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A Mathematical Background

In this appendix we present definitions that will be useful for the understanding of the
paper.

A.1 A brief overview on Fuzzy Sets Theory

First we introduce the definition of T-Norms and T-Conorms first introduced by Menger et
al. in (Menger, 1942; Schweizer and Sklar, 1983).

Definition 1 (T-Norm)
A triangular norm (T-Norm for short) is a binary operation ∧ on the unit interval [0,1], i.e.,
a function ∧ : [0,1]2→ [0,1], such that for all x,y,z ∈ [0,1] the following four axioms are
satisfied:

(T1) x∧ y = y∧ x.
(T2) x∧ (y∧ z) = (x∧ y)∧ z.
(T3) x∧ y≤ x∧ z wherever y≤ z.
(T4) x∧1 = x.

A T-Norm is a generalisation of intersection in set theory and conjunction in logic. It
was first defined in the context of probabilistic metric spaces (Schweizer and Sklar, 1983).

Definition 2 (T-Conorm)
A triangular conorm (T-Conorm for short) is a binary operation ∨ on the unit interval [0,1],
i.e., a function ∨ : [0,1]2→ [0,1], such that for all x,y,z ∈ [0,1], satisfies (T1)-(T3) and

(S4) x∨0 = x.

A T-Conorm is a generalisation of union in set theory and disjunction in logic.
There is an innumerable number of T-Norms and T-Conorms. In the following examples

(Klement et al., 2000) we present the four basic T-Norms and T-Conorms.

The following are the four basic T-Norms ∧M,∧P,∧L and ∧D given by, respectively:

Example 1 (Basic T-Norms)
(1) x∧M y = min(x,y) (minimum),

(2) x∧P y = x · y (product),

(3) x∧L y = max(x+ y−1,0) (Lukasiewicz T-Norm),

(4) x∧D y =
{

0, if (x,y) ∈ [0,1[2;
min(x,y), otherwise.

(drastic product)

These T-Norms cover the range for T-Norms, from the strongest T-Norm ∧M to the
weakest T-Norm ∧D. There are other T-Norms, namely parametric T-Norms, which range
the spectrum of all possible T-Norms. Examples of these T-Norms are the Dombi T-Norms.

Definition 3 (Dombi T-Norm)
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The definition of Dombi T-Norm is the following:

DT λ
∧ (a,b) =

1+

[(
1
a
−1
)λ

+

(
1
b
−1
)λ
] 1

λ


−1

Where the parameter λ ∈ ]0,+∞[.

Example 2 (Basic T-Conorms)
The following are the four basic T-Conorms ∨M,∨P,∨L and ∨D given by, respectively:
(1) x∨M y = max(x,y) (maximum),

(2) x∨P y = x+ y− x · y (probabilistic sum),

(3) x∨L y = min(x+ y,1) (Lukasiewicz T-Conorm),

(4) x∨D y =
{

1, if (x,y) ∈ [0,1[2;
max(x,y), otherwise.

(drastic sum)

These T-Conorms define the specific range of T-Conorms, from the strongest T-Conorm
∨D to the weakest T-Conorm ∨M .

Definition 4 (Dombi T-Conorm)
The definition of Dombi T-Conorm is the following:

DT λ
∨ (a,b) =

1+

[(
1
a
−1
)λ

+

(
1
b
−1
)λ
]− 1

λ


−1

Where the parameter λ ∈ ]0,+∞[.

Now we are able to define the transitivity property of a fuzzy relation.

Definition 5 (Transitivity)
A fuzzy relation R(X ,X) is transitive if

R(x,y)≥ ∨z(R(x,z)∧R(z,y))

is satisfied ∀x,y,z ∈ X .

Definition 5 entails that transitivity depends on the pairs T-Conorm/T-Norm chosen.

Definition 6 (Fuzzy Complement)
A complement c of a fuzzy set satisfies the following axioms:

(c1) c(0) = 1 c(1) = 0 (boundary conditions).
(c2) ∀a,b ∈ [0,1] if a≤ b, then c(a)≥ c(b) (monotonicity).

The Complement of a fuzzy set measures the degree to which a given element of the
fuzzy set does not belong to the fuzzy set. Two most desirable requirements, which are
usually among of fuzzy complements are:

Definition 7 (Fuzzy Complement)(cont))
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A complement c of a fuzzy set satisfies the following axioms:
(c3) c is a continuous function.
(c4) c is involutive, which means that c(c(a)) = a for each a ∈ [0,1].

In classical set theory, the operations of intersection and union are dual with respect to
the complement in the sense that they satisfy the De Morgan laws. It is desirable that this
duality be satisfied for fuzzy set as well. We say that a T-Norm ∧ and a T-Conorm ∨ are
dual with respect to a fuzzy complement c if and only if

c(a∧b) = c(a)∨ c(b)

and

c(a∨b) = c(a)∧ c(b).

Examples of dual T-Norms and T-Conorms with respect to the complement cs(a) =
(1−a)s are:

< min(a,b),max(a,b),cs >

< DT 1(a,b),DT 1(a,b),cs >

. We can have weaker complements, which only obey to the first two axioms in definition
6 to allow other T-Norm and T-Conorm operators.

Next we follow with composition of fuzzy relations.

Definition 8 (Relation Composition)
Consider two binary fuzzy relations, P(X ,Z) and Q(Z,Y ) with a common set of Z. The
standard composition of these relations, which is denoted by P(X ,Z)◦Q(Z,Y ) produces a
binary fuzzy relation R(X ,Y ) on X×Y defined by

R(X ,Y ) = [P◦Q] = ∨z(P(x,z)∧Q(z,y)),

∀x ∈ X and ∀y ∈ Y and ∀z ∈ Z .

When the transitive closure RT (X ,X) uses the T-Conorm ∨ = maximum, with any T-
Norm ∧, κ in eq. 1 is finite and not larger than |X | − 1 (Klir and Yuan, 1995). In other
words, the transitive closure converges in finite time and can be easily computed using
Algorithm 1 (Klir and Yuan, 1995):

Algorithm 1
1. R′ = R∪ (R◦R)
2. If R′ 6= R, make R = R′ and go back to step 1.
3. Stop: RT = R′

It has also been shown that if the semiring formed by 〈∨,∧〉 on the unit interval is a dioid
or a bounded preordered lattice(Gondran and Minoux, 2007), then κ in eq. 1 is also finite
(Han and Li, 2004; Han et al., 2007) (see conditions below). In this case, the transitive
closure can be computed in finite time using Algorithm 2:

Algorithm 2
1. R′ = R,Rp = R, p = 1
2. Rp = R◦Rp, p = p+1
3. If R′ 6= (R′

⋃
Rp), make R′ = R′

⋃
Rp and go back to step 2.
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4. Stop: RT = R′

The union in step 1 must be in accordance with the T-Conorm defined in the relation
composition. The resulting relation in step 3 is transitive with respect to the T-Norm, T-
Conorm operations used. Moreover, given the last algorithm, a fuzzy graph is transitive if
the algorithm stops at the first step. A reflexive, symmetric and transitive fuzzy relation is
denominated as a Similarity or Equivalence relation.

Next we give a more detailed description of T-Norms and T-Conorms.
The intersection of two fuzzy sets A and B is performed by a binary operation closed on

the unit interval. There are an infinite number of T-Norms from definition 1. One important
class is that of Archimedean T-Norms, see (Klir and Yuan, 1995). Before we introduce
one of the fundamental theorems of T-Norms, which provides us a method for generating
Archimedean T-Norms we introduce the following definitions:

Definition 9 (Decreasing Generator)
A decreasing generator ϕ is a continuous decreasing function from the unit interval [0,1]
into the real extended interval [−∞,+∞].

Definition 10 (Pseudo-Inverse of a decreasing generator)
The pseudo-inverse of a decreasing generator ϕ is defined by

ϕ
(−1)(a) =


1 f or a ∈ (−∞,0)

ϕ−1(a) f or a ∈ [0,ϕ(0)]
0 f or a ∈ (ϕ(0),∞)

Where ϕ−1 is the inverse function of ϕ .

Theorem 1 (Characterization Theorem of T-Norms)
Let i be a binary operation closed on the unit interval. Then, i is an Archimidean T-Norm
iff there exists a decreasing generator ϕ such

a∧b = ϕ
(−1)(ϕ(a)+ϕ(b))

for all a,b ∈ [0,1].

With this last theorem we can generate an infinite class of T-Norms. Among many decreas-
ing generators is the Dombi T-Norm generator, (see definition 3):

ϕ(x) =
(

1− x
x

)λ

Parameter λ allow us to obtain the range from the ∧D T-Norm (λ → 0) to the ∧M T-Norm
(λ →+∞). For many other decreasing generators, see (Klement et al., 2000).

Set unions are generalized by the T-Conorms in definition 2. There are an infinite number
of T-Conorms and ways to generate new T-Conorms. One important class of T-Conorms is
the Archimedean T-Conorms, see (Klir and Yuan, 1995).

Definition 11 (Increasing Generator)
A increasing generator θ is a continuous increasing function from the unit interval [0,1]
into the real extended interval [−∞,+∞].

Definition 12 (Pseudo-Inverse of a increasing generator)
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The pseudo-inverse of a increasing generator θ is defined by

θ
(−1)(a) =


0 f or a ∈ (−∞,0)

θ−1(a) f or a ∈ [0,θ(0)]
1 f or a ∈ (θ(0),∞)

Where θ−1 is the inverse function of θ .

Theorem 2 (Characterization Theorem of T-Conorms)
Let u be a binary operation closed on the unit interval. Then, u is an Archimidean T-Conorm
iff there exists an increasing generator θ such

a∨b = θ
(−1)(θ(a)+θ(b))

for all a,b ∈ [0,1].

With this last theorem we can generate an infinite class of T-Conorms. Among many
increasing generators is the Dombi T-Conorm generator:

θ(x) =
(

x
1− x

)λ

Parameter λ allow us to obtain the range from the ∨M T-Conorm (λ → 0) to ∨D T-Conorm
(λ → +∞). For many other decreasing generators the reader can see, (Klement et al.,
2000).

A.2 Algebraic Structures Basics

Here we present the basic definitions on algebraic structures used in this work.
The whole class of semirings splits into main disjoint subclasses: (a) rings and (b)

canonical ordered semirings or dioids. On the following, we consider algebraic structures
consisting of a basic set E, with two internal operations ⊕ and ⊗. All these definitions can
be found on (Gondran and Minoux, 2007).

Definition 13 (Semi-Ring)
Let consider the following algebraic structure L =(E, ⊕, ⊗). L is called a semiring if the
following properties hold:

(i) (E, ⊕) is a commutative monoid with zero element ε ,
(ii) (E, ⊗) is a monoid with unit element e,
(iii) ⊗ is right and left distributive with respect to ⊕,
(iv) ε is absorbing, i.e. ε⊗a = a⊗ ε = ε , ∀a ∈ E.

Definition 14 (Canonical Order)
L =(E, ⊕) being a monoid, the binary relation ≤ on E is defined as: a≤ b iff ∃c ∈ E such
that b= a⊕c, is a preorder relation (reflexive and transitive) called the canonical preorder.
A monoid is called canonically ordered iff the canonical preorder is order, or equivalently
iff ≤ is antisymmetric (a≤ b and b≤ a⇒ a = b).

Definition 15 (Dioid)
A semiring (E, ⊕, ⊗) such that (E, ⊕) is canonically orderd is called a dioid.
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The algebraic structure I =([0,1], ∨, ∧), where ∨ and ∧ are general T-Conorm/T-Norm,
respectively, are not in general a dioid, since they fail property (iii) (distributivity) of
definition 13 (semiring). However, there are subclasses of the algebraic structure I =([0,1],
∨, ∧), which are dioids.

For more details about algebraic structures see for example (Gondran and Minoux, 2007;
Han and Li, 2004) or any book about Abstract Algebra.
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B Proofs to the theorems

In this section we provide the proofs to the theorems in the main text.

Theorem 1
Let GP = (X ,P) be a proximity (symmetric and reflexive) graph and Φ the graph dis-
tance function in definition 2, then GD = (X ,D), where D = Φ(P), is symmetric and anti-
reflexive.

Proof
Since GP is reflexive then px,x = 1 and from definition 2 we have dx,x =ϕ(px,x)=ϕ(1)= 0,
therefore GD is anti-reflexive. Let x and y be two vertices of GP, because a proximity
graph is symmetric we have px,y = py,x, since ϕ is bijective dx,y = ϕ(px,y) = ϕ(py,x) = dy,x,
therefore GD is symmetric.

Theorem 2
If ϕ is a distance function as in definition 2. For every pair of T-Norm/T-Conorm operations
〈∧,∨〉, there exists a pair of operations 〈 f ,g〉 a TD-conorm/TD-norm (definition 3) and
vice versa, obtained via the following constraints:

(1) ϕ(a∧b) = g(ϕ(a),ϕ(b));
(2) ϕ(a∨b) = f (ϕ(a),ϕ(b)).

Where a,b ∈ [0,1].

Proof
Let us assume a≤ b.
(1) Suppose ϕ(a∧b)> g(ϕ(a),ϕ(b)), thus the inequality is true if the maxima of ϕ(a∧b)
(must be maximum) is bigger than the minimum of g(ϕ(a),ϕ(b)) (must be minimum).
ϕ(a∧ b) is maximum for ∧ ≡ TD (drastic product, see (Klement et al., 2000) (Klir and
Yuan, 1995)) and g(ϕ(a),ϕ(b)) is minimum for ϕ(b) = 0, thus for ϕ(b) = 0 we obtain,
ϕ(a) ≤ g(ϕ(a),ϕ(b)), from the other side ϕ(a∧ b) ≤ ϕ(min(a,b)) = ϕ(a). Therefore,
ϕ(a∧b)≤ g(ϕ(a),ϕ(b)).

Suppose ϕ(a∧b) < g(ϕ(a),ϕ(b)), thus ϕ(a∧b) must be minimum and g(ϕ(a),ϕ(b))
must be maximum. ϕ(a∧b) is minimum for ∧ ≡ min and g(ϕ(a),ϕ(b)) is maximum for
a = 0, thus for a = 0 we obtain, g(ϕ(a),ϕ(b)) ≤ ϕ(a), from the other side ϕ(a∧ b) ≥
ϕ(min(a,b)) = ϕ(a). Therefore, ϕ(a∧ b) ≥ g(ϕ(a),ϕ(b)), and from above this implies
ϕ(a∧b) = g(ϕ(a),ϕ(b)), which proves statement (1).
(2) Suppose ϕ(a∨b)> f (ϕ(a),ϕ(b)), thus ϕ(a∨b) must be maximum and f (ϕ(a),ϕ(b))
must be minimum. ϕ(a∨b) is maximum for ∨ ≡ max and f (ϕ(a),ϕ(b)) is minimum for
ϕ(a) = 0, thus for ϕ(a) = 0 we obtain, f (ϕ(a),ϕ(b))≥ 0, from the other side ϕ(a∨b)≤
ϕ(max(1,b)) = ϕ(1) = 0. Therefore, ϕ(a∨b)≤ f (ϕ(a),ϕ(b)).

Suppose ϕ(a∨b)< f (ϕ(a),ϕ(b)), thus ϕ(a∨b) must be minimum and f (ϕ(a),ϕ(b))
must be maximum. ϕ(a∨b) is minimum for∨≡ SD (drastic sum, see (Klement et al., 2000)
(Klir and Yuan, 1995)) and f (ϕ(a),ϕ(b)) is maximum for b = 0, thus for b = 0 we obtain,
f (ϕ(a),ϕ(b)) ≤ ϕ(a), from the other side ϕ(a∨ b) ≥ ϕ(max(a,b)) = ϕ(a). Therefore,
ϕ(a∨ b) ≥ f (ϕ(a),ϕ(b)), and from above this implies ϕ(a∨ b) = f (ϕ(a),ϕ(b)), which
proves statement (2).
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Theorem 3
If GP = (X ,P) is a fuzzy proximity graph and GD = (X ,D) is the distance graph obtained
from GP via D = Φ(P), where Φ is the isomorphism (distance function) in definition 2,
then the following statements are true:

1) Φ(P)⊇̇Φ(P2)⊇̇Φ(P3)⊇̇ · · · ⊇Φ(P∞) ;
2) D⊇̇D2⊇̇D3⊇̇ · · · ⊇̇D∞.

where Φ(Pn)⊇̇Φ(Pn+1) means that: ∀xi,x j ∈ X : ϕ(pn
i j)≥ ϕ(pn+1

i j ), and Dn⊇̇Dn+1 means
that: ∀xi,x j ∈ X : dn

i j ≥ dn+1
i j .

Proof
1) ϕ is a monotonic decreasing function and because P is reflexive, from (Mordeson and
Nair, 2000) we have P⊆P2⊆P3⊆ ·· · ⊆P∞⇒Φ(P)⊇̇Φ(P2)⊇̇Φ(P3)⊇̇ · · · ⊇̇Φ(P∞) which
proves the statement.
2) To prove the second statement we first need to prove that D⊇̇D2, which is equivalent to
showing that, ∀x,y,z∈X : d2

x,y = f
z
{g(dx,z,dz,y)}≤ dx,y. Lets prove by absurd this statement:

suppose d2
x,y > dx,y then the minimum of f

z
{g(dx,z,dz,y)} must be > dx,y. f

z
{g(dx,z,dz,y)} is

minimum if f and g are minimum. g is minimum if dz,y = 0 for all z ∈ X −{x}, then
g(dx,z,dz,y) ≥ dx,z. f is minimum if dx,z ≥ dx,y for all z ∈ X − {y} then f (dx,y,dx,z) ≤
f (dx,y,+∞)≤ dx,y, which contradicts our assumption, d2

,x,y > dx,y. Therefore, d2
x,y ≤ dx,y.

By induction we can prove the general result.
∀x,y,z∈X : dn+1

x,y = f
z
{g(dn

x,z,dz,y)} by hypothesis dn
x,y≤ dn−1

x,y , thus dn+1
x,y ≤ f

z
{g(dn−1

x,z ,dz,y)}=

dn
x,y, which proves the second statement.

Theorem 4
Given a proximity graph GP = (X ,P), a distance graph GD = (X ,D), and the isomorphism
ϕ and Φ of definition 2, for any algebraic structure I = ([0,1],∧,∨) with a T-Conorm/T-
Norm pair 〈∧,∨〉 used to compute the transitive closure of P, there exists an algebraic
structure II = ([0,+∞], f ,g) with a TD-conorm/TD-norm pair 〈 f ,g〉 to compute the iso-
morphic distance closure of D, DT = Φ(PT ), which obeys the condition:

∀xi,x j,xk ∈ X : f
k
(g(ϕ(pik),ϕ(pk j))) = ϕ(∨

k
((pik ∧ pk j)))

and vice-versa if we fix 〈 f ,g〉 (TD-norm/TD-Conorm) and isomorphism ϕ , to obtain 〈∨,∧〉:

∀xi,x j,xk ∈ X : ∨
k
(ϕ−1(dik)∧ϕ

−1(dk j)) = ϕ
−1( f

k
(g(dik,dk j)))

where ϕ−1 is the inverse function of ϕ .

Proof
The transitive closure of P is given by Pk1 and the distance closure of D by Dk2 , with k1

and k2 integers. Let n = max(k1,k2), thus for Φ(Pn) = Dn to be true, the following must
also be true:

∀x,y,z ∈ X : f
z
{g(ϕ(px,z),ϕ(pz,y)}= ϕ(∨

z
{px,z∧ pz,y})

We can prove by induction that Φ(Pn) = Dn is true if we assume that the condition in this
theorem is true.
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The condition in this theorem is equivalent to:

Φ
−1(Φ(P)◦Φ(P)) = P2 = P◦P

Where Φ(P) ◦Φ(P) is the distance composition using f and g, and P ◦P is the transitive
composition using ∧ and ∨. We also can define Dn in function of Φ and P.

Dn = D◦ · · · ◦D︸ ︷︷ ︸
n

= Φ(P)◦ · · · ◦Φ(P)︸ ︷︷ ︸
n

Therefore, what we want to prove is:

Φ
n(P) = Φ(Pn)

given the condition on this theorem is true.
by induction:

(1) Φ(P)◦Φ(P) = Φ(P2) (Basis);
(2) Φn(P) = Φ(Pn) (Hypothesis);
(3) Φn+1(P) = Φ(Pn+1) (Thesis).

Assuming the condition on this theorem Φ−1(Φ(P)◦Φ(P)) = P2 is true, then it is also true
that Φ(P) ◦Φ(P) = Φ(P2). Thus, Φn+1(P) = Φn(P) ◦Φ(P) = Φ(Pn) ◦Φ(P) = Φ(Pn+1)

from statements (1) and (2), which proves the theorem.
Let us prove that there exist a pair of binary functions f and g per definition 3. From

theorem 2 we have

g(ϕ(px,z),ϕ(pz,y)) = ϕ(px,z∧ pz,y)

and from the condition in this theorem, we have

f
z
{g(ϕ(px,z),ϕ(pz,y))}= ϕ(∨

z
{px,z∧ pz,y})

f
z
{ϕ(px,z∧ pz,y)}= ϕ(∨

z
{px,z∧ pz,y})

Therefore,

f (dx,z,dz,y)≡ ϕ(ϕ−1(dx,z)∨ϕ
−1(dz,y))

The conditions of this theorem leads to the equations of theorem 2:

g(dx,z,dz,y) = ϕ(ϕ−1(dx,z)∧ϕ
−1(dz,y))

f (dx,z,dz,y)≡ ϕ(ϕ−1(dx,z)∨ϕ
−1(dz,y))

.
From these last equations we can also find ∨ and ∧ given f , g and the isomorphism ϕ:

px,z∨ pz,y = ϕ
−1( f (ϕ(px,z),ϕ(pz,y)))

px,z∧ pz,y = ϕ
−1(g(ϕ(px,z),ϕ(pz,y)))

Theorem 5
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Given a finite proximity graph GP(X ,P), and an algebraic structure I = ([0,1],∨,∧), with a
T-Conorm/T-Norm pair 〈∧,∨〉 used to compute the transitive closure of GP, if I is a dioid,
then the transitive closure GT

P(X ,PT ) can be computed by equation 1 for a finite κ .

See (Gondran and Minoux, 2007) for proof; further discussion and examples also see
(Han and Li, 2004; Han et al., 2007; Pang, 2003; Klir and Yuan, 1995).

Theorem 6
Given a finite distance graph GD(X ,D), and an algebraic structure II = ({[0,+∞], f ,g),
with a TD-Conorm/TD-Norm pair 〈 f , f 〉 used to compute the distance closure of GD, if
II is a dioid, then the distance closure GT

D(X ,DT ) can be computed in finite time via the
transitive closure of isomorphic graph GP(X ,P) with algebraic structure I obtained by an
isomorphism satisfying Theorem 4. In other words, if II is a dioid, via an isomorphism
satisfying Theorem 4 we obtain an algebraic structure I which is also a dioid.

This theorem can be easily proven from theorems 3, 4 and 5, by evoking the isomorphism
to proximity space.

Corollary 1
Given the isomorphism constraint on the T-Norm from algebraic structure I (eq. 7) from
theorem 4, let f ≡ min, g ≡ + and ϕ a distance function, per definition 2. If ∨ ≡ max as
T-Conorm, then the T-Norm operator ∧ exists and ϕ is its generator function.

Proof
We have seen in theorem 2 that ϕ(x∧ y) = g(ϕ(x),ϕ(y)) therefore ∀x,y,z ∈ P and by
theorem 4:

ϕ−1(min
z
{ϕ(px,z)+ϕ(pz,y)}) = max

z
{px,z∧ pz,y}

max
z
{ϕ−1(ϕ(px,z)+ϕ(pz,y))}= max

z
{px,z∧ pz,y}

⇒
ϕ−1(ϕ(px,z)+ϕ(pz,y)) = px,z∧ pz,y

This last result is the characterisation function of T-Norms, according to theorem 7 (Klir
and Yuan, 1995), which states that∧ is a T-Norm and ϕ is the decreasing generator function
(obeying definition 2).

Theorem 8
Given the isomorphism ϕ , if Dmc is the metric closure with f ≡min and g1 ≡+, and Dum

is the ultra-metric closure with f ≡ min and g2 ≡ max then Dmc⊇̇Dum is equivalent to
Pmc ⊆ Pum, where Dmc = Φ(Pmc) and Dum = Φ(Pum). Therefore, ∆(Pum)≥ ∆(Pmc).

Proof
We can prove by induction that:

1) D2⊇̇Φ(P2) ;

2)
{

H : Dn⊇̇Φ(Pn)

T : Dn+1⊇̇Φ(Pn+1)
Let’s prove 1)
∀x,y,z ∈ X : D2

mc = f
z
(dx,z + dz,y) = f

z
(ϕ(px,z) + ϕ(pz,y)) ≥ f

z
(g2(ϕ(px,z),ϕ(pz,y))) =

D2
um, therefore D2

mc⊇̇D2
um.
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2) by the hypothesis we know that ∀x,y,z ∈ X : Dn ≥ Φ(Pn) , then using this result
we have ∀x,y,z ∈ X : Dn+1 = f

z
{dn

x,z +dz,y} ≥ f
z
{ϕ(pn

x,z)+ϕ(pz,y)} , because f
z
{ϕ(pn

x,z)+

ϕ(pz,y)}≥ f
z
{ϕ(pn

x,z)∨ϕ(pz,y)} and using theorem 2, f
z
{g2(ϕ(pn

x,z),ϕ(pz,y))}=ϕ(∨
z
{pn

x,z∧

pz,y}) = Φ(Pn+1) , so
∀x,y,z ∈ X : Dn+1 ≥Φ(Pn+1) , which proves that Dmc ≡ Dn⊇̇Φ(Pn)≡ Dum.

Theorem 9
Given a fuzzy complement c(x), a T-Norm DT 1

∧ = ab
a+b−ab and a T-Conorm max(a,b), then

the triple has no involutive complement, which satisfies the De Morgan’s laws.

Proof
A complement is involutive if c(c(x))= x. If the complement c(x) satisfies the De Morgan’s
laws we have:

a∨b = ā∧ b̄

c(max(a,b)) =
c(a)c(b)

c(a)+ c(b)− c(a)c(b)
without loss of generality let a≥ b

c(a) =
c(a)c(b)

c(a)+ c(b)− c(a)c(b)

c(a)(1− c(b)) = 0

c(a) = 0∨ c(b) = 1

the only function that satisfies this condition is the threshold function, which is not involu-
tive (Klir and Yuan, 1995).
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C Optimal Dombi T-Norm for a characteristic path length

We have seen that we can apply an infinity of pairs of T-Norms and T-Conorms to calculate
distance closure, and compute shortest paths in distance graphs. In this formulation (see
corollary 1), we fix the T-Conorm with ∨ ≡ max, allowing us to explore many options for
the T-Norm ∧. The T-Norm is defined via the T-Norm generator isomorphism ϕ (corollary
1). Then, using 〈 f ≡min,g≡+〉 as the TD-norm/TD-conorm pair for computing the metric
closure, via the APSP/Dijkstra, distance product or equivalent, we can sweep the space of
possible T-Norms, thus simultaneously exploring the range of possible isomorphisms. In
this section we explore the Dombi T-Norm family, where the Dombi T-Norm generator is:

ϕ(x) =
(

1
x
−1
)λ

(C 1)

where λ is the sweeping parameter. The parameter λ in the T-Norm generator takes values
in ]0,+∞[: λ → 0 lower bound (drastic product) and λ →∞ is the upper bound (minimum).
The reason we choose this T-Norm generator is because it yields the more commonly used
isomorphism from proximity to distance; when λ = 1, (Eckhardt et al., 2009) (Strehl,
2002), the generator of eq. C 1, becomes the isomorphism of formulae 2, which we have
used in the previous section:

ϕ(x) =
1
x
−1.

We have seen that when T-Norm and T-Conorm (∨,∧) are fixed, the transitive closure
and the distance closure are equivalent via isomorphism ϕ .

For empirical analysis of complex networks it is desirable that properties of the graphs
obtained via specific closures, such as average shortest path, be simultaneously character-
istic in both spaces (proximity and distance). That is, the fluctuations of the mean, must
be constrained on both spaces (average shortest path and average strongest path). In order
to have a characteristic average path length, the shortest paths distribution must follow
approximately a normal distribution. We want to find the best λ , using the Dombi T-Norm
generator, which guarantees these assumptions, while fixing ∨= max.

Assuming that the shortest path distribution of a distance graph follows a normal distri-
bution, the probability density function for a normal random variable X , here the shortest
path, is given by:

hX (x) =
1√

2πσ2
e
−(x−µ)2

2σ2 (C 2)

where µ and σ are the mean and standard deviation of the normal distribution.
The mean of a random variable Y = j(X), which is a monotonic function of X, where

X is the random variable representing shortest path in a distance graph, and Y the random
variable representing the strongest path in the isomorphic distance graph, is given by:

< Y >=
∫

∞

0
j(x)hX (x)dx (C 3)
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Fig. C 1. Study of the fluctuations in proximity space, CVp as function of λ for µ = 10 (average
path length in distance space) with CVd = 0.2.

In our case,

j(x) = ϕ
−1(x) =

1

x
1
λ +1

Therefore, the fluctuations of the mean, in the proximity space are given by:

CVp =
σp

µp
=

√
< Y 2 >−< Y >2

< Y >
(C 4)

where CVp is the coefficient of variability1, and σp and µp are the standard deviation and
mean of the strongest path in the proximity space and < Y 2 > is given by:

< Y 2 >=
∫

∞

0
j2(x)hX (x)dx (C 5)

The fluctuations in the distance space of the shortest path, are given by the coefficient of
variability, CVd :

CVd =
σ

µ
(C 6)

The dependence of CVp on CVd comes from equations C 2, C 3 and C 5. In figure C 1
we plot the theoretical relation between λ and CVp for µ = 10 (average shortest path in
distance space is normally distributed) and CVd = 0.2, using equation C 4; the shape is
preserved for different parameter values. We can see from this figure that the coefficient
of variability in the proximity space is minimum when λ converges to the min T-Norm
(λ →+∞); the ultra-metric closure. However, from our assumptions we require that CVp ≈
CVd = 0.2, in this case. The marked point in the figure C 1 shows the point where the
assumptions are met. We observe that λ ≈ 1 in this scenario.

1 The coefficient of variability is scale invariant.
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Fig. C 2. λ versus µ for several coefficients of variability CVd and CVp

To inspect in more detail the best value or values for λ , using the metric closure we
plot, in figure C 2 the theoretical λ versus µ (average shortest path), for several acceptable
coefficients of variability in both spaces, assuming that the optimal value should share a
controlled CVd ≈CVp ≤ 0.6. The results from this figure are obtained by finding the root
(λ ) of the equation:

CV theoretical
p (λ )−CVp = 0

CV theoretical
p (λ ) =

√
< Y 2 >−< Y >2

< Y >

Where < Y 2 > and < Y > are given by equations C 2, C 3 and C 5 with j(x) = 1

x
1
λ +1

and we assume hX (µ,σ) is normally distributed with σ = µ ×CVd (µ is the average
shortest path) with CVd ≈ CVp the real data fluctuations. We use Mathematica 7 to find
the roots of this equation. From this figure we can see that when we increase the co-
efficients of variability, λ also increases. However, λ remains contained in the interval
[0.8,1.9]. For small average shortest paths the best λ ∈ [0.8,1.2], where after a transient
(µ ≈ 25), λ reaches an equilibrium, independent of scale factors (λ becomes invariant).
The scale factor associated to the average shortest path length (characteristic for each
network), depends mainly on the weights distribution. We can also observe that for very
small fluctuations (CVd = CVp = 0.1), λ becomes invariant for values ≈ 1. λ = 1 is
an optimal asymptotic value for small fluctuations, since CV ≥ 0. In real data in order
to guarantee a characteristic mean (average strongest and shortest path), in both spaces
(proximity and distance), the fluctuations should be as small as possible. However in real
data the shortest path distribution only approximates to the normal distribution, which is
one of our assumptions, resulting in higher fluctuations, for both spaces. For fluctuations
CVd ≈ CVp ∈ [0,0.4] we should use an isomorphism with λ ∈ [0.8,1.9]. For CV ≈ 0
the asymptotical optimal value is λ = 1 (see figure C 2). This gives us a lower bound
to calculate the desired metric closure in a distance graph to minimize fluctuations, λ

should be larger or equal than 1 (λ ≥ 1). To control fluctuations in both spaces (proximity,
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distance) we should choose λ according to the fluctuations obtained in the distance or
proximity spaces (this can be seen as an optimization problem).

In most applications, researchers use mappings between proximity and distance spaces
similar to λ = 1, using isomorphisms ϕ = 1

x or ϕ = 1
x − 1. We have to alert that the first

choice ϕ = 1
x is not mathematically correct, since it maps ϕ : [0,1]→ [1,+∞], which is

not a distance space. λ = 1 leads to the more common ϕ and asymptotical optimal value,
assuming small fluctuations. However, to constrain fluctuations we may want to use other
values of λ ≥ 1, depending on the level real data fluctuations.
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D Community Structure in Example Networks

Fig. D 1. Community Structure of Toy Network with Newman’s Fast Algorithm.

Fig. D 2. Community Structure of Toy Network with Hierarchical Clustering.
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Fig. D 3. Community Structure of Flu Network with Newman’s Fast Algorithm.

Fig. D 4. Community Structure of Flu Network with Hierarchical Clustering.
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