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Supplementary Methods 

Short description of the Bron-Kerbosch algorithm 

The Bron-Kerbosch algorithm for counting all maximal cliques (Bron & Kerbosch, 1973) in a 

graph is a backtracking algorithm which uses the branch and bound technique to cut off branches 

that cannot lead to a maximal clique. The algorithm uses three sets: compsub, candidates and 

not. The set compsub contains the nodes which are to be examined as maximal cliques, when 

traversing along a branch of the backtracking tree. The set candidates contain the nodes which 

will enlarge the set of nodes in compsub. The set not contains nodes which already served as an 

extension to the current compsub nodes, and are now explicitly excluded. The core of the 

algorithm is generating all possible extensions to compsub using the possible nodes in 

candidates, without using the nodes in not. The nodes in not were already generated in previous 

stages, and therefore should not be generated again. Whenever candidates is empty – this means 

that the current compsub could not be extended. If not is empty as well – this means that 

compsub is a maximal clique. In case that not is not empty – this means that there was already a 

larger clique identified, which contains both compsub and some extensions from the not set. The 

algorithm has different versions of how to generate the possible extensions, in order to minimize 

the traverse on the tree (Cazals & Karande, 2008; Koch, 2001; Tomita, Tanaka, & Takahashi, 

2006). 

Maximal-cliques counting algorithm 

We have used the algorithm for counting maximal cliques implemented in the Boost Graph 

library ("Boost C++ Source Libraries,"). This algorithm is based on the Bron-Kerbosch original 



algorithm (Bron & Kerbosch, 1973) with a backtracking method to reduce run time. The 

algorithm counts the total number of maximal cliques and we added a counter for every clique 

size. 

All-cliques counting algorithm 

We have changed the Boost algorithm for counting the maximal cliques, to count all cliques 

in the graph. This was done by deleting the back-tracking part of the algorithm. This way the 

recursion gets to all the “leaves” of the tree, and therefore counts all the cliques combinations. 

The original maximal cliques counting algorithm, backtrack back up when it recognizes that 

there are no maximal cliques down the branch, but now we are interested in all the cliques, not 

only the maximal ones. 

Simulations based on the Bipartite Model 

For each real-world network, we simulated another network with the same number of nodes 

and the same number of edges as in the original one, based on the Bipartite model (M. E. J. 

Newman, Watts, & Strogatz, 2002).  

We first created a bipartite network with V nodes in one partition and N nodes in the other 

partition. We generated edges between the nodes in the different partitions, such that the 

probability of an edge between a pair of nodes in the two partitions is:
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where e is the number of edges in the original network, v is the number of nodes in the original 

network and Nhidden is the number of nodes in the hidden partition. 

 



We then transformed the bipartite network into a unipartite network by connecting all nodes 

in the first partition that have a common neighboring node in the second partition. We then 

counted the number of cliques in the final unipartite network. In addition, we generated a 

shuffled version for that generated network (see “Network shuffling”) and counted the number of 

cliques in the shuffled network. We looked for the best fit to the number of cliques in the original 

and shuffled networks, where the free parameter was the number of nodes in the second 

partition. 

 

Simulations based on the Hierarchical Model 

For each real-world network, we simulated another network with the same number of nodes 

and the same number of edges as in the original one, based on the hierarchical model (Kleinberg, 

2002; Watts, Dodds, & Newman, 2002). We first created a binary tree whose leaves are the 

nodes in the network graph. The probability for an edge between two nodes i and j (which are 

two leaves in the binary tree) is proportional to 
( , )LCA i je  

 , where LCA is the height of their 

lowest common ancestor in the tree, and alpha is a free parameter. Once the network has been 

created, we counted the number of cliques in the resulting network. In addition, we generated a 

shuffled version of the same network (see “Network shuffling”), and counted the number of 

cliques in the shuffled network as well. We looked for the best fit to the number of cliques in the 

original and shuffled network, with alpha as a free parameter. 

 

Simulations based on the Gravitation Model 

For each real-world network, we simulated another network, with the same number of nodes 

and the same number of edges as in the original one, based on the gravitation model (R. Itzhack 



& Louzoun, 2010; Kalveram, 1992; Zhang & Jarrett, 1998). In a network with V nodes, each 

node i is assigned a random location       from a given distribution (exponential or Gaussian) 

with a mean distribution variable µ in the exponential case or with a zero mean and standard 

deviation distribution variable of µ in the Gaussian case.  The probability for an edge to exist 

between node i and node j is proportional to           . In addition, we generated a shuffled 

version of the same network (see “Network shuffling”), and counted the number of cliques in the 

shuffled network as well. We looked for the best fit to the number of cliques in the original and 

shuffled network, with alpha and µ as free parameters. The graphs generated by the gravitation 

model are actually, when choosing the parameters adequately, unit disk graphs. The problem of 

clique partitioning in unit disk graphs is already discussed and has some fast approximations 

(Dumitrescu & Pach, 2011). However, in our case there was no need to use these algorithms, 

since given the size of the network used, the Bron Kerbosch algorithm is rapid enough. 

Comparison between toy models and real networks 

In order to compare each model with the observed clique distribution, we defined a cost 

function to be the sum of squares of the difference between the log of the original network's 

clique distribution and the log of the simulated network's clique distribution plus the sum of 

squares between the log shuffled curves of the two networks (original and simulated). We 

minimized the cost function and found the optimal value(s) of the parameters in the simulated 

network(s), which gives the minimal cost. Since the number of cliques of different networks 

even with the same parameter can vary widely, we averaged the number of cliques of 20 runs 

and calculated the error of the averaged number of cliques. 

After finding the best network, other network properties were evaluated:  the degree distribution,  

the distance distribution (using the Complex Networks Package for MatLab (Royi Itzhack et al., 



2010)) and number of motifs. In order to measure the “similarity” of each of the networks 

generated by each model to the original network, we compared the differences between the 

degree/distance distributions as in Eq. S1: 

(S1)  
2
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where origp is the degree/distance distribution for the original network and modelp is the 

degree/distance distribution for the simulated network. 

Un-directed motif count 

We have checked the number of undirected motifs (Kashtan, Itzkovitz, Milo, & Alon, 2004) of 

sizes 3 and 4 in the networks. We have counted the number of instances of every motif in the 

original network (Royi Itzhack, Mogilevski, & Louzoun, 2007), and compared it to the number 

of motifs found in the network generated by each of the models described (Bipartite, 

Hierarchical, Gravitation).  

 

 

  



Supplementary tables 
Table s1. List of the networks used. 

Name of network 
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Description of the network. 

Political books  105 8.4 A network of books about US politics published 

around the time of the 2004 presidential election 

and sold by the online bookseller Amazon.com. 

Edges between books represent frequent 

copurchasing of books by the same buyers. 

http://www-

personal.umich.edu/~mejn/netdata/polbooks.zip 

Word adjacencies (M. 

E. J. Newman, 2006)  

112 7.6 adjacency network of common adjectives and 

nouns in the novel David Copperfield by Charles 

Dickens. 

CEneural (Watts & 

Strogatz, 1998) 

297 14.5 A directed, weighted network representing the 

neural network of C. Elegans.  

Les Miserables 

(Knuth, 1993)  

77 6.6 coappearance network of characters in the novel 

Les Miserables. 

Florida (Ulanowicz, 

Bondavalli, & 

Egnotovich, 1998) 

182 32.4 Food Web data collection (http://vlado.fmf.uni-

lj.si/pub/networks/data/bio/foodweb/foodweb.htm). 

Foldoc (Batagelj, 13,356 13.7 Foldoc is a searchable dictionary. In the network, 



Mrvar, & Zaveršnik, 

2002a, 2002b) 

an arc (X,Y) from term X to term Y exists in the 

network iff in the FOLDOC dictionary the term Y 

is used to describe the meaning of term X  

(http://vlado.fmf.uni-

lj.si/pub/networks/data/dic/foldoc/foldoc.htm). 

PairsP (Nelson, 

McEvoy, & Schreiber, 

1998) 

10,617 12 Free Associations norms (cue X is associated with 

target Y). 

eatSR  (Kiss, 

Armstrong, Milroy, & 

Piper, 1973) 

23,218 26.3 The Edinburgh Associative Thesaurus (EAT) is a 

set of word association norms showing the counts 

of word association as collected from subjects.  

http://monkey.cis.rl.ac.uk/Eat/htdocs/eat.zip 

American College 

Football (Girvan & 

Newman, 2002) 

117 10.7 Network of American football games between 

Division IA colleges during regular season Fall 

2000. 

CEmeta (Duch & 

Arenas, 2005) 

453 9 List of edges of the metabolic network of 

C.elegans. 

political blogs(Adamic 

& Glance, 2005)  

1224 27.3 A directed network of hyperlinks between weblogs 

on US politics, recorded in 2005 by Adamic and 

Glance. Please cite L. A. Adamic and N. Glance, 

"The political blogosphere and the 2004 US 

Election", in Proceedings of the WWW-2005 

Workshop on the Weblogging Ecosystem (2005). 



Autonomous systems 

(M. Newman) 

22963 4.2 A symmetrized snapshot of the structure of the 

Internet at the level of autonomous systems, 

reconstructed from BGP tables posted by the 

University of Oregon Route Views Project. This 

snapshot was created by Mark Newman from data 

for July 22, 2006 and is not previously published. 

High energy theory 

collaborations (M. E. 

J. Newman, 2001) 

7610 4.1 Weighted network of coauthorships between 

scientists posting preprints on the High-Energy 

Theory E-Print Archive between January 1, 1995 

and December 31, 1999. 

 

 

 

  

http://arxiv.org/archive/hep-th
http://arxiv.org/archive/hep-th


Table s2. Quantification of similarity of the different attributes checked (number of all cliques, 

number of maximal cliques, distance distribution, degree distribution and connectivity 

distribution) for the different models and for an Erdős–Rényi network with the same number of 

nodes and the same number of edges. The similarity for number of cliques/maximal cliques is 

 
2

10 10log ( 1) log ( 1)currModel originalNcliques Ncliques   . The similarity for distance, degree and 

connectivity distributions is   
2

10 10log ( 0.00001) log ( 0.00001)currModel originalValue Value   .  

The sum was performed on 20 logarithmic bins in the case of the distance and in the case of the 

degree and on 21 linear bins (0 to 1 in jumps of 0.05) in the case of the connectivity. 

CEmeta 

  exp gauss bipartite  hierarchical ER 

cliques 38.12445 0.526036 3.903792 31.80707635 41.8841 

maximal cliques 4.204133 0.965977 2.25388 16.83305905 17.00752 

distance 54.3227 279.0178 0.417263 136.2590108 3.492258 

degree 125.3849 154.8057 120.294 356.5183431 156.2681 

connectivity 67.63719 100.5453 15.82171 0 0 

CEneural 

  exp gauss bipartite  hierarchical ER 

cliques 0.222053 0.878272 3.441292 7.693195753 23.39759 

maximal cliques 0.639551 1.239018 1.467425 8.385082828 12.994 

distance 201.0002 227.678 0.05767 89.41065109 2.244398 

degree 89.30931 89.10089 120.4451 327.5917488 229.7808 

connectivity 76.65822 76.5002 8.011063 0 0 

lesmis 

  exp gauss bipartite  hierarchical ER 

cliques 6.03727 4.363946 12.17891 15.85587523 33.88578 



maximal cliques 0.547642 0.624482 0.523501 13.05641655 2.782671 

distance 144.4159 145.7518 1.411752 125.2473688 0.246215 

degree 58.64144 58.81799 64.81995 258.697885 134.6167 

connectivity 92.39437 97.88812 20.85202 0 0 

polbooks 

  exp gauss bipartite  hierarchical ER 

cliques 3.20421 0.24494 4.725936 4.794936831 9.113107 

maximal cliques 2.264349 0.240985 0.764138 4.671503487 5.343049 

distance 0.160112 79.26078 51.61488 124.542932 53.0961 

degree 60.82552 63.94694 60.81471 199.1013798 55.18073 

connectivity 78.49295 79.08468 0 0 0 

 

  



Table s3. The assortativity (the correlation between the degrees of neighboring nodes) for the 

original networks, for the networks generated by each of the models and for an Erdős–Rényi 

network with the same number of nodes and the same number of edges. 

  original exp gauss bipartite hierarchical ER 

CEmeta -0.19395 -0.05669 0.659752 0.054955 -0.00698 -0.02991 

CEneural -0.10679 0.639954 0.642821 0.056169 -0.00507 0.001562 

lesmis -0.01147 0.474783 0.540804 -0.07357 -0.03007 0.108019 

polbooks -0.10411 0.306476 0.492816 0.034314 -0.50206 -0.02696 

  

 

  



Supplementary figures 

 

S1. Number of cliques counted by the algorithm we used for various ER networks (solid lines) 

compared to the expected number of cliques (dashed lines). Blue (squares): v=150, p=0.1; 

gray(triangles): v=250, p=0.25; black(stars): v=500, p = 0.2; green(‘x’ signs): v=500, p=0.005; 

red(circles): v=1000,p=0.05. 

 



 

S2. Number of all cliques in the original PolBlogs network (1224 nodes, blue solid lines) and 

in its counterpart shuffled network (blue dashed line); number of all cliques in the original 

HepTh network (7610 nodes, green solid lines) and in its counterpart shuffled network (green 

dashed line). All cliques in thin lines; maximal cliques in thick lines.  



 

S3. Number of all cliques in the original CEmeta network (453 nodes, solid lines) and in its 

counterpart shuffled networks (dashed line). All cliques in thin lines; maximal cliques in thick 

lines.  

 

 S4. Number of all cliques in the original Florida network (128 nodes, solid lines) and in its 

counterpart shuffled networks (dashed line). All cliques in thin lines; maximal cliques in thick 

lines.  



  

S5. Results of Gravitation model (both Exponential and Gaussian simulations) as well as for 

bipartite and hierarchical models for the PolBooks network (104 nodes, 416 edges): Left 

drawing: Shortest distance distributions in the different networks. Right drawing:  Degree 

distribution of the nodes in the different networks.  
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S6. Results of Gravitation model (both Exponential and Gaussian simulations) as well as for 

bipartite and hierarchical models for the CEneural network (296 nodes, 2072 edges): Number of 

cliques, number of maximal cliques, shortest distance distribution and degree distribution. 

 

S7. Results of Gravitation model (both Exponential and Gaussian simulations) as well as for 

bipartite and hierarchical models for the CEmeta network (453 nodes, 1812 edges): Number of 

cliques, number of maximal cliques, shortest distance distribution and degree distribution. 



 

 

S8. Results of Gravitation model (both Exponential and Gaussian simulations) as well as for 

bipartite and hierarchical models for the lesmis network (76 nodes, 228 edges): Number of 

cliques, number of maximal cliques, shortest distance distribution and degree distribution. 

 



 

S9. Error values (according to Eq. 5) for the differences in number of cliques between original 

networks and the networks generated by each one of the models. The smallest error is either for 

the gravitation model or for the bipartite model. 

 

 



 

 

S10. Comparison of number of motifs of sizes 3 and 4, for the original polbooks network as 

well as for networks generated by the gravitation model (using either an Exponential or a 

Gaussian distribution), bipartite model and hierarchical model. The number of motifs for the 

exponential gravitation model is the closest to the number of motifs in the original real world 

network. 
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