, 2008). 

In many networks, e.g. Erdős–Rényi graphs (Erdős & Rényi, 1959), for a given network density, 

increased clustering also leads to a smaller ;<==, which necessarily reduces the maximum 

possible attack rate (Newman, 2003a). However, within the LCC clustering increases the density 

of the network (Serrano & Boguná, 2006), providing more local pathways from an infected to a 

susceptible individual. This reduces the protective effect of any alters who have recovered 

without infecting an ego, and thus some simulations have found clustering increases the attack 

rate I (Keeling, 2005; Newman, 2003a). 

Overall, cliques alone appear to have marginal effects on epidemic dynamics, however the 

processes which drive clique formation – such as homophily by nodal attributes or geographic 

proximity – lead to networks displaying clustering that also contain other topological features – 

such as degree-assortativity or heterogeneity – which do significantly affect epidemics, leading 

to processes on clustered networks looking very different from those on non-clustered ones 



(Badham & Stocker, 2010; Molina & Stone, 2012; Volz et al., 2011). Broader community 

structure in networks acts in much the same fashion as cliques, reducing �A due to limited 

capacity to pass infection from one community to the next (Salathé & Jones, 2010); although 

epidemics are unhindered, or even sped up, by inter-community ties when overlapping, rather 

than distinctly separated, communities are built into networks (Reid & Hurley, 2011). 
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Supplementary Table 1: Descriptive statistics for the calibrated network graphs (mean and interquartile range) 

A. Mean degree 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 8.39  [7.84 - 8.97]  7.21  [6.72 - 7.60]  5.54  [4.77 - 5.65]  3.90  [2.78 - 3.95] 
Synthetic networks:             

  Degree-Assortative r = 0.283 7.86  [7.86 - 7.86]  7.68  [7.67 - 7.68]  5.74  [5.72 - 5.76]  3.22  [3.20 - 3.24] 
r = 0.421 7.86  [7.86 - 7.86]  7.64  [7.63 - 7.65]  5.67  [5.65 - 5.69]  3.16  [3.13 - 3.18] 
r = 0.797 7.86  [7.86 - 7.86]  7.54  [7.53 - 7.55]  5.40  [5.38 - 5.42]  2.93  [2.91 - 2.95] 

  Triadic Clustering c = 0.249 7.75  [7.75 - 7.75]  7.40  [7.39 - 7.42]  5.56  [5.53 - 5.58]  3.12  [3.10 - 3.13] 
c = 0.284 7.75  [7.75 - 7.75]  7.39  [7.36 - 7.40]  5.55  [5.52 - 5.57]  3.19  [3.17 - 3.20] 
c = 0.353 7.75  [7.75 - 7.75]  7.31  [7.29 - 7.33]  5.51  [5.48 - 5.53]  3.32  [3.30 - 3.33] 

  Focal Clustering t = 0.163 7.95  [7.95 - 7.95]  6.84  [6.78 - 6.88]  4.49  [4.46 - 4.54]  2.57  [2.54 - 2.59] 
t = 0.249 7.95  [7.95 - 7.95]  6.29  [6.17 - 6.37]  4.07  [4.00 - 4.12]  2.32  [2.28 - 2.35] 
t = 0.326 7.95  [7.95 - 7.95]  5.84  [5.73 - 5.92]  3.76  [3.67 - 3.83]  2.15  [2.11 - 2.20] 

  Power-Law γ = 3 7.78  [7.66 - 7.83]  6.58  [6.50 - 6.63]  4.70  [4.66 - 4.74]  2.89  [2.87 - 2.91] 
γ = 2.5 7.40  [7.04 - 7.55]  6.22  [5.97 - 6.33]  4.60  [4.56 - 4.65]  2.91  [2.89 - 2.93] 
γ = 2 6.18  [5.89 - 6.46]  4.78  [4.44 - 5.02]  4.00  [3.51 - 4.18]  2.88  [2.85 - 2.91] 



B. Degree-assortativity 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.33  [0.30 - 0.37]  0.23  [0.20 - 0.25]  0.11  [0.09 - 0.13]  0.02  [-0.02 - 0.05] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 0.28  [0.28 - 0.28]  0.25  [0.25 - 0.26]  -0.02  [-0.03 - -0.01]  -0.19  [-0.20 - -0.18] 
r = 0.421 0.42  [0.42 - 0.42]  0.38  [0.37 - 0.38]  -0.00  [-0.01 - 0.01]  -0.19  [-0.20 - -0.17] 
r = 0.797 0.80  [0.80 - 0.80]  0.69  [0.68 - 0.69]  -0.00  [-0.02 - 0.01]  -0.20  [-0.21 - -0.18] 

  Triadic Clustering c = 0.249 -0.05  [-0.06 - -0.04]  -0.10  [-0.11 - -0.09]  -0.16  [-0.17 - -0.15]  -0.25  [-0.27 - -0.24] 
c = 0.284 -0.05  [-0.06 - -0.04]  -0.10  [-0.11 - -0.09]  -0.17  [-0.18 - -0.16]  -0.26  [-0.27 - -0.25] 
c = 0.353 -0.06  [-0.07 - -0.05]  -0.11  [-0.12 - -0.10]  -0.18  [-0.19 - -0.17]  -0.27  [-0.28 - -0.26] 

  Focal Clustering t = 0.163 0.26  [0.23 - 0.29]  0.11  [0.09 - 0.12]  -0.07  [-0.08 - -0.06]  -0.18  [-0.20 - -0.17] 
t = 0.249 0.50  [0.46 - 0.55]  0.12  [0.11 - 0.14]  -0.10  [-0.11 - -0.08]  -0.20  [-0.22 - -0.19] 
t = 0.326 0.68  [0.65 - 0.72]  0.08  [0.07 - 0.10]  -0.14  [-0.15 - -0.13]  -0.23  [-0.25 - -0.21] 

  Power-Law γ = 3 -0.04  [-0.06 - -0.03]  -0.11  [-0.13 - -0.09]  -0.12  [-0.15 - -0.10]  -0.14  [-0.18 - -0.10] 
γ = 2.5 -0.10  [-0.13 - -0.08]  -0.14  [-0.16 - -0.12]  -0.14  [-0.16 - -0.11]  -0.14  [-0.16 - -0.12] 
γ = 2 -0.22  [-0.24 - -0.20]  -0.24  [-0.26 - -0.21]  -0.23  [-0.26 - -0.21]  -0.22  [-0.25 - -0.20] 

 

  



C. Modularity 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.79  [0.77 - 0.82]  0.81  [0.79 - 0.84]  0.84  [0.82 - 0.86]  0.87  [0.84 - 0.90] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 0.29  [0.29 - 0.29]  0.30  [0.30 - 0.30]  0.40  [0.40 - 0.41]  0.66  [0.65 - 0.66] 
r = 0.421 0.28  [0.28 - 0.29]  0.30  [0.30 - 0.30]  0.41  [0.40 - 0.41]  0.66  [0.66 - 0.67] 
r = 0.797 0.28  [0.28 - 0.28]  0.30  [0.30 - 0.30]  0.44  [0.43 - 0.45]  0.71  [0.71 - 0.72] 

  Triadic Clustering c = 0.249 0.46  [0.45 - 0.46]  0.46  [0.45 - 0.46]  0.48  [0.48 - 0.49]  0.68  [0.67 - 0.68] 
c = 0.284 0.47  [0.47 - 0.48]  0.47  [0.47 - 0.48]  0.49  [0.49 - 0.50]  0.67  [0.67 - 0.68] 
c = 0.353 0.50  [0.49 - 0.50]  0.50  [0.49 - 0.50]  0.52  [0.51 - 0.52]  0.66  [0.66 - 0.67] 

  Focal Clustering t = 0.163 0.66  [0.65 - 0.67]  0.62  [0.61 - 0.63]  0.60  [0.59 - 0.60]  0.76  [0.76 - 0.77] 
t = 0.249 0.82  [0.81 - 0.83]  0.78  [0.77 - 0.79]  0.72  [0.72 - 0.74]  0.81  [0.81 - 0.82] 
t = 0.326 0.90  [0.89 - 0.91]  0.87  [0.86 - 0.89]  0.83  [0.81 - 0.84]  0.86  [0.85 - 0.87] 

  Power-Law γ = 3 0.36  [0.36 - 0.36]  0.32  [0.31 - 0.32]  0.43  [0.43 - 0.44]  0.68  [0.67 - 0.69] 
γ = 2.5 0.36  [0.35 - 0.36]  0.34  [0.33 - 0.35]  0.45  [0.45 - 0.46]  0.68  [0.67 - 0.68] 
γ = 2 0.37  [0.36 - 0.38]  0.43  [0.41 - 0.45]  0.50  [0.49 - 0.56]  0.68  [0.67 - 0.68] 

 

  



D. Triadic clustering coefficient 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.64  [0.63 - 0.66]  0.60  [0.57 - 0.61]  0.50  [0.48 - 0.51]  0.34  [0.27 - 0.37] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.01]  0.00  [0.00 - 0.00] 
r = 0.421 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.01]  0.00  [0.00 - 0.00] 
r = 0.797 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00] 

  Triadic Clustering c = 0.249 0.29  [0.29 - 0.30]  0.26  [0.26 - 0.26]  0.13  [0.12 - 0.13]  0.03  [0.03 - 0.04] 
c = 0.284 0.34  [0.34 - 0.34]  0.30  [0.29 - 0.30]  0.15  [0.15 - 0.16]  0.04  [0.04 - 0.05] 
c = 0.353 0.43  [0.43 - 0.43]  0.37  [0.36 - 0.37]  0.20  [0.19 - 0.20]  0.07  [0.06 - 0.07] 

  Focal Clustering t = 0.163 0.37  [0.37 - 0.38]  0.28  [0.27 - 0.28]  0.12  [0.12 - 0.13]  0.04  [0.04 - 0.05] 
t = 0.249 0.43  [0.42 - 0.44]  0.30  [0.29 - 0.31]  0.15  [0.13 - 0.15]  0.06  [0.05 - 0.06] 
t = 0.326 0.45  [0.44 - 0.46]  0.31  [0.30 - 0.32]  0.16  [0.15 - 0.17]  0.06  [0.05 - 0.07] 

  Power-Law γ = 3 0.04  [0.03 - 0.05]  0.02  [0.02 - 0.02]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.01] 
γ = 2.5 0.09  [0.07 - 0.13]  0.04  [0.03 - 0.05]  0.02  [0.02 - 0.03]  0.01  [0.01 - 0.01] 
γ = 2 0.21  [0.19 - 0.22]  0.05  [0.04 - 0.06]  0.03  [0.03 - 0.03]  0.02  [0.01 - 0.02] 

 

  



E. Focal clustering coefficient 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.19  [0.17 - 0.21]  0.18  [0.16 - 0.19]  0.16  [0.15 - 0.17]  0.11  [0.08 - 0.12] 

Synthetic networks defined by:            

  Degree-Assortative r = 0.283 0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
r = 0.421 0.01  [0.00 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
r = 0.797 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 

  Triadic Clustering c = 0.249 0.07  [0.07 - 0.07]  0.06  [0.06 - 0.06]  0.03  [0.03 - 0.03]  0.01  [0.01 - 0.01] 
c = 0.284 0.08  [0.08 - 0.08]  0.07  [0.07 - 0.07]  0.03  [0.03 - 0.03]  0.01  [0.01 - 0.01] 
c = 0.353 0.09  [0.08 - 0.09]  0.07  [0.07 - 0.07]  0.04  [0.04 - 0.04]  0.01  [0.01 - 0.01] 

  Focal Clustering t = 0.163 0.16  [0.16 - 0.16]  0.11  [0.10 - 0.11]  0.05  [0.04 - 0.05]  0.01  [0.01 - 0.02] 
t = 0.249 0.25  [0.25 - 0.25]  0.14  [0.13 - 0.14]  0.06  [0.06 - 0.06]  0.02  [0.02 - 0.02] 
t = 0.326 0.33  [0.33 - 0.33]  0.15  [0.15 - 0.16]  0.07  [0.06 - 0.07]  0.02  [0.02 - 0.03] 

  Power-Law γ = 3 0.02  [0.02 - 0.02]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
γ = 2.5 0.03  [0.02 - 0.03]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
γ = 2 0.04  [0.04 - 0.05]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 

 

  



F. Average shortest path in Largest Connected Component 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 4.10  [3.89 - 4.36]  4.43  [4.19 - 4.68]  5.30  [5.00 - 5.82]  7.09  [6.56 - 9.23] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 3.61  [3.61 - 3.62]  3.65  [3.65 - 3.65]  4.17  [4.16 - 4.18]  6.17  [6.13 - 6.23] 
r = 0.421 3.65  [3.65 - 3.65]  3.69  [3.69 - 3.69]  4.22  [4.21 - 4.23]  6.36  [6.29 - 6.41] 
r = 0.797 3.88  [3.87 - 3.88]  3.91  [3.90 - 3.91]  4.47  [4.47 - 4.48]  7.36  [7.28 - 7.46] 

  Triadic Clustering c = 0.249 3.71  [3.70 - 3.72]  3.78  [3.77 - 3.79]  4.22  [4.20 - 4.23]  6.35  [6.28 - 6.42] 
c = 0.284 3.70  [3.70 - 3.72]  3.78  [3.77 - 3.79]  4.21  [4.20 - 4.23]  6.11  [6.05 - 6.17] 
c = 0.353 3.69  [3.68 - 3.70]  3.78  [3.77 - 3.79]  4.20  [4.18 - 4.22]  5.75  [5.70 - 5.80] 

  Focal Clustering t = 0.163 4.09  [4.07 - 4.12]  4.21  [4.18 - 4.23]  4.91  [4.88 - 4.94]  7.94  [7.84 - 8.07] 
t = 0.249 4.61  [4.56 - 4.66]  4.73  [4.68 - 4.78]  5.39  [5.34 - 5.45]  8.33  [8.26 - 8.47] 
t = 0.326 5.23  [5.10 - 5.39]  5.34  [5.20 - 5.51]  5.98  [5.83 - 6.17]  8.85  [8.60 - 9.14] 

  Power-Law γ = 3 3.35  [3.30 - 3.38]  3.61  [3.56 - 3.64]  4.25  [4.18 - 4.30]  6.34  [6.12 - 6.51] 
γ = 2.5 3.16  [3.09 - 3.23]  3.43  [3.36 - 3.51]  3.93  [3.79 - 4.06]  5.52  [5.22 - 5.80] 
γ = 2 3.07  [3.03 - 3.10]  3.50  [3.45 - 3.54]  3.85  [3.79 - 3.93]  4.70  [4.59 - 4.83] 

 

〈�〉: Mean degree of nodes in a given graph. For definitions of �, c, M, N and 8 and how they define each synthetic network type, please 
see main text of paper.  

 



Supplementary Table 2: Percentage of epidemic simulation runs infecting at least 10% of 

the population 

  
Not 

truncated 
 Truncated 

at 2〈�〉 
 Truncated 

at  〈�〉 
 Truncated 

at  0.5〈�〉 

Karnataka villages 99.5  99.3  90.4  11.9 
Synthetic networks defined by:         

  Degree-Assortative r = 0.283 91.1  90.1  76.0  11.7 
r = 0.421 89.9  88.9  69.3  8.7 
r = 0.797 89.1  82.6  26.7  1.0 

  Triadic Clustering c = 0.249 99.8  99.8  87.3  0.0 
c = 0.284 99.9  99.8  92.1  0.0 
c = 0.353 99.8  99.8  95.9  0.0 

  Focal Clustering t = 0.163 99.6  99.4  55.6  0.0 
t = 0.249 98.9  98.3  66.0  0.0 
t = 0.326 97.5  96.4  66.7  0.0 

  Power-Law γ = 3 98.6  92.1  43.6  9.7 
γ = 2.5 98.9  95.1  51.9  15.0 
γ = 2 97.5  89.1  56.3  23.8 

 

Figures are percentage points of 10,000 runs (synthetic networks) or 7500 runs (Karnataka 
villages).  

 



Supplementary Figure 1: Time to infection of 10% of all individuals on networks, amongst 

epidemic simulation runs infecting at least 10% of the population 

 

A: Karnataka villages; B: Degree-Assortative; C: Triadic Clustering; D: Focal Clustering; E: 
Power-Law networks. Figures show mean and 95% ranges for all runs from 10,000 simulations 
(7,500 for Karnataka villages) for which at least of 10% of individuals were ever infected. 
Simulation types are defined by truncation (see legend) and level of calibration – darker shading 
represents stronger calibration towards higher values of network properties (see Error! 

Reference source not found.).  Empty lines represent simulation types where no runs reached 
the 10% threshold.  



Supplementary Figure 2: Attack rate on networks, amongst epidemics infecting at least 

10% of the population. 

 

 

A: Karnataka villages; B: Degree-Assortative; C: Triadic Clustering; D: Focal Clustering; E: 
Power-Law networks. Figures show mean and 95% ranges for all runs from 10,000 simulations 
(7,500 for Karnataka villages) for which at least of 10% of individuals were ever infected. 
Simulation types are defined by truncation (see legend) and level of calibration – darker shading 
represents stronger calibration towards higher values of network properties (see Error! 

Reference source not found.).  Empty lines represent simulation types where no runs reached 
the 10% threshold.  
 

  



Supplementary Figure 3: Mean neighbor degree vs. own degree for full and truncated 

synthetic networks 

For each set of figures below: 

A. Full graph; B: graph truncated at twice mean degree; C: graph truncated at mean degree; D: 
graph truncated at half mean degree. Within each cell, darker=more: Blue (A1): Initial density of 
ties (log-scale); Green (B1, C1, D1): Mean proportion of neighbors dropped (linear scale); Red-
Yellow (A2, B2, C2, D2): Mean proportion of epidemic runs in which the node was infected 
(linear scale). The black diagonal line shows points of equal node and mean neighbor degree. 
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II. Triadic Clustering 
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III. Focal Clustering 
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IV. Power-Law degree distribution 
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