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Département des maladies infectieuses, Institut de veille sanitaire, Saint-Maurice, France;
Alain Barrat
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1 Contact matrices

Each element of the contact matrix shown in the main text represents the total time of
contact between nodes from two departments. Since the department populations do not
have the same size, it is also of interest to compute normalized contact matrices. We show
in Fig. 1 two different normalizations: in the first one, we divide the elements of each row
by the number of people in the corresponding department. Each element thus represents
the mean time each node from the row department has spent with nodes from the column
department (in this case, the matrix is no longer symmetrical). In the second normalization
procedure, we divide each element of the original matrix by the number of potential links
between the two departments. Each element gives then the mean contact duration between
individuals of the two departments.

For completeness, we therefore also compute the similarities between daily contact ma-
trices normalized in different ways (Fig. 2 gives the weekly and daily original – symmetric
– contact matrices). The values, given in Table 1, depend on the specific normalization
procedure but remain large.

If the ratio of the number of links over the total number of possible links is considered
instead of the contact durations, contact matrices represent the connectivity of the contact
network (Fig. 3).

In order to test the effect of spatial organization on the shape of the contact matrix, we
build a null model where only the timeline of presence of each node is taken into account,
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a) Non normalised b) Number of nodes c) Number of potential links

Fig. 1. Original and normalized contact matrices for the whole data set.

Table 1. Daily contact matrices similarities. For each day, we compute the cosine
similarity between the corresponding contact matrix and the ones of the other days, both
with and without diagonals, and for three different normalizations: no normalization,
normalization of the rows by the number of nodes in each department, normalization of
each element by the number of possible links between the two departments. We list in this
table the mean value and the standard deviation of the similarities.

No normalization Number of nodes Number of links

Day full w/o diagonal full w/o diagonal full w/o diagonal

06/24 0.753 ± 0.103 0.563 ± 0.222 0.649 ± 0.098 0.437 ± 0.258 0.691 ± 0.277 0.494 ± 0.197
06/25 0.843 ± 0.069 0.481 ± 0.087 0.748 ± 0.084 0.297 ± 0.225 0.707 ± 0.276 0.301 ± 0.199
06/26 0.837 ± 0.046 0.400 ± 0.246 0.637 ± 0.072 0.207 ± 0.157 0.421 ± 0.220 0.329 ± 0.151
06/27 0.870 ± 0.052 0.534 ± 0.108 0.819 ± 0.051 0.380 ± 0.091 0.762 ± 0.297 0.370 ± 0.184
06/28 0.871 ± 0.075 0.426 ± 0.134 0.804 ± 0.110 0.341 ± 0.220 0.798 ± 0.171 0.324 ± 0.086
07/01 0.821 ± 0.058 0.592 ± 0.152 0.788 ± 0.083 0.437 ± 0.234 0.763 ± 0.302 0.431 ± 0.199
07/02 0.850 ± 0.087 0.579 ± 0.180 0.827 ± 0.110 0.463 ± 0.231 0.772 ± 0.305 0.510 ± 0.185
07/03 0.858 ± 0.072 0.488 ± 0.262 0.770 ± 0.096 0.376 ± 0.225 0.273 ± 0.275 0.418 ± 0.224
07/04 0.767 ± 0.058 0.317 ± 0.131 0.704 ± 0.089 0.219 ± 0.111 0.679 ± 0.277 0.255 ± 0.138
07/05 0.795 ± 0.123 0.398 ± 0.199 0.762 ± 0.148 0.271 ± 0.177 0.725 ± 0.294 0.387 ± 0.176

and interactions are assumed to take place at random between individuals who are in the
same location. The timelines of presence are built from the empirical contact data: a node is
present at a given location at a time t if it takes part in a contact recorded here at this time. A
node that is present at t is moreover assumed to be present during the interval [t −∆, t +∆].
At each time t, all nodes that are present in a given location have a constant probability to
be in contact. The probability is chosen such that the total cumulative duration of contacts
is equal to its empirical value. The contact matrix obtained, shown in Fig. 4, is significantly
different from the empirical one. This indicates that the empirical contact matrix structure
is not explained by random encounters of individuals with different presence timelines.
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Fig. 2. Weekly and daily contact matrices.
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Fig. 3. Link density contact matrices.
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a) b)

c) d)

Fig. 4. Contact matrices: null model with constant contact probability and empirical presence
timelines, for ∆ = 30 min, averaged over 100 different realizations. Each matrix element (at row X
and column Y) gives the total time of contact (mean ± s.e.m.) between individuals from departments
X and Y during the two weeks of the study, in different locations, according to the null model. a)
Entire building. b) Conference room. c) Cafeteria, restricted to the interval between 12am and 2pm
for each day. d) Canteen. This place is in a different building and was not taken into account in a).
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2 Effect of data representation on epidemic spreading.

The collected contact data consist in a temporal network at a very high temporal resolution.
These data can be aggregated and represented in different ways, both along the temporal
and the organizational dimensions, in order e.g. to build models for the spread of epidemics
in the population. As discussed e.g. in (Smieszek et al., 2009; Read et al., 2008; Eames
et al., 2009; Stehlé et al., 2011; Machens et al., 2013; Blower & Go, 2011), the level of
detail of the data representation that is taken into account in the model can influence the
outcome of the simulations. We consider this issue with the data at hand, by using five
different representations for the contact dynamics, from highly detailed to simplistic, and
by using each representation as the support of an SIR model for epidemic spread (Machens
et al., 2013):

• Full data. We use the temporal network built from the empirical data at the highest
temporal resolution (20 s).

• Heterogeneous static network. We use the contact network aggregated over the
whole data collection period: in this network, nodes representing individuals who
have been in contact at least once are connected by a link whose weight is given by
the total contact time of these individuals, normalized by the total duration of the
data set.

• Global contact matrix. We consider that all nodes are connected to each other,
and that the weight of a link connecting two nodes depends only on their respec-
tive departments: it is given by the average contact time of all pairs of individuals
belonging to these departments. In other words, the total contact time between each
pair of departments is equally redistributed among all pairs of individuals of these
departments.

• Daily contact matrices. We consider a contact matrix representation, using for each
day the corresponding daily contact matrix to compute the weights of the links
between individuals.

• Homogeneous mixing. We consider a fully connected contact network with homo-
geneous weights, computed as the average contact time between any two individuals
(independently of their department).

In each representation, we moreover take into account inactivity periods (nights and week-
ends) by assuming that all nodes are isolated during these periods.

The results of the numerical simulations of an SIR model are shown in Fig. 5 for two val-
ues of β/µ . For β/µ = 100, no matter which representation is used, most of the epidemics
do not reach a large fraction of the population. The tails of the distribution of epidemic
sizes however become broader when using contact matrices or a homogeneous mixing
assumption, as the sparsity of the contacts is then not correctly considered (Machens et al.,
2013).

This effect is seen most clearly for β/µ = 1000. With complete contact information, i.e.,
if the spread is simulated on the time-resolved contact network, the distribution depends
on the value of β , as discussed in the main text. For small β (slow epidemics), a second
mode develops at large values of the epidemic size. For faster epidemics, this second mode
is suppressed: the recovery time becomes small enough for the temporal contact patterns to
have an impact on the spread. Much less infection paths are available during the infectious



Face-to-face contacts in an office building - Supplementary material 7

period of each node, and thus the epidemics does not spread as much as when β and µ

are small (in which case a node remains infectious for a longer time implying that it has
more contacts during its infectious period and the disease has more occasions to spread).
When static representations are used, and in particular when using contact matrices or a
homogeneous mixing hypothesis, the second mode is strongly overestimated. The second
mode moreover is not suppressed when β increases, and even shows the opposite tendency
with respect to the time-resolved network: as the epidemic spreads faster, it unfolds over a
smaller number of inactivity periods (nights and week-ends) and therefore tends to reach
larger sizes; on the other hand, the spread during the days does not depend on β , at fixed
β/µ .

Overall, these results are similar to the ones obtained in (Machens et al., 2013) in a
different context and show the importance of using a data representation that includes
enough information on the sparsity and heterogeneity of contact networks.
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8 M. Génois, C. L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin and A. Barrat

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02

0 20 40 60 80 10010-4

10-3

10-2

10-1

100

0.0004 0.02
P
D
F

P
D
F

P
D
F

P
D
F

P
D
F

N N

H
o
m
o
g
e
n
e
o
u
s

m
ix
in
g

T
w
o
w
e
e
k
s

co
n
ta
ct

m
a
tr
ix

D
a
il
y

co
n
ta
ct

m
a
tr
ic
e
s

H
e
te
ro

g
e
n
e
o
u
s

st
a
ti
c
n
e
tw

o
rk

F
u
ll
d
a
ta

β/µ = 100 β/µ = 1000

Fig. 5. Distributions of the size N of epidemics. Simulations are done for different values of the
infection rate β , the recovering rate µ being fixed by the constant β/µ ratio. For each value of β ,
statistics are computed from 1000 simulations.


