
Technical Appendix: Improving precision through design and analysis in
experiments with noncompliance

TA-1 Formal Efficiency Gain Comparisons

In this section we formalize the theoretical precision gains under blocking, as well as the relative

gains of the principal ignorability approaches over IV. In line with much of the blocking literature

(see Nickerson (2005), Miratrix, Sekhon, and Yu (2013), etc.), we demonstrate that the proposed

blocking design can help greatly improve statistical precision over complete randomization, and can

help off-set some of the precision loss associated with low compliance rates. More specifically, when

block principal ignorability holds, blocking can provide precision gains over principal score weighted

estimators. Furthermore, in situations where we cannot safely assume block principal ignorability,

block-randomized design using variables related to both outcome and compliance at the design stage

can help increase the precision of the IV estimator for the CACE.

In the following two subsections, we define N = 2n, such that there are 2n total units in the

experiment. Assume the number of units randomly assigned to encouragement and control is fixed

and equal (i.e., there are n units in encouragement, and n units in control). We will consider a

matched-pairs setting. As such, the number of blocks is also equal to n (i.e., B = n). Consistent

with Feller, Mealli, and Miratrix (2017), we assume the principal scores are known (and fixed).

Finally, define p as the average probability of compliance. The variances are derived under a finite-

sample framework, consistent with Imbens and Rubin (2015). The overall results can be extended

to a super-population framework with slight modifications to the theoretical expressions, depending

on what sampling design is assumed. See Pashley and Miratrix (2021b) and Pashley and Miratrix

(2021a) for more discussion.

TA-1.1 Principal Ignorability Approaches versus Instrumental Variables

In the following subsection, we show that the relative efficiency gain from using principal ignora-

bility approaches over instrumental variables. To directly compare the blocked difference-in-means

estimator with the alternative approaches (i.e., principal score weighting and IV), we assume that

researchers are using a blocking design.

To begin, we demonstrate that the block difference-in-means estimator can provide efficiency

gains over the block IV estimator:

Theorem TA-1.1 (Relative Reduction in Variance from Block DiM over Block IV)

The difference in variance between a blocked IV estimator and the block difference-in-means estima-

tor is approximately:

var(τ̂ IVB )− var(τ̂B) ≈ 1

(np)2

(
B∑
b=1

(
1− P (Cb = 1)

)
var(τ̂b)− var(Cb) · E(τ̂b)

2

)
(1)

A formal derivation of Theorem TA-1.1 can be found in Appendix TA-2.2.1. Consider the case in

which P (Cb = 1) is equal to 1 or 0 for all blocks b (i.e., units within a given block have the same
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compliance status). In such a case, Equation 1 will simplify to the following:

var(τ̂ IVB )− var(τ̂B) ≈ 1

(np)2

B∑
b=1

(
1− Cb

)
var(τ̂b) ≥ 0

Under this setting, because the blocked difference-in-means estimator directly drops blocks with no

compliers in them, the blocked difference-in-means estimator will be a more efficient estimator than

the blocked IV estimator. This is especially helpful when there are high rates of non-compliance,

as the number of blocks we are able to drop increases with higher rates of non-compliance.

We can similarly show the efficiency gain from using blocked PSW over blocked IV.

Theorem TA-1.2 (Relative Reduction in Variance from Block PSW over Block IV)

The difference in variance between a blocked IV estimator and the block difference-in-means estima-

tor is approximately:

var(τ̂ IVB )− var(τ̂PSWB ) ≈ 1

(np)2

B∑
b=1

(
(1− P (Cb = 1))varb(Yi(1)) + (1− Eb(ec(Xi)

2))varb(Yi(0))

−
(
Eb(Y (1))2var(Cb)− Eb(Yi(0))2var(ec(Xi))

))
+ ξ1, (2)

where ξ1 represents the difference between the unobservable, individual-level treatment effect.

We see that the efficiency gain from using PSW over IV in a blocking design is going to be

dependent on (1) how much variation in compliance status (and principal score) there is within a

specific block, and (2) how much compliance there is within each block. To illustrate the first point,

consider the case in which there is no variation in compliance status and principal score within

each block. Then we expect var(Cb) and var(ec(Xi)) to be equal to zero. As such, Equation 2 will

simplify to:

var(τ̂ IVB )− var(τ̂PSWB )

≈ 1

(np)2

(
B∑
b=1

(1− P (Cb = 1))varb(Yi(1)) + (1− Eb(ec(Xi)
2))varb(Yi(0))

)
+ ξ1.

So long as ξ1 is relatively small, then we expect this expression to be greater than zero.

For the second point, if the compliance rate is very low overall, because the principal score

weighting estimator is weighting by probability of compliance, this reduces the overall magnitude

of the variance for a block b (i.e., P (Cb = 1) and Eb(ec(Xi)
2) will both be small). This can help

increase the relative efficiency gain over the block IV estimator.

In practice, if the blocks are formed such that we are able to minimize variation in compliance

within a block (i.e., minimize var(Cb) and var(ec(Xi))), then the relative reduction in variance from

using a block principal ignorability (i.e., block DIM or block PSW) over a block IV estimator will

increase. With blocks of size 2, we expect, in practice, there to be minimal variation within each

pair. In particular, if block principal ignorability holds, using the blocked PI will generally provide

efficiency gains over the blocked IV estimator. We illustrate this in our simulations.
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TA-1.2 Advantages to Precision from Blocking Design

In the following subsection, we examine the precision gains from using a blocking design. We show

that using blocked difference-in-means can provide efficiency gains over a principal score weighted

estimator with complete randomization. Furthermore, we extend the results from Miratrix, Sekhon,

and Yu, 2013 and show blocking can be leveraged in the instrumental variables setting to help offset

some of the precision loss under a weak instrument.

TA-1.2.1 Blocked Difference-in-Means versus Principal Score Weighting

We now compare the variance of the blocked difference-in-means estimator, identified under block

principal ignorability, and the principal score weighting estimator with complete randomization,

identified under principal ignorability. We show that the difference in precision between the blocked

difference-in-means estimator and the principal score weighted estimator is primarily dependent

upon the following: (1) the gains from the blocking design and (2) how much variation from complete

randomization is reduced by weighting on the compliance scores. We formalize this in the following

theorem.

Theorem TA-1.3 (Relative Efficiency of Blocked Difference-in-Means v. PSW)

Assuming that the principal scores are estimated using the same set of covariates, Xi, that are used

to construct blocks, the approximate reduction in variance from using blocked difference-in-means

over principal score weighting is written as:

var(τ̂PSW )−var(τ̂B)

≈ 1

2n− 1

1

p2

(
varB(µ̂b(1) + µ̂b(0))− 1

n

B∑
b=1

n− 1

n
var(τ̂PSWb )

)
︸ ︷︷ ︸

(a) Reduction in variance from blocking

(3)

− 1

(np)2

B∑
b=1

(
(Eb(ec(Xi))− Eb(ec(Xi)

2))(varb(Yi(0)) + Eb(Yi(0))2
)

+ ζ︸ ︷︷ ︸
(b) Reduction in variance from weighting control units

,

where µ̂b(1) and µ̂b(0) represent the average complier outcome of the encouragement units and

average weighted outcome of the control units (respectively), for a block b. varB(Xb) = 1
n

∑n
b=1(Xb−

1
n

∑B
k=1Xk)2, var(τ̂ (b)) represents the within-block variation of block b, and ζ is a function of the

unobservable individual-level treatment effect terms (see Appendix TA-2.2.3 for more discussion).

A formal derivation of Theorem TA-1.3 is in Appendix TA-2.2.3. The first component in Theorem

TA-1.3 (i.e., Equation 3(a)) represents the reduction in variance from for the principal score weighted

estimator that comes from the blocking design. As is generally true with blocking designs, the

magnitude of this term will depend on the total within-block and between-block variation, with

gains when the between block variation in the outcomes dominates the within block variation.

Previous studies have shown that even in cases when blocks are created at random, the variance of

an estimator under blocking is typically no worse than the variance of an estimator under complete

randomization (Miratrix, Sekhon, and Yu, 2013; Pashley and Miratrix, 2021a). We expect that, at

worst, if blocks are formed at random, Equation 3(a) will be roughly equal to zero–i.e., there are no

gains to efficiency from blocking. In practice, however, if researchers block on prognostic variables,
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this term will be positive.

The second component in Theorem TA-1.3 (i.e., Equation 3(b)) represents the reduction in

variance from the principal score weighted estimator over the blocked difference-in-means estimator

that comes from re-weighting the control units. The overall gains to efficiency from re-weighting is

represented by the difference between the average principal score and the average principal score

squared across a block b. If the principal scores within a given block are very extreme (i.e., close to

0 or 1), then we expect this term to be relatively small. However, if the principal scores within a

block are less extreme (i.e., close to 0.5), then the difference will be larger.

In practice, because reduction in variance from weighting the control units only applies to the

within-block variation of the control units, if the within-block variation is sufficiently minimized by

the blocking design, it is difficult for the principal score weighted estimator to overcome the gains

from blocking.

There are several key takeaways to highlight. First, while identification of the block difference-in-

means estimator requires blocking on covariates that are related to compliance, precision is largely

dependent on blocking on covariates related to variation in the outcome. Thus, researchers should

be blocking on covariates related to compliance and the outcome. This formalizes previous findings

in the principal stratification literature, which have shown that including covariates related to both

compliance and outcome can be helpful when performing post-hoc adjustments to estimate CACE

(Stuart and Jo, 2015; Porcher et al., 2016).

Secondly, this section focused on the precision gains that researchers can achieve from using a

blocked experimental design with a blocked difference-in-means estimator to address confounding

from noncompliance. However, a blocking design can be implemented in conjunction with principal

score weighting, thereby leveraging the precision gains from the experimental design as well any

precision gains that result from using model-based approaches. This includes adjusting for in-exact

matches in the blocking design. In the context of Theorem TA-1.3, the variance reduction of a

block-randomized design for the principal score weighted estimator is represented by Equation 3(a).

TA-1.2.2 Incorporating Blocking with Instrumental Variables

Even when researchers do not wish to invoke the block principal ignorability assumption, block-

randomization can still improve precision of the IV estimator. Furthermore, when principal ignor-

ability and the exclusion restriction are both viable assumptions for researchers to make, using the

block difference-in-means estimator results in efficiency gains over the block instrumental variables

estimator.

Extending the findings of Miratrix, Sekhon, and Yu (2013), we show that blocking can result in

efficiency gains in the instrumental variables setting:

Theorem TA-1.4 (Relative Reduction in Variance from Blocking for an IV Estimator)

Let τ̂BIV denote the IV estimator under block-randomization. The approximate relative reduction in

variance from blocking the IV estimator is as follows:

var(τ̂IV )− var(τ̂BIV ) ≈ 1

2n− 1
· 1

p2

(
varB(Ȳb(1) + Ȳb(0))− 1

n

B∑
b=1

n− 1

n
var(τ̂b)

)
, (4)

where, consistent with Theorem TA-1.3, varB(Xb) = 1
n

∑B
b=1

(
Xb − 1

n

∑n
k=1Xk

)2
, and var(τ̂b) rep-
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resents the within-block variation of block b.

The results of Theorem TA-1.4 follow directly from findings in Pashley and Miratrix (2021a), Mira-

trix, Sekhon, and Yu (2013), and Imai (2008). In particular, the relative reduction in variance from

blocking for the IV estimator depends minimizing within-block variation.

It is worth highlighting that the efficiency gain is a function of p2; as such, holding all else

equal, as noncompliance increases, so does the relative efficiency gain from using blocking in IV

estimation. Previous literature has highlighted the deterioration of the IV estimator’s performance

under a weak instrument (i.e., high rates of non-compliance), specifically with respect to inflated

standard errors and finite sample bias (Bound, Jaeger, and Baker, 1995). Blocking can help offset

the instability of a weak instrument. Therefore, even if researchers are relying on the exclusion

restriction, accounting for compliance (and/or outcome variation) during the design stage can help

offset the precision loss associated with high rates of non-compliance.

TA-2 Proofs and Derivations

TA-2.1 Variance Derivations

Lemma TA-2.1 (Approximate Variance of Block Difference-in-Means) Let there be n to-

tal blocks (i.e., each block comprises of 2 units). Cb is an indicator for whether or not block b is

considered a “complier block”. More specifically, Cb = 1 if the unit assigned to treatment in the b-th

block is a complier. Then, the approximate variance of the blocked difference-in-means estimator,

τ̂B, is:

var(τ̂B) ≈ 1

(np)2

B∑
b=1

(
var(τ̂b)P (Cb = 1)︸ ︷︷ ︸

(a)

+E(τ̂b)
2var(Cb)︸ ︷︷ ︸
(b)

)
. (5)

We can interpret term (a) as simply variance across each block b, weighted by the probability that

the block is a complier block. Term (b) is the penalty for any variation in compliance within a given

block. More specifically, Cb = Ci ·Ti | i ∈ B(b), where B(b) refers to the set of indices of the units in

the b-th block. As such, if Cb varies based on who is assigned to treatment, this would imply that

within a given block b, the complier status of the two units is different. As such, there is additional

variance incurred from whether or not we are dropping the b-th block.

Proof: This result follows from an application of the Delta Method. First, we note that we may

write τ̂B as a ratio estimator:

τ̂B =
1∑B

b=1 Cb

B∑
b=1

Cb · τ̂b

Because we are assuming blocks of size 2, B = n:

=
1∑n

b=1 Cb

n∑
b=1

Cb · τ̂b

=
1
n

∑n
b=1 Cb · τ̂b

1
n

∑n
b=1 Cb
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We now calculate a couple key quantities (i.e., the expectation, variance, and covariance of both

the denominator and numerator terms):

1. E
(
1
n

∑n
b=1 Cb

)
= p

E

(
1

n

n∑
b=1

Cb

)
=

1

n

n∑
b=1

E(Cb)

=
1

n

n∑
b=1

E(Ci · Ti | i ∈ B(b))

By randomization of treatment assignment:

=
1

n

n∑
b=1

E(Ci | i ∈ B(b))

Because E(Ci) =
∑n
b=1 E(Ci | i ∈ B(b))P (i ∈ B(b)), where P (i ∈ B(b)) = 1/n:

= p

2. E
(
1
n

∑n
b=1 Cb · τ̂b

)
= E(Cbτ̂b)

E

(
1

n

n∑
b=1

Cb · τ̂b

)
=

1

n

n∑
b=1

E(Cbτ̂b) = E(Cbτ̂b)

3. var
(
1
n

∑n
b=1 Cb

)
= 1

nvar(Cb)

var

(
1

n

n∑
b=1

Cb

)
=

1

n2

n∑
b=1

var(Cb) =
1

n
var(Cb)

4. cov
(
1
n

∑n
b=1 Cbτ̂b,

1
n

∑n
b=1 Cb

)
cov

(
1

n

n∑
b=1

Cbτ̂b,
1

n

n∑
b=1

Cb

)
=

1

n2
cov

(
n∑
b=1

Cbτ̂b,

n∑
b=1

Cb

)

=
1

n2

n∑
b=1

n∑
k=1

cov (Cbτ̂b, Ck)
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For b 6= k, the covariance is zero:

=
1

n2

n∑
b=1

cov (Cbτ̂b, Cb)

=
1

n2

n∑
b=1

(E(Cb · Cbτ̂b)− E(Cbτ̂b)E(Cb))

=
1

n2

n∑
b=1

(E(Cbτ̂b)− E(Cbτ̂b)E(Cb))

=
1

n2

n∑
b=1

E(Cbτ̂b) (1− E(Cb))

=
1

n
E(Cbτ̂b) (1− E(Cb))

We denote µ̂CB = 1
n

∑n
b=1 Cbτ̂b. Then, applying Delta Method:

var(τ̂B) ≈
(
E(Cbτ̂b)

p

)2(
1

E(Cbτ̂b)2
· var (µ̂CB)− 2

np

E(Cbτ̂b)(1− E(Cb)

E(Cbτ̂b)
+

1

np2
var(Cb)

)
=

1

p2
var (µ̂CB)− 2

n
· 1

p3
· E(Cbτ̂b)

2(1− E(Cb)) +
1

n
· 1

p4
var(Cb) · E(Cbτ̂b)

2︸ ︷︷ ︸
(∗)

(6)

=
1

p2
var (µ̂CB) + o(1) (7)

Therefore, we see that as n → ∞, the asymptotic variance of τ̂B is dominated by term 1. We will

first derive the expression for var(µ̂CB). Then, we will show that approximating the variance of τ̂B

by omitting the o(1) component results in a conservative estimate of the variance.

Deriving var(µ̂CB):

var(µ̂CB) = var

(
1

n

n∑
b=1

Cbτ̂b

)

=
1

n2
var

(
n∑
b=1

Cbτ̂b

)

Because we are using a blocking estimator, the variance between-block will be equal to zero, so we

are left with the sum of within-block variation.

=
1

n2

n∑
b=1

var (Cbτ̂b)

=
1

n2

n∑
b=1

E
(
C2
b τ̂

2
b

)
− E(Cbτ̂b)

2

=
1

n2

n∑
b=1

E
(
Cbτ̂

2
b

)
− E(Cbτ̂b)

2
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Under block principal ignorability, Cb |= τ̂b:

=
1

n2

n∑
b=1

E(Cb)E(τ̂2b )− E(Cb)
2E(τ̂b)

2

=
1

n2

n∑
b=1

E(Cb)E(τ̂2b )− E(Cb)E(τ̂b)
2 + E(Cb)E(τ̂b)

2 − E(Cb)
2E(τ̂b)

2

=
1

n2

n∑
b=1

E(Cb)var(Cb) + Eb(Cb)(1− Eb(Cb)) · Eb(τ̂b)2

=
1

n2

n∑
b=1

P (Cb = 1) · var(τ̂b) + P (Cb = 1)(1− P (Cb = 1)) · E(τ̂b)
2

Now we will show that omitting the o(1) component from Equation (6) results in a conservative

estimate of the variance in finite-samples. To do so, we re-write the term in (∗):

− 2

n
· 1

p3
· E(Cbτ̂b)

2(1− E(Cb)) +
1

n
· 1

p4
var(Cb) · E(Cbτ̂b)

2

= −E(Cbτ̂b)
2

np3

(
2(1− E(Cb))−

var(Cb)

p

)

Making note of the fact that E(Cb) = p and var(Cb) = p(1− p):

= −E(Cbτ̂b)
2

np3

(
2(1− p)− (1− p) · p

p

)
= −E(Cbτ̂b)

2

np3
(1− p) (8)

Because p is the probability of compliance, it is therefore bound between [0, 1], and as such, Equation

(8) is upper bounded by zero. �

Theorem TA-2.1 (Conservative Variance Estimator for Blocked Difference-in-Means)

For blocks of size 2, the following is a conservative estimate of the variance of the blocked difference-

in-means estimator:

v̂ar(τ̂B) =
1

nc(nc − 1)

B∑
b=1

Cb(τ̂b − τ̂B)2,

where nc is equal to the total number of revealed complier blocks, and τ̂b is equal to the difference-

in-means estimated across block b.

Proof: The proof closely follows the proof from Imbens and Rubin (2015), in which the authors

show that their proposed matched pairs variance estimator is conservative. We will apply a first-

order Taylor series expansion to show that the expectation is approximately equal to a value that is

greater than the true variance of τ̂B . A similar proof will show that v̂ar(τ̂B) consistently estimates

a value that is greater than the true variance of τ̂B .
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B∑
b=1

Cb(τ̂b − τ̂B)2 =

n∑
b=1

Cb(τ̂b − τ̂B)2

= E

(
n∑
b=1

Cb(τ̂b − τ̂B)2

)

= E

(
n∑
b=1

Cb

(
τ̂b −

1

nc

n∑
k=1

Ck τ̂k

))

= E

 n∑
b=1

Cbτ̂
2
b −

2

nc

n∑
b=1

Cbτ̂b ·
n∑
k=1

Ck τ̂k + Cb

(
1

nc

n∑
k=1

Ck τ̂k

)2


=

n∑
b=1

E(Cbτ̂
2
b )︸ ︷︷ ︸

(1)

−E

(
2

nc

n∑
b=1

n∑
k=1

CbCk τ̂bτ̂k

)
︸ ︷︷ ︸

(2)

+E

 n∑
b=1

Cb

(
1

nc

n∑
k=1

Ck τ̂k

)2


︸ ︷︷ ︸
(3)

Using another Taylor series approximation and linearity of expectation allows us to write term

(2) as follows:

E

(
2

nc

n∑
b=1

n∑
k=1

CbCk τ̂bτ̂k

)
≈ 2

np

n∑
b=1

n∑
k=1

E(CbCk τ̂bτ̂k)

=
2

np

 n∑
b=1

E(C2
b τ̂

2
b ) +

n∑
b=1

∑
k 6=b

E(CbCk τ̂bτ̂k)


=

2

np

 n∑
b=1

E(C2
b τ̂

2
b ) +

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)E(τ̂b)E(τ̂k)


=

2

np

 n∑
b=1

E(C2
b τ̂

2
b ) +

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)τb · τk


=

2

np

 n∑
b=1

E(Cbτ̂
2
b ) +

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)τb · τk


Similarly for term (3):

E

 n∑
b=1

Cb

(
1

nc

n∑
k=1

Ck τ̂k

)2
 ≈ 1

np
· E

(
n∑
b=1

Cb

)
· E

( n∑
k=1

Ck τ̂k

)2


=
1

(np)2
· npE

( n∑
k=1

Ck τ̂k

)2


=
1

np
E

( n∑
k=1

Ck τ̂k

) n∑
j=1

Cj τ̂j


=

1

np
E

 n∑
k=1

n∑
j=1

CkCj τ̂k τ̂j


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As such, combining the three terms:

E

(
n∑
b=1

Cb(τ̂b − τ̂B)2

)

≈ np− 1

np

n∑
b=1

E(Cbτ̂
2
b )− 1

np

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)τb · τk

=
np− 1

np

n∑
b=1

(
E(Cbτ̂

2
b )− E(Cbτ̂b)

2
)

+
np− 1

np

n∑
b=1

E(Cbτ̂b)
2 − 1

np

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)τb · τk

= (np− 1) · np · 1

p2
· var(µ̂CB) +

np− 1

np

n∑
b=1

E(Cbτ̂b)
2 − 1

np

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)τbτk︸ ︷︷ ︸
(∗∗)

Finally, we will show that the term denoted as (∗∗) is equal to
∑n
b=1 E(Cb)(τb − τCACE)2.

np− 1

np

n∑
b=1

E(Cbτ̂b)
2 − 1

np

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)τbτk

=

n∑
b=1

E(Cbτ̂b)
2 − 1

np

 n∑
b=1

E(Cbτ̂b)
2 +

n∑
b=1

∑
k 6=b

E(Cb)E(Ck)τbτk


=

n∑
b=1

E(Cbτ̂b)
2 − 1

np

(
n∑
b=1

E(Cb)τb

)2

=

n∑
b=1

E(Cbτ̂b)
2 − np · τ2CACE

=

n∑
b=1

E(Cb)E(τb)
2 −

n∑
b=1

E(Cb)τbτCACE +

n∑
b=1

E(Cb)τbτCACE − np · τ2CACE

Noting that
∑n
b=1 E(Cb)τbτCACE = np · τ2CACE :

=

n∑
b=1

E(Cb)τ
2
b − 2

n∑
b=1

E(Cb)τbτCACE + np · τ2CACE

=

n∑
b=1

E(Cb)τ
2
b − 2

n∑
b=1

E(Cb)τbτCACE +

n∑
b=1

E(Cb)τ
2
CACE

=

n∑
b=1

E(Cb)(τb − τCACE)2

As such, we can write the numerator as:

E

(
n∑
b=1

Cb(τ̂b − τ̂B)2

)
= (np− 1) · np · 1

p2
var(µ̂CB) +

n∑
b=1

E(Cb)(τb − τCACE)2

Now taking the expectation of the denominator, we see that E(nc(nc − 1)) = np(np − 1).

10



Therefore,

E(v̂ar(τ̂B)) ≈ 1

p2
var(µ̂CB) +

1

np(np− 1)

n∑
b=1

E(Cb)(τb − τCACE)2 ≥ var(τ̂B)

�

Lemma TA-2.2 (Approximate Variance of the Principal Score Weighted Estimator)

The approximate variance of the principal score weighted estimator is:

var(τ̂PSW ) ≈ 1

np2

(
1

2n− 1

N∑
i=1

(CiYi(1)− µ̂c,1)2 +
1

2n− 1

N∑
i=1

(êc(Xi)Yi(0)− µ̂c,0)2

)

− 1

(2n− 1)p2

N∑
i=1

(CiYi(1)− êc(Xi)Yi(0)− τPSW )2

Proof: By construction:
N∑
i=1

CiTi =

N∑
i=1

(1− Ti)êc(Xi)

As such, we can write the principal score weighted estimator as a ratio estimator:

τ̂PSW =

∑N
i=1 CiTiYi∑N
i=1 CiTi

−
∑N
i=1 êc(Xi) · (1− Ti)Yi∑N
i=1 êc(Xi)(1− Ti)

=

∑N
i=1

(
CiTiYi − êc(Xi)(1− Ti)Yi

)∑N
i=1 TiCi

=
1
N

∑N
i=1

(
CiTiYi − êc(Xi)(1− Ti)Yi

)
1
N

∑N
i=1 TiCi

We denote the numerator as µ̂PSW . Applying Delta Method to the principal score weighted esti-

mator, the approximate variance of the principal score weighted estimator is as follows:

var(τ̂PSW ) ≈ var(µ̂PSW )

p2
, (9)

where µ̂PSW := 1
N

∑N
i=1

(
CiTiYi − êc(Xi)(1− Ti)Yi

)
. Following Imbens and Rubin (2015),

var(µ̂PSW ) =var

(
1

N

N∑
i=1

CiTiYi − êc(Xi)(1− Ti)Yi

)

=
1

n

(
1

2n− 1

N∑
i=1

(CiYi(1)− µ̂c,1)2 +
1

2n− 1

N∑
i=1

(êc(Xi)Yi(0)− µ̂c,0)2

)

− 1

2n− 1

N∑
i=1

(CiYi(1)− êc(Xi)Yi(0)− τPSW )2

11



As such, the approximate variance of the principal score weighted estimator is:

var(τ̂PSW ) ≈ 1

np2

(
1

2n− 1

N∑
i=1

(CiYi(1)− µ̂c,1)2 +
1

2n− 1

N∑
i=1

(êc(Xi)Yi(0)− µ̂c,0)2

)

− 1

(2n− 1)p2

N∑
i=1

(CiYi(1)− êc(Xi)Yi(0)− τPSW )2

�

TA-2.2 Efficiency Comparisons

TA-2.2.1 Proof of Theorem TA-1.1

The difference in variance between a blocked IV estimator and the block difference-in-means esti-

mator is approximately:

var(τ̂ IVB )− var(τ̂B) =
1

(np)2

(
B∑
b=1

(
1− P (Cb = 1)

)
var(τ̂b)−

B∑
b=1

P (Cb = 1)(1− P (Cb = 1))E(τ̂b)
2

)

Proof: The approximate variance of a blocked IV estimator is written as:

var(τ̂ IVB ) ≈ 1

(np)2

B∑
b=1

var(τ̂b), (10)

which is the scaled sum of the within-block variances, and once again, because we have blocks of

size 2, B = n. We can then apply the results from Lemma TA-2.1 and take the difference between

Equation (10) and (5):

var(τ̂ IVB )− var(τ̂B) =
1

(np)2

n∑
b=1

var(τ̂b)−

(
1

(np)2

n∑
b=1

(
P (Cb = 1)var(τ̂b)− P (Cb = 1)(1− P (Cb = 1))E(τ̂b)

2
))

=
1

(np)2

(
n∑
b=1

(
1− P (Cb = 1)

)
var(τ̂b)−

n∑
b=1

P (Cb = 1)(1− P (Cb = 1))E(τ̂b)
2

)

=
1

(np)2

(
B∑
b=1

(
1− P (Cb = 1)

)
var(τ̂b)−

B∑
b=1

P (Cb = 1)(1− P (Cb = 1))E(τ̂b)
2

)

�

TA-2.2.2 Proof of Theorem TA-1.2

The difference in variance between a blocked IV estimator and the block difference-in-means esti-

mator is approximately:

var(τ̂ IVB )− var(τ̂PSWB ) ≈ 1

(np)2

B∑
b=1

(
(1− P (Cb = 1))varb(Yi(1)) + (1− Eb(ec(Xi)

2))varb(Yi(0))

−
(
Eb(Y (1))2var(Cb)− Eb(Yi(0))2var(ec(Xi))

))
+ ξ1,

12



where ξ1 represents the difference between the unobservable, individual-level treatment effect.

Proof: To begin, we write the variance of the blocked PSW estimator:

var(τ̂PSWB ) =
1

(np)2

B∑
b=1

var(τ̂
(b)
PSW )

Thus, comparing it with the blocked IV estimator, we see that the primary differences in efficiency

will be driven by the difference in the within-block variance from weighting the observations. To

make these gains more clear, we can decompose the variance of the blocked PSW estimator as the

sum of the treatment units that are revealed to be compliers, the sum of the re-weighted control

units, and an unobservable individual-level treatment effect term.

var(τ̂PSWB ) =
1

(np)2

B∑
b=1

var(τ̂
(b)
PSW )

=
1

(np)2

B∑
b=1

(varb(CiYi(1)) + varb(ec(Xi)Yi(0))) +
1

(np)2

B∑
b=1

2∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2︸ ︷︷ ︸

ξ2

=
1

(np)2

B∑
b=1

P (Cb = 1)varb(Yi(1)) + Eb(Yi(1))2varb(Ci)+

1

(np)2

B∑
b=1

Eb(ec(Xi)
2)varb(Yi(0)) + Eb(Yi(0))2varb(ec(Xi)) + ξ2

We can similarly write the blocked IV estimator as a function of these three components:

var(τ̂ IVB ) =
1

(np)2

B∑
b=1

var(τ̂b)

=
1

(np)2

(
B∑
b=1

varb(Yi(1)) + varb(Yi(0))

)
+ ξ3,

where ξ3 := 1
(np)2

∑B
b=1(τi − τb)2.

Then, the results of the theorem follow directly by subtracting the two expressions, and defining

ξ1 := ξ3 − ξ2.

�

TA-2.2.3 Proof of Theorem TA-1.3

Assuming that the principal scores are estimated on the same set of covariates Xi as the covariates

used to estimate blocks, the approximate reduction in variance from using blocked difference-in-

13



means over principal score weighting is written as:

var(τ̂PSW )−var(τ̂B)

≈ 1

2n− 1

1

p2

(
varB(µ̂b(1) + µ̂b(0))− 1

n

B∑
b=1

n− 1

n
var(τ̂PSWb )

)
︸ ︷︷ ︸

(a) Reduction in variance from blocking

(11)

− 1

(np)2

B∑
b=1

(
(Eb(ec(Xi))− Eb(ec(Xi)

2))(varb(Yi(0)) + Eb(Yi(0))2
)

+ ζ︸ ︷︷ ︸
(b) Reduction in variance from weighting control units

,

where µ̂b(1) and µ̂b(0) represent the average complier outcome of the treatment units and average

weighted outcome of the control units (respectively), for a block b. The subscript b denotes that

the quantity is calculated with respect to the block b. varB(Xb) = 1
n

∑B
b=1(Xb − 1

n

∑n
k=1Xk)2,

var(τ̂ (b)) represents the within-block variation of block b, and ζ is a function of the unobservable

individual-level treatment effect terms.

Proof: To begin, we re-write the approximate variance of the block difference-in-means estimator

in terms of the treatment and control outcomes:

var(τ̂B) ≈ 1

np2
1

n

(
B∑
b=1

P (Cb = 1)varb(τ̂b) + Eb(τ̂b)2var(Cb)

)

=
1

np2
1

n

(
n∑
b=1

P (Cb = 1)varb(Yi(1)) + Eb(Yi(1))2var(Cb)

)
︸ ︷︷ ︸

(1)

+

1

np2
1

n

(
n∑
b=1

P (Cb = 1)varb(Yi(0)) + Eb(Yi(0))2var(Cb)

)
︸ ︷︷ ︸

(2)

(12)

− 1

(np)2

(
n∑
b=1

(
2∑
i=1

P (Cb = 1)(τi − τb)2 + 2Eb(Yi(1)Yi(0))var(Cb)

))
︸ ︷︷ ︸

(3)

,

where the subscript b denotes that the quantity is calculated with respect to the block b.

From Lemma TA-2.2, the approximate variance of the principal score weighted estimator is:

var(τ̂PSW ) ≈ 1

np2

(
1

2n− 1

N∑
i=1

(CiYi(1)− µ̂c,1)2︸ ︷︷ ︸
(1)

+
1

2n− 1

N∑
i=1

(êc(Xi)Yi(0)− µ̂c,0)2︸ ︷︷ ︸
(2)

)

− 1

(2n− 1) · p2
N∑
i=1

(τ̂PSWi − τPSW )2︸ ︷︷ ︸
(3)

,

(13)

where τ̂PSWi := CiYi(1)− êc(Xi)Yi(0). The remainder of the proof follows by comparing each of the

components in Equation 12 and Equation 13. We will start with the treatment outcomes. First,

14



note that we can re-write the variance of the treatment outcomes in the principal score weighted

estimator (i.e., Equation 13(1)) as a function of the within and between block variance:

1

2n− 1

N∑
i=1

(CiYi(1)− µ̂c,1)2 =
1

2n− 1

n∑
b=1

2∑
i=1

(Yi(1)Ci − µ̂b(1) + µ̂b(1)− µ̂c,1)2

=
1

2n− 1

n∑
b=1

varb(CiYi(1)) +
2

2n− 1

n∑
b=1

(µ̂b(1)− µ̂c,1)2

The variance across block b can be further decomposed:

varb(CiYi(1)) ≡ var(CiYi(1) | i ∈ B(b))

= E(Ci | i ∈ B(b)) · varb(Yi(1)) + E(Yi(1) | i ∈ B(b))2P (Ci = 1 | i ∈ B(b))(1− P (Ci | i ∈ B(b))

Because E(Ci | i ∈ B(b)) = P (Cb = 1), we can rewrite the above:

= P (Cb = 1)varb(Yi(1)) + Eb(Yi(1))2P (Cb = 1)(1− P (Cb = 1)).

As such, if we just compare the variance of the treatment leg with that of the treated units in

the block difference-in-means estimator (i.e., Equation 12-(1) and Equation 13-(1)), we obtain the

following:

1

2n− 1

N∑
i=1

(CiYi(1)− µ̂c,1)2 − 1

n

n∑
b=1

P (Cb = 1)varb(Yi(1)) + Eb(Yi(1))2var(Cb)

=
1

n

2

2n− 1

n∑
b=1

(µ̂b(1)− µ̂c,1)2

− 1

n2
n− 1

(2n− 1)

n∑
b=1

P (Cb = 1)varb(Yi(1)) + Eb(Yi(1))2var(Cb)

≡ 1

n

2

2n− 1

n∑
b=1

(µ̂b(1)− µ̂c,1)2 − 1

n2
n− 1

(2n− 1)

n∑
b=1

var(µ̂b(1)) (14)

Similarly, for the control units, we may re-write the variance of the control group for the principal

score weighted estimator (i.e., Equation 13-(2)) as:

1

2n− 1

N∑
i=1

(êc(Xi)Yi(0)− µ̂c,0)2 =
1

2n− 1

n∑
b=1

2∑
i=1

(êc(Xi)Yi(0)− µ̂b(0) + µ̂b(0)− µ̂c,0)2

=
1

2n− 1

n∑
b=1

varb(êc(Xi)Yi(0)) +
2

2n− 1

n∑
b=1

(µ̂b(0)− µ̂c,0)2

Decomposing the within block variance term:

varb(êc(Xi)Yi(0)) ≡ var(êc(Xi)Yi(0) | i ∈ B(b))

= Eb(êc(Xi)
2) · varb(Yi(0)) + E(Yi(0) | i ∈ B(b))2varb(êc(Xi))

Because we are assuming that the blocks are being formed on the same set of covariates Xi that

are included in the principal score weights, E(Cb) = E(êc(Xi) | i ∈ B(b)) ≡ Eb(êc(Xi)).
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Therefore, comparing just the control leg of both estimators (i.e., Equation 13-(2) and Equation

12-(2)):

1

2n− 1

N∑
i=1

(êc(Xi)Yi(0)− µ̂c,0)2 − 1

n

n∑
b=1

P (Cb =1)varb(Yi(0)) + Eb(Yi(0))2var(Cb)

=
1

n

2

2n− 1

n∑
b=1

(µ̂b(0)− µ̂c,1)2 +
1

2n− 1
· 1

n

n∑
b=1

Eb(êc(Xi)
2) · varb(Yi(0)) + Eb(Yi(0))2varb(êc(Xi))

− 1

n2

n∑
b=1

(
E(Cb)varb(Yi(0)) + Eb(Yi(0))2 · varb(Yi(0))

)
=

1

n

2

2n− 1

n∑
b=1

(µ̂b(0)− µ̂c,0)2 +
1

(2n− 1)n2

n∑
b=1

(
nEb(êc(Xi)

2)− (2n− 1)E(Cb)
)
varb(Yi(0))+

(
nvarb(êc(Xi))− (2n− 1)var(Cb)

)
Eb(Yi(0))2

Adding and subtracting a (2n− 1) · Eb(êc(Xi)) term to the first line, and a (2n− 1)varb(êc(Xi)) to

the second line:

=
1

n

2

2n− 1

n∑
b=1

(µ̂b(0)− µ̂c,1)2 − 1

n2
n− 1

(2n− 1)

n∑
b=1

Eb(ec(Xi)
2)varb(Yi(0)) + Eb(Yi(0))2varb(êc(Xi))

+
1

n2
(2n− 1)

(2n− 1)

n∑
b=1

(
(Eb(ec(Xi)

2)− E(Cb))varb(Yi(0)) + (var(ec(Xi)− var(Cb))Eb(Yi(0))2
)

=
1

n

2

2n− 1

n∑
b=1

(µ̂b(0)− µ̂c,1)2 − 1

n2
n− 1

(2n− 1)

n∑
b=1

Eb(ec(Xi)
2)varb(Yi(0)) + Eb(Yi(0))2varb(êc(Xi))

− 1

n2

n∑
b=1

(
(Eb(ec(Xi))− Eb(ec(Xi)

2))(varb(Yi(0)) + Eb(Yi(0))2
)

=
1

n

2

2n− 1

n∑
b=1

(µ̂b(0)− µ̂c,1)2 − 1

n2
n− 1

(2n− 1)

n∑
b=1

var(µ̂b(0))

− 1

n2

n∑
b=1

(
(Eb(ec(Xi))− Eb(ec(Xi)

2))(varb(Yi(0)) + Eb(Yi(0))2
)

(15)

Finally, we decompose the unobservable individual-level treatment effect term in Equation 13-

(3):

1

2np2

N∑
i=1

(τPSW,i − τPSW ) =
1

2np2
1

2n− 1

(
n∑
b=1

2∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2 + 2

n∑
b=1

(τ
(b)
PSW − τPSW )2

)
,

where τPSWb = µ̂b(1) − µ̂b(0). Comparing it to the unobservable individual-level treatment effect
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term in Equation 12-(3):

1

(np)2

(
n∑
b=1

(
2∑
i=1

P (Cb = 1)(τi − τb)2 + 2Eb(Yi(1)Yi(0))var(Cb)

))
− 1

2np2

N∑
i=1

(τPSWi − τPSW )2

=
1

(np)2

(
n∑
b=1

(
2∑
i=1

P (Cb = 1)(τi − τb)2 + 2Eb(Yi(1)Yi(0))var(Cb)

))

− 1

2np2
1

2n− 1

(
n∑
b=1

2∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2 + 2

n∑
b=1

(τ
(b)
PSW − τPSW )2

)

=
1

(np)2

(
n∑
b=1

(
2∑
i=1

P (Cb = 1)(τi − τb)2 + 2Eb(Yi(1)Yi(0))var(Cb)

))
− 1

(np)2

n∑
b=1

n∑
i=1

(τ
(b)
PSW,i + τ

(b)
PSW )2︸ ︷︷ ︸

:=ζ

+

1

(np)2

n∑
b=1

n∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2 − 1

2np2
1

2n− 1

(
n∑
b=1

2∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2 + 2

n∑
b=1

(τ
(b)
PSW − τPSW )2

)

=ζ +
1

(np)2

n∑
b=1

n∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2 − 1

2np2
1

2n− 1

(
n∑
b=1

2∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2 + 2

n∑
b=1

(τ
(b)
PSW − τPSW )2

)

=ζ +
1

np2
·
(

1

n
− 1

2
· 1

2n− 1

) n∑
b=1

n∑
i=1

(τ
(b)
PSW,i − τ

(b)
PSW )2 − 1

2np2
2

2n− 1

n∑
b=1

(τ
(b)
PSW − τPSW )2

(16)

Thus, we can combine Equations 14, 15, and 16:

var(τ̂PSW )− var(τ̂B)

≈ 1

np2
1

n

2

2n− 1

n∑
b=1

(µ̂b(0)− µ̂c,0)2 +
1

np2
1

n

2

2n− 1

n∑
b=1

(µ̂b(1)− µ̂c,1)2 − 1

2np2
2

2n− 1

n∑
b=1

(τ̂PSWb − τ̂PSW )2

− 1

n2
n− 1

(2n− 1)

(
n∑
b=1

var(µ̂b(0)) + var(µ̂b(1))

)
+

1

np2
·
(

1

n
− 1

2
· 1

2n− 1

) n∑
b=1

n∑
i=1

(τ̂
(b)
PSW,i − τ̂

(b)
PSW )2

− 1

n2

n∑
b=1

(
(Eb(ec(Xi))− Eb(ec(Xi)

2))(varb(Yi(0)) + Eb(Yi(0))2
)

+ ζ

=
1

2n− 1

1

p2

(
varB(µ̂b(1) + µ̂b(0))− 1

n

n∑
b=1

n− 1

n
var(τ̂

(b)
PSW )

)

− 1

(np)2
· 1

n

n∑
b=1

(
(Eb(ec(Xi))− Eb(ec(Xi)

2))(varb(Yi(0)) + Eb(Yi(0))2
)

+ ζ

=
1

2n− 1

1

p2

(
varB(µ̂b(1) + µ̂b(0))− 1

n

B∑
b=1

n− 1

n
var(τ̂

(b)
PSW )

)

− 1

(np)2
· 1

n

B∑
b=1

(
(Eb(ec(Xi))− Eb(ec(Xi)

2))(varb(Yi(0)) + Eb(Yi(0))2
)

+ ζ,

which is the result of Theorem TA-1.3. �
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