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1 Appendix A: Characterization of Valid Degree Mixing Matrices

Theorem: Let T DMMi, j represent the number of edges connecting nodes of degree i to
nodes of degree j. Let T Di = (∑ j T DMMi, j +T DMMi,i)/i (this will represent the number
of nodes with degree i). A square matrix, T DMM, of dimension r is graphical by a simple
undirected network if and only if the following five conditions are met.

1. T Di is a non-negative integer
2. T DMMi, j ≤ T Di ∗T D j if i 6= j
3. T DMMi,i ≤ T Di ∗ (T Di −1)/2
4. T DMMi, j ≥ 0
5. T DMMi, j = T DMM j,i (symmetric)

Before we can prove the theorem, we first need the following lemma.

Lemma: Let |E| ∈ {0, · · · ,n ∗ (n−1)/2} where n is the number of nodes in a graph. The
degree sequence d where di ∈ {α,α + 1} and di ≥ 0 for all i ∈ {1, · · · ,n} and ∑

n
i=0 di =

2∗ |E| is graphical.

Proof of Lemma: Proof by strong induction on |E|.

Base Case: |E| = 1. Thus, d has size, n, ≥ 2 and is a set of n−2 0’s and exactly two 1’s. d
is clearly graphical by creating n nodes with the last two having an edge between them.

Induction Step: Assume true for |E| ≤ N show for |E| = N + 1. Let d be a degree
sequence of size n, where di ∈ {α,α + 1} and di ≥ 0 for all i ∈ {1, · · · ,n}, ∑

n−1
i=0 di = 2 ∗

(N +1) and N +1 ∈ {0, · · · ,n∗ (n−1)/2}. Let M = min{i : di ≥ d j for all j ∈ {1, · · · ,n}}.
Now, construct a degree sequence d′ ; initially let d′ be equal to d . Next subtract one
from the largest dM values in d′ , excluding position M; therefore, d′

i j
= di j

− 1 for all

j ∈ {1, · · · ,dM} where {d′
i1
, · · · ,d′

ik
} are the largest dM values in d′ (excluding position

M). Lastly, remove node M from d′ ; therefore, d′ is of size n− 1. This construction is
possible because dM = d 2∗(N+1)

n e ≤ n∗(n−1)
n = n− 1 and di j

> 0 for all j ∈ {1, · · · ,dM}
since if dM = 1 then ∃ a j 6= M such that d j = 1 because ∑

n−1
i=0 di is even.
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In order to check if d′ is graphical, we need to ensure ∑
n−1
i=0 d′i

2 ∈ {0, · · · ,(n− 1) ∗ (n−
2)/2} and d′

i ∈ {α,α + 1} for all i ∈ {1, · · · ,n− 1}. By assumption we know that N +
1 ≤ n∗(n−1)

2 . Thus, it can be shown that N + 1 − 2∗(N+1)
n ≤ (n−1)∗(n−2)

2 . Since N + 1 −

d 2∗(N+1)
n e = ∑

n−1
i=0 d′i

2 we get the desired result that ∑
n−1
i=0 d′i

2 ∈ {0, · · · ,(n− 1) ∗ (n− 2)/2}.
d′

i ∈ {α ′,α ′ + 1} for all i ∈ {1, · · · ,n− 1} is guaranteed since we are subtracting one for
the degrees with the highest values and d originally had the property that di ∈ {α,α + 1}
for all i ∈ {1, · · · ,n}.

With these two conditions met, we can use the induction assumption, and thus d′ is
graphical. Including an isolate node at position M would still make the sequence graphical.
Finally, connecting the isolate node to {d′

i1
, · · · ,d′

ik
} would still be graphical. This new

graph would have the degree sequence of d , and so d is graphical.

Proof of Theorem
Given an undirected graph, it is clear that the degree mixing matrix will satisfy the con-
ditions in Theorem 1.1. Thus, we need only show that a matrix which satisfies the five
criteria is graphical, which will be shown by constructing a realization of the matrix. We
begin by generating an empty network with ∑i T Di nodes, where T Di of them will have
degree i. The first condition guarantees that T Di is a non-negative integer. The next step
is adding edges to the empty graph. This will be separated into two steps. The first step
is adding edges between nodes with the same final degree and the second step is adding
edges between nodes with different final degrees.

Step 1: Edges between nodes with same final degree

The goal of step one is to connect T DMMi,i edges between nodes with final degree i for
each i∈ {1, · · · ,r}. We want to connect the edges such that at the end of this step each node
of final degree i has one of two possible degree values, bT DMMi,i

T Di
c and dT DMMi,i

T Di
e, for its

current degree, i.e. the edges are added to balance the current degree as much as possible.
The assignment of T Di ensures that maximum degree after this step, dT DMMi,i

T Di
e, is less than

or equal to the desired final degree, i. In order to prove that edges can be added to maintain
the required degree balance we use the lemma, where T DMMi,i and T Di represent |E| and

n respectively. To apply the lemma, we need to insure T DMMi,i ∈ {0, · · · , (T Di∗(T Di−1))
2 },

which is guaranteed by conditions (3) and (4).

Step 2: Connect nodes with different degrees

Once edges have been added to nodes with the same final degree, we have to add edges
between nodes of degree i to nodes of degree j, for each i, j ∈ {1, · · · ,r}. Define the
following for each i, j pair where i 6= j. Let ~αi denote a vector where the kth term, αik

,

equals i minus current degree of the kth node with degree i, i.e. the number of edges
still needed for each node. Similarly, define ~α j for nodes with degree j. Without loss of

generality we assume that ~αi and ~α j are in decreasing order. Define ~βi such that βik
∈
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Fig. 1. Edge connections for a node of degree i
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Fig. 2. Edge connections between nodes of degree i and degree j.

{bT DMMi, j
T Di

c,dT DMMi, j
T Di

e}, ∑k βik
= T DMMi, j, and βi1

≥ βi2
≥ ·· · ≥ βiT Di

. βik
represents the

number of edges that will be added which connect the kth node with degree i with nodes
of degree j. Similarly, define ~β j for nodes with degree j. Figure 1 graphical describes the
edge connections for a node of degree i.

Connect the first degree i node to the first βi1
nodes of degree j. Next connect the second

degree i node to the next βi2
nodes of degree j (may need to loop back to the first degree j

node). This process is described in figure 2.
Repeat this process for all T Di degree i nodes. This process can fail in one of three ways
to construct a graph with the degree mixing matrix of T DMM.

Issue 1: βik
> T D j.

The issue 1 occurs when a single node, k, of degree i must connect to βik
nodes of degree

j, but βik
is greater than the number of nodes of degree j, T D j. Thus, node k must form two
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edges with the same node of degree j. This cannot occur because βik
≤ dT DMMi, j

T Di
e ≤ T D j

by conditions (1) and (2).

Issue 2: αik
< βik

.

The second issue occurs when αik
< βik

, i.e. a node of degree i has fewer unconnected
edges than the number of nodes of degree j to which it is assigned. Initially when con-
structing the graph we generated T Di = (∑ j T DMMi, j + T DMMi,i)/i nodes of degree i,
which means the sum degree of all the degree i nodes is (∑ j T DMMi, j + T DMMi,i). The
number of unconnected edges after step 1 is (∑ j T DMMi, j +T DMMi,i)−2∗T DMMi,i =
∑ j 6=i T DMMi, j. Thus, there are enough unconnected edges from nodes of degree i to
connect the required number of edges, T DMMi, j. Hence, we know ∑k αik

−βik
≥ 0. Thus,

there exists partitions, p1 and p2, of size T Di of the values ∑k αik
and ∑k βik

such that
p1l

≥ p2l
for each l ∈ {1, · · · ,T Di}. One such pair of partitions is where each partition

is decreasing and is as balanced as possible. This is exactly the partition generated under
this construction proof. Throughout the construction the number of available edges for
nodes with the same degree are as balanced as possible. The first step of connecting edges
between nodes with the same degree initially forces this condition. In subsequent steps of
connecting nodes with different degrees ensures this condition remains by assigning more
edges to those nodes with more available edges. Thus, by construction αik

< βik
is not

possible.

Issue 3: α jk
< β jk

.

Due to the symmetry of i and j, the proof that α jk
< β jk

is not possible is identical to
issue 2.

2 Appendix B: Additional Simulations

Four simulated datasets each containing a sample of 100 nodal degrees were drawn from
a negative binomial, Poisson lognormal, Waring, and Yule distribution with parameter sets
{v =(5,0.2),maxdeg = 8},{v = c(0.6,1.2),maxdeg = 8,cuto f f = 0},{v = c(3.5,0.1),maxdeg =
8}, and {rho = 4,maxdeg = 8}, respectively; see commands in Handcock (2003) for
additional details. Table 1 shows the values of Y from the 100 simulated nodal degrees
for each of the four simulated datasets.

Using the procedure outlined in section 5.2 to specify the PPND, 50,010,000 networks
(10,000 removed for burn-in) were generated for each dataset and every 1,000th network is
used for analysis; the generated networks were of size 1000. The marginal plots in figures
3–6 are calculated by computing the degree distribution for each of the 50,000 simulated
networks. As in section 5.3, the black and red lines represent the target and simulated
PPSNSD.
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Table 1. Sampled Nodal Degrees for Simulated Datasets

Degree 0 1 2 3 4 5 6 7 8

Negative Binomial 0 24 21 17 10 9 6 9 4
Poisson lognormal 27 23 12 15 12 3 1 3 4
Waring 0 69 14 6 3 4 2 1 1
Yule 0 65 23 5 2 2 0 2 1

Fig. 3. Negative Binomial: The black lines represent the target PPSNSD. The solid red lines
represent the simulated PPSNSD using the proposed methods.

Fig. 4. Poisson Lognormal: The black lines represent the target PPSNSD. The solid red lines
represent the simulated PPSNSD using the proposed methods.
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Fig. 5. Waring: The black lines represent the target PPSNSD. The solid red lines represent the
simulated PPSNSD using the proposed methods.

Fig. 6. Yule: The black lines represent the target PPSNSD. The solid red lines represent the
simulated PPSNSD using the proposed methods.
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