
Appendix: Improving precision through design and analysis in
experiments with noncompliance

A-1 Placebo-Controlled Designs

Placebo-controlled trials provide an alternative approach for improving precision in experiments

with noncompliance. Rather than a true control, in which there is no intervention, researchers

administer a “placebo” encouragement, allowing compliance status to be measured in the placebo

group. The researcher must assume that (1) the encouragement and placebo induce the same

compliance and attrition patterns for individuals and (2) the placebo does not affect the outcome

of interest. Researchers estimate the CACE using a difference-in-means among compliers in each

group, leading to significant efficiency gains relative to instrumental variables (Nickerson, 2005)

when compliance is less than 50% (Gerber and Green, 2012). For example, in the political rally

example above, a placebo flyer could encourage attendance to a non-political rally, which allows the

researcher to measure compliance (attendance) but is unlikely to affect voter turnout. The placebo-

controlled design can be combined with a full control to improve precision and evaluate robustness

to the necessary assumptions (Gerber, Green, et al., 2010). While placebo-controlled experiments

effectively address noncompliance in the design stage, they are not always feasible and the required

assumptions may prove too strong.

A-2 Extensions

A-2.1 Blocked Difference-in-Means with Larger Blocks

In the main text, we propose a blocked difference-in-means estimator with blocks of size 2, within

which we can simply randomly assign treatment within the block. To construct our estimator, we

drop all the blocks for which the unit assigned to treatment does not comply. However, when blocks

are larger than size 2, then there is a chance that some of the units assigned to treatment comply,

while others do not.

For blocks of larger than size 2, we propose a weighted blocked difference-in-means estimator, in

which the weight of each block is determined by the proportion of complying units in the treatment

group. More specifically:

τ̂B =

B∑
b=1

n
(b)
C

nC

(
1

n
(b)
C

nb∑
i=1

YibTibCib −
1

nb

nb∑
i=1

Yib(1− Tib)

)
,

where nb is the total number of units in block b, nC is the total number of observed compliers in

the experiment, and n
(b)
C is the total number of compliers observed in block b. This formulation

is equivalent to running a weighted regression, where the weights are computed as the number

of observed compliers in the encouragement group divided by the number of units assigned to

encouragement. Blocks with zero units who comply are assigned a weight of zero in the regression.

A-2.2 Sensitivity Analysis

In the following subsection, we provide a two parameter sensitivity analysis for violations of block

principal ignorability. We illustrate an example of the sensitivity analysis on the Get-Out-the-Vote
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data.

The bias of the blocked difference-in-means estimator under a violation of the block principal

ignorability assumption is:

Bias(τ̂B) = P (Ci = 0|Zi = 0, Bi ∈ Bc)︸ ︷︷ ︸
(a)

·
(
E
(
E(Yi(0)|Ci = 1, Bi ∈ Bc)

)
− E

(
E(Yi(0)|Ci = 0, Bi ∈ Bc)

)︸ ︷︷ ︸
(b)

)
.

(1)

where Bi represents the block that unit i belongs to, and Bc represents the set of blocks for which the

unit assigned to treatment complies. The left term in Equation (1), denoted (a), is the probability

that a unit assigned to control in a block where the unit assigned to treatment complies is a non-

complier. If this probability is equal to zero, then all of the control units paired with a unit assigned

to encouragement who complies are also compliers, and our block difference-in-means estimator of

the CACE is unbiased, as:

E(Yi(0)|Zi = 0, Bi ∈ Bc) = E(Yi(0)|Zi = 0, Ci = 1) = E(Yi(0)|Ci = 1),

where the last equality follows from the randomization in treatment assignment. The right term in

Equation (1), denoted (b), represents the degree to which the block principal ignorability assumption

is violated. More specifically, when block principal ignorability holds, then E(Yi(0)|Ci = 1, Bi ∈
Bc) = E(Yi(0)|Ci = 0, Bi ∈ Bc), and the bias would subsequently be zero.

This bias decomposition lends itself naturally to a two parameter sensitivity analysis. The first

parameter, from Equation (1) (a), is a probability (i.e., P (Ci = 0|Zi = 0, Bi ∈ Bc)) and is naturally

bound by [0, 1]. In practice, if we assume that the worst-case scenario from blocking is that the

blocks are uninformative, then Bi |= Ci, and:

P (Ci = 0|Zi = 0, Bi ∈ Bc) = P (Ci = 0|Zi = 0) = 1− P (Ci = 1)

This implies that if the covariates used for blocking are completely unrelated to compliance, this

parameter should fall somewhere between (0, 1−p). This is unlikely if the observed covariates X are

associated with compliance among the encouragement group, which can be empirically evaluated.

As the proportion of compliers in the experiment increases, assuming outcomes are finite, the bound

on the potential bias will be tighter.

The second parameter is the average imbalance that occurs across blocks due to violations of

the block principal ignorability assumption. This term can be bound by the range of the potential

outcomes under control in the blocks for which we observe a complier:

E
(
E(Yi(0)|Ci = 1, Bi ∈ Bc)

)
− E

(
E(Yi(0)|Ci = 0, Bi ∈ Bc)

)
≤ max

i
{Yi(0)|Bi ∈ Bc} −min

i
{Yi(0)|Bi ∈ Bc}

The upper bound represents the range of control outcome values, across the complying blocks. The

upper bound is reached if all the control outcomes that are compliers in the complying blocks are

equal to the maximum value of Yi(0), while all the control outcomes that are non-compliers in the

complying blocks are equal to the minimum value of Yi(0).

Researchers may consistently estimate the bound by using the observed sample quantities of
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Figure A-2.1: The blue line and shaded blue region denote the killer confounding region, in which
a bias of that magnitude would render the point estimate to be zero, or change signs. The shaded
gray region denotes the where blocking would have to be worse than random. The dotted line
denotes the difference between the average treatment outcome across compliers and non-compliers
(i.e., average imbalance from compliance).

the range of the control units across the complying blocks to estimate the upper bound (Ferguson,

2017).

Thus, the bias as a whole can be upper bounded by the following:

B̂ias(τ̂B) ≤ (1− p) ·
(

max
i
{Yi|Zi = 0, Bi ∈ Bc} −min

i
{Yi|Zi = 0, Bi ∈ Bc}

)
. (2)

In practice, we expect the upper bound to be relatively conservative. Researchers may be able

to tighten the bounds using substantive knowledge.

A-2.2.1 Illustration of Sensitivity Analysis: GOTV

To illustrate the sensitivity analysis, we apply the proposed framework to the Get-Out-the-Vote

data, using the matched data for St. Paul. Because the outcome of interest is whether or not an

individual voted, the total imbalance (i.e., term (b)) is bounded by [−1, 1]. We plot both of these

parameters and the resulting bias using a contour plot in Figure A-2.1.

We plot the killer confounder region in Figure A-2.1 to denote the amount of bias that would

result in a directional change in the point estimate. We consider the “worst-case” scenario that the

blocks are formed at random. The overall observed compliance rate in the experiment is 32%. This

implies that the first parameter should be upper bounded by 1 − p = 0.68, denoted with the gray

region. At this upper bound, in order for the bias to fall within the killer confounder region, the

imbalance term across the control units would have to exceed 0.19 (represented by where the black

line intersects the blue curve).

To try and understand if this level of imbalance is plausible or not, we note the following. If
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the blocks were truly random, then the imbalance term can be re-written as the average difference

across the control units between the compliers and non-compliers. While we cannot measure this

quantity, we can estimate the average difference across the encouraged units between the compliers

and non-compliers (i.e., E(Yi(1)|Zi = 1, Ci = 1)−E(Yi(1)|Zi = 1, Ci = 0)). We find this quantity to

be around 0.13, which is represented by the dashed line. Thus, in order for the bias to fall within the

killer confounder region, the average imbalance across compliers and non-compliers for the control

units would have to be 46% stronger than the average effect of complying across the units assigned

to treatment. While this is possible, we argue that this is not likely. This indicates that, even in

the worst-case scenario of random blocking, bias significant enough to change the substantive sign

of the point estimate is unlikely. While the block principal ignorability assumption may not hold

exactly, the blocks are likely not at-random either, thereby indicating robustness to the estimated

CACE.

A-3 Simulation Studies

In this section, we provide details about the data-generating process, graphically displayed in Fig-

ure 1. We consider a scenario where the compliance rate is 10%, on average. The simulation is set

up such that X ∈ Rn×4: X ∼ N(0,Σ), where:

Σ =


1 0.5 0.25 0

0.5 1 0.25 0

0.5 0.25 1 0

0 0 0 1


We define the potential outcomes and compliance status of each unit as:

Y = 2T + 15X2 − 10X2 · T +X3 + 2X3 · T + ε

C ∼ Binomial(Φ(0.25X1 − 1.28)),

where ε ∼ N(0, 0.35) and T is an indicator denoting treatment receipt. Therefore, the covariates

X2 and X3 affect the outcome Y , while X1 determines compliance (see Figure 1). However, X1 is

correlated with both X2 and X3. As such, blocking on X1 also accounts for some variation in the

compliance, while blocking on either X2 or X3 can help account for variation in the outcome of the

units. We note that this is a super-population-based simulation, however the performance of the

estimators should be similar to a finite-sample set-up.

Table A-3.2 presents bias and MSE results for all of the simulation scenarios, including the

placebo-controlled designs which are not included in Table 1 included in the main manuscript.

We also evaluate the performance of the variance estimators. Table A-3.1 shows that the 95%

asymptotic confidence intervals have at least nominal coverage in Scenarios 1 and 2, where all of the

estimators, except for the as-treated estimator (excluded), are unbiased. Note that our Block DiM

estimators are conservative, as they rely on a Neyman-style estimator. However, in Table A-3.1, we

see that the standard errors, despite being conservative, are significantly smaller than those for IV

or the placebo-controlled design.
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95% Interval Coverage Rates and Standard Error

IV IV (Block) Block DiM PSW PSW (Block) Placebo Placebo (Block)

ŜE Cov. ŜE Cov. ŜE Cov. ŜE Cov. ŜE Cov. ŜE Cov. ŜE Cov.

Scenario 1: Block on Compliance-Related Variables (X1)

1,000 9.67 0.95 8.39 0.95 3.33 0.98 3.61 0.98 3.43 0.99 4.10 0.95 3.95 0.96
2,000 6.78 0.95 5.89 0.95 2.36 0.97 2.55 0.99 2.43 0.99 2.89 0.95 2.79 0.96
5,000 4.26 0.95 3.71 0.96 1.49 0.97 1.61 0.99 1.53 0.99 1.83 0.96 1.76 0.96

10,000 3.00 0.95 2.61 0.96 1.05 0.97 1.14 0.99 1.08 0.99 1.29 0.96 1.25 0.96

Scenario 2: Block on Compliance and Outcome-Related Variables (X1 & X2)

1,000 9.68 0.95 1.71 0.99 1.42 1.00 3.61 1.00 3.43 1.00 4.10 0.95 3.81 0.96
2,000 6.79 0.95 1.17 0.99 1.00 1.00 2.55 1.00 2.43 1.00 2.90 0.96 2.69 0.96
5,000 4.26 0.95 0.72 1.00 0.63 1.00 1.61 1.00 1.53 1.00 1.83 0.96 1.70 0.96

10,000 3.00 0.96 0.51 0.99 0.44 1.00 1.14 1.00 1.08 1.00 1.29 0.96 1.20 0.96

Table A-3.1: Summary of the coverage rates and average estimated standard errors. We see that
the estimators all have at least nominal coverage.
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Simulation Results

MSE Bias

Sample Size
As

Treated
IV

IV
(Block)

Block
DiM

PSW
PSW
(Block)

Placebo
Controlled

Placebo
Controlled
(Block)

As
Treated

IV
IV

(Block)
Block
DIM

PSW
PSW
(Block)

Placebo
Controlled

Placebo
Controlled
(Block)

Scenario 1: Block on Compliance-Related Variables

1,000 21.68 94.33 67.99 8.62 8.08 6.17 16.18 14.72 3.53 -0.13 0.10 0.00 -0.02 -0.01 -0.02 -0.02
2,000 16.75 44.37 33.68 4.20 3.81 3.08 8.06 7.29 3.51 -0.10 0.04 -0.00 -0.02 0.00 -0.03 0.01
5,000 14.25 18.25 13.39 1.69 1.52 1.20 3.16 2.87 3.54 0.03 0.04 -0.02 0.00 -0.02 0.03 -0.02

10,000 13.39 8.60 6.73 0.86 0.74 0.61 1.52 1.39 3.54 0.03 0.01 0.01 0.01 -0.00 -0.01 -0.02

Scenario 2: Block on Compliance and Outcome-Related Variables

1,000 21.83 95.01 1.60 0.88 3.23 0.96 16.70 13.58 3.56 -0.02 0.02 -0.00 -0.00 -0.02 -0.03 -0.03
2,000 17.26 45.38 0.71 0.42 1.52 0.47 7.73 6.73 3.60 0.13 0.03 0.01 0.04 -0.00 0.08 0.02
5,000 14.33 16.88 0.25 0.16 0.58 0.18 3.07 2.61 3.55 0.12 -0.01 -0.01 0.02 -0.01 0.02 -0.03

10,000 13.46 8.66 0.12 0.08 0.29 0.09 1.48 1.34 3.55 -0.02 0.00 -0.00 0.01 -0.01 0.03 -0.01

Scenario 3: Block on Outcome-Related Variables

1,000 21.01 93.42 1.27 0.83 2.79 0.95 15.31 13.33 3.53 -0.13 -0.00 0.15 0.17 0.14 0.05 -0.04
2,000 16.73 45.74 0.63 0.44 1.40 0.49 7.71 6.84 3.52 0.07 0.01 0.16 0.17 0.16 0.01 0.02
5,000 14.17 17.86 0.25 0.19 0.57 0.21 3.07 2.70 3.53 -0.03 -0.00 0.16 0.15 0.15 -0.03 -0.00

10,000 13.26 8.92 0.12 0.11 0.31 0.12 1.57 1.32 3.52 0.02 0.00 0.16 0.16 0.16 0.01 0.01

Table A-3.2: Summary of simulation results. The compliance rate is set at 10%. The simulation is run across varying sample sizes and varying blocking
variables, for 5,000 total iterations for each sample size and blocking scenario. The experimental design is denoted in parentheses, with “CR” denoting
complete randomization and “Block” denoting block-randomized.
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A-3.1 Violating the Exclusion Restriction

To examine what happens under a violation of the exclusion restriction, we modify the equation of

our potential outcomes in our simulation to include a direct effect from the the assignment variable

Z:

Y = 2T + 15X2 − 10X2 · T +X3 + 2X3 · T + γZ + ε,

where γ represents the degree to which the exclusion restriction is violated. We compare the

performance of the different estimators when this occurs, varying γ in increments of 0.1 from 0 to

1.

Generally, when the exclusion restriction is violated, IV estimation incurs a large degree of bias.

As expected, we see that the blocked difference-in-means and PSW estimators do not exhibit bias,

as neither of these rely on the exclusion restriction assumption. The violation does not affect the

efficiency much in this context, so increases in the MSE of the IV estimators are primarily driven by

bias. Figure A-3.2 visualizes the results for the estimators’ performance under exclusion restriction

violations.

Scenario 1. Compliance Scenario 2. Compliance & Outcome Scenario 3. Outcome
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Figure A-3.2: Estimator Performance under Exclusion Restriction Violation.

A-3.2 Violating Principal Ignorability

In our original simulations we show that since X1 and X2 are correlated, blocking on just X2

(i.e., covariates related to outcome) significantly reduced bias, despite not fully meeting principal

ignorability. Because the performance of the principal ignorability approaches largely depends on

the choice of covariates used for blocking or analysis, a natural question is how ‘good’ do those

covariates have to be? To investigate this question, which involves varying degrees of violations

of principal ignorability, we examine the behavior of the estimators when incorporating variables

correlated with those sufficient for (block) principal ignorability. In order to do so, we construct a

set of proxy variables that are correlated with X1 and X2:

X ′i = ρXi +
√

1− ρ2 · ε,

where i ∈ {1, 2}, ε ∼ N(0, 1), and ρ is the level of correlation. For the simulation, we vary ρ to be

between [0, 1], at increments of 0.1, where when ρ = 0, we are effectively controlling for noise, thus

significantly violating PI, and when ρ = 1, we are blocking or weighting on the same variables in
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Blocking Set: Restricted

City
IV PSW PSW Blocked

(Block) (Block) DiM

Bridgeport 8.8% 46.0% 46.7% 37.7%
Columbus 16.6% 62.6% 63.1% 61.3%
Detroit 20.0% 54.6% 58.5% 53.7%
Minneapolis 24.5% 64.2% 66.7% 66.0%
Raleigh 24.4% 41.3% 48.7% 46.7%
St. Paul 16.7% 53.0% 56.7% 52.1%

Table A-4.3: The percentage reduction in estimated standard error relative to the IV estimator
under complete randomization.

Scenario 1, which meets PI. Results are presented in Section 4.1 of the main manuscript.

A-4 GOTV Application: Additional Analyses

In this section, we provide additional details related to our empirical analysis based on Green,

Gerber, and Nickerson (2003)’s Get-Out-the-Vote experiment (GOTV).

A-4.1 Variable Selection

In the empirical evaluation in the main manuscript, we used all available covariates in our analysis.

In this section, we demonstrate a method for covariate selection when constructing blocks using a

variable importance measure. We begin by fitting two different Random Forest models (Breiman,

2001) for compliance and for outcome. The compliance model is fit only using the units assigned

to encouragement, and the outcome model is fit only across the control outcomes. Both models

used all available pretreatment covariates in Figure A-4.3. We estimate the variable importance

measures for each covariate in the model to determine which should be included in the blocking set

using a permutation-based importance measure (Janitza, Tutz, and Boulesteix, 2016). We keep the

covariates that result in over a 1% increase in prediction error from permuting.

Using this restricted set of variables to perform blocking, we still see substantial gains to precision

similar to using the full set. Table A-4.3 presents the gains in precision relative to IV under complete

randomization. Table A-4.5 presents the numerical results. As with the full set, in sites where we

can better predict compliance, we see more substantial gains in precision. The point estimates are

substantively similar to the original analysis as well as the results using the full set of covariates,

bolstering the claim that even this restricted set of covariates does a good job of meeting, or nearly

meeting, principal ignorability.

A-4.2 Predicting Compliance Scores

One way to bolster the claim of principal ignorability is to evaluate how well compliance can be

predicted in the encouragement group. To demonstrate this, we calculate the accuracy of the

compliance score model, first estimated using the full set of covariates, and then estimated using

the restricted set of covariates described above. Overall, using a Random Forest model, we are

able to predict the compliance status of individuals with a 70-90% accuracy rate, depending on

experimental site, using a threshold of 0.5 for our predictions. We also calculate the area under the

ROC curve (AUC) for a threshold-invariant summary of performance. We find that for all cases,
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Variable Importance Plots
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Figure A-4.3: Variable importance plots for a Random Forest model fit to estimate control outcomes,
and a Random Forest model fit to estimate compliance. We denote the 1% cutoff used in covariate
selection with a black line.

Accuracy of Compliance Score Models

Blocking Set
Full Restricted

City Accuracy AUC Accuracy AUC
Bridgeport 81% 0.97 72% 0.70
Columbus 86% 0.66 86% 0.50
Detroit 72% 0.94 71% 0.53
Minneapolis 83% 0.95 81% 0.60
Raleigh 95% 0.99 61% 0.62
St. Paul 73% 0.96 68% 0.65

Table A-4.4: Accurate of compliance model using prediction accuracy and AUC. Predictions use a
0.5 threshold, which can optimized in practice to maximize fit.
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GOTV Point Estimates (× 100)

Cities Blocking Variables IV IV (Block) PSW PSW (Block) Block DiM
Blocking Set: Full
Bridgeport Voted (’00), Age, 14.11 13.31 15.17 14.94 10.89

Age2 (5.43) (5.17) (2.93) (2.91) (3.51)
Raleigh Primary, Voted (’99), -0.26 3.94 4.20 6.10 2.62

Age2, Age, Turf (3.44) (2.41) (2.03) (1.66) (1.68)
Minneapolis Primary, Voted (’99), 10.15 11.65 8.85 9.14 6.39

Age2, Age, Turf (8.74) (6.46) (3.13) (2.92) (3.07)
Detroit Primary, Voted (’99), 8.29 8.95 4.82 5.51 3.82

Voted (’00), Age (4.60) (3.26) (2.17) (1.92) (1.91)
Columbus Primary, Voted (’99) 6.02 9.64 5.07 5.66 5.42

(8.34) (6.81) (3.08) (3.00) (3.24)
St. Paul Primary, Voted (’99), 14.37 14.37 13.68 13.68 12.96

Age, Age2 (6.45) (5.10) (3.03) (2.76) (3.02)
Blocking Set: Restricted
Bridgeport Voted (’00), Age 14.52 14.52 15.28 15.28 12.90

(5.42) (4.94) (2.93) (2.89) (3.38)
Raleigh Primary, Turf -4.46 4.99 2.30 6.47 6.56

(3.48) (2.63) (2.05) (1.79) (1.86)
Minneapolis Primary, Age2 10.15 12.03 6.07 6.44 6.39

(8.74) (6.60) (3.13) (2.91) (2.97)
Detroit Primary, Voted (’99) 8.42 8.95 1.85 2.30 2.37

(4.60) (3.68) (2.09) (1.91) (2.13)
Columbus Primary, Voted (’99) 10.24 10.84 5.86 5.76 8.43

(8.21) (6.84) (3.07) (3.03) (3.17)
St. Paul Primary, Age 14.37 14.37 10.39 10.39 14.65

(6.45) (5.37) (3.04) (2.79) (3.09)

Table A-4.5: Point estimates and standard errors, in parentheses, for the CACE for IV, PSW, and
blocked difference-in-means estimators, under both complete randomization and blocking.

the AUC is at least 0.5. In cases we are using the full set of blocking variables, the AUC for most of

the sites is high (i.e., 0.94-0.99), indicating that we are able to build a highly predictive compliance

model. For this reason, we focus on the full set of covariates in our main application.

A-4.3 Numerical Results

Figure 4 in the main manuscript presents the results of our re-analysis of the personal canvassing

effects from Green, Gerber, and Nickerson (2003). Table A-4.5 presents the numeric results, as well

as the results for IV and PSW under complete randomization. We note that point estimates are very

similar across estimators. This robustness provides credibility to the PI assumption. In Raleigh,

the PSW and block-DIM estimates are similar to the blocked IV estimate, but all are substantively

larger than the IV estimate under complete randomization. The difference is driven primarily by

the block-randomization, indicating it is more likely related to imbalances in the original data than

sensitivity to the identifying assumptions.
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A-5 Proofs and Derivations

A-5.1 Proof of Consistency of Block Difference-in-Means under Block

Principal Ignorability

Under block principal ignorability, given n blocks, with two units in each block, the following is a

consistent estimator for CACE:

τ̂B =
1∑B

b=1 Cb

B∑
b=1

Cbτ̂b, (3)

where τ̂b is the difference-in-means estimated within the b-th block, and Cb denotes whether or not

there exists an observed complier in the b-th block. As such,
∑B

b=1 Cb = np is effectively the number

of blocks that contain a complier, which is equivalent to the number of treated units that comply.

Proof: Define Bc the set of blocks where the unit assigned to treatment is revealed to be a complier

(i.e., Bc = {Bi|Ci = 1, Zi = 1}).

E(Yi(1)− Yi(0) | Ci = 1)

= E(Yi(1) | Ci = 1, Zi = 1)− E(Yi(0) | Ci = 1, Zi = 1)

= E(Yi(1) | Ci = 1, Zi = 1)− E
(
E(Yi(0) | Ci = 1, Zi = 1, Bi ∈ Bc)

)
= E(Yi(1) | Ci = 1, Zi = 1)− E

(
E(Yi(0) | Zi = 1, Bi ∈ Bc)

)
= E(Yi(1) | Ci = 1, Zi = 1)− E

(
E(Yi(0) | Zi = 0, Bi ∈ Bc)

)
(4)

The first line follows from the definition of the complier average causal effect; the second line

from ignorability of treatment assignment due to randomization; the third from the law of iterated

expectation; fourth from block principal ignorability; and the fifth from ignorability of treatment

assignment due to randomization. The last line is made up of observable quantities. We can apply

the law of iterated expectations once again to re-write Equation 4 as:

E(Yi(1) | Ci = 1, Zi = 1)− E
(
E(Yi(0) | Zi = 0, , Bi ∈ Bc)

)
= E

(
E(Yi(1) | Zi = 1, Bi ∈ Bc)

)
− E

(
E(Yi(0) | Zi = 0, Bi ∈ Bc)

)
= E

(
E(Yi(1) | Zi = 1, Bi ∈ Bc)− E(Yi(0) | Zi = 0, Bi ∈ Bc)

)
(5)

The sample analog of Equation 5 will simply be the difference-in-means across each block in Bc,
which is what we have defined as τ̂B :

τ̂B :=
1∑B

b=1 Cb

B∑
b=1

Cbτ̂b,

where τ̂b is the difference-in-means estimated within the b-th block, and Cb denotes whether or not

there exists an observed complier in the b-th block.

To show that τ̂B is a consistent estimator for CACE, we can take the expectation of both the
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numerator and the denominator. We begin with the numerator:

E

(
B∑

b=1

Cbτ̂b

)
=

B∑
b=1

E(Cbτ̂b)

= B · E(Cbτ̂b)

= B · E(Cbτ̂b | Cb = 1)P (Cb = 1)

= B · E(τ̂b | Cb = 1)P (Ci = 1 | Ti = 1)

= B · E(τ̂b | Cb = 1)P (Ci = 1)

Now taking the expectation of the denominator:

E

(
B∑

b=1

Cb

)
=

B∑
b=1

E(Cb)

= B · E(Cb)

= B · P (Ci = 1 | Ti = 1)

= B · P (Ci = 1)

As such, applying Weak Law of Large Numbers and the Slutsky’s Theorem:

τ̂B
p→

E
(∑B

b=1 Cbτ̂b

)
E
(∑B

b=1 Cb

)
=
B · E(τ̂b | Cb = 1)P (Ci = 1)

B · P (Ci = 1)

= E(τ̂b | Cb = 1)

Because E(τ̂b | Cb = 1) is equivalent to the quantity on Equation 5:

≡ E(Yi(1)− Yi(0) | Ci = 1)

�

A-5.2 Variance of Block Difference-in-Means

Let there be n total blocks (i.e., each block comprises of 2 units). Cb is an indicator for whether

or not block b is considered a “complier block”. More specifically, Cb = 1 if the unit assigned to

treatment in the b-th block is a complier. Then, the approximate variance of the blocked difference-

in-means estimator, τ̂B , is:

var(τ̂B) ≈ 1

(np)2

B∑
b=1

varb(τ̂b)P (Cb = 1) + Eb(τ̂b)
2P (Cb = 1)(1− P (Cb = 1), (6)

where the subscript b denotes that the quantity is computed over block b. This can be estimated

using linear regression with cluster-robust standard errors. We provide a derivation and show that

the cluster-robust standard error estimator is conservative in Technical Appendix Section TA-2.1.
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A-5.3 Comparison of Variances

In the simulation studies below, we empirically evaluate the performance of the instrumental vari-

ables, principal score weighting, and block difference-in-means estimators, with and without block-

ing. We show that blocking, particularly on variables related to the outcome, can greatly improve

the precision of each of these estimators, regardless of the required identifying assumption. In Tech-

nical Appendix Section TA-1 we formalize the efficiency gains from blocking for the instrumental

variables and principal score weighting estimators.

In our simulations we also show the the precision gains of our proposed block difference-in-

means estimator over instrumental variables with blocking, as well as the principal score weighted

estimator, which we formalize in Technical Appendix Section TA-1.
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