APPENDIX
 A Careful Consideration of CLARIFY

Simulation-Induced Bias in Point Estimates of Quantities of Interest

Carlisle Rainey ${ }^{\dagger}$

December 25, 2022

A Proofs

A. 1 Proof of Lemma 1

Proof By definition,

$$
\hat{\tau}^{\mathrm{avg}}=\mathrm{E}[\tau(\tilde{\beta})]
$$

Using Jensen's inequality (Casella and Berger 2002, p. 190, Thm. 4.7.7), $\mathrm{E}[\tau(\tilde{\beta})]>$ $\tau[\mathrm{E}(\tilde{\beta})]$, so that

$$
\hat{\tau}^{\mathrm{avg}}>\tau[\mathrm{E}(\tilde{\beta})] .
$$

However, because $\tilde{\beta} \sim \operatorname{MVN}\left[\hat{\beta}^{\text {mle }}, \hat{V}\left(\hat{\beta}^{\mathrm{mle}}\right)\right]$, $\mathrm{E}(\tilde{\beta})=\hat{\beta}^{\mathrm{mle}}$, so that

$$
\hat{\tau}^{\mathrm{avg}}>\tau\left(\hat{\beta}^{\mathrm{mle}}\right)
$$

Of course, $\hat{\tau}^{\mathrm{mle}}=\tau\left(\hat{\beta}^{\mathrm{mle}}\right)$ by definition, so that

$$
\hat{\tau}^{\mathrm{avg}}>\hat{\tau}^{\mathrm{mle}}
$$

The proof for concave τ follows similarly.

A. 2 Proof of Theorem 1

Proof According to Theorem 1 of Rainey (2017, p. 405), $\mathrm{E}\left(\hat{\tau}^{\mathrm{mle}}\right)-\tau\left[\mathrm{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right]>0$. Lemma 1 shows that for any convex $\tau, \hat{\tau}^{\text {avg }}>\hat{\tau}^{\text {mle }}$. It follows that $\underbrace{\mathrm{E}\left(\hat{\tau}^{\text {avg }}\right)-\tau\left[\mathrm{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right]}_{\text {s.i. and t.i. } \tau \text {-bias in } \hat{\tau}^{\text {avg }}}>$

[^0]$\underbrace{\mathrm{E}\left(\hat{\tau}^{\mathrm{mle}}\right)-\tau\left[\mathrm{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right]}_{\text {t.i. } \tau \text {-bias in } \hat{\tau}^{\text {mle }}}>0$.
For the concave case, it follows similarly that $\underbrace{\mathrm{E}\left(\hat{\tau}^{\mathrm{mle}}\right)-\tau\left[\mathrm{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right]}_{\text {s.i. and t.i. } \tau \text {-bias in } \hat{\tau}_{\text {avg }} \mathrm{E}\left(\hat{\tau}^{\text {avg }}\right)-\tau\left[\mathrm{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right]}<$
0.

B Additional Analysis of the Drastic, Convex Transformation

In the main text, I develop an intuition for the simulation-induced τ-bias in $\hat{\tau}^{\text {avg }}$ using the simple (unrealistic, but heuristically useful) scenario in which $y_{i} \sim \mathrm{~N}(0,1)$, for $i \in$ $\{1,2, \ldots, n=100\}$, and the researcher wishes to estimate μ^{2}. Suppose that the researcher knows that the variance equals one but does not know that the mean μ equals zero. The researcher uses the unbiased ML estimator $\hat{\mu}^{\text {mle }}=\frac{\sum_{i=1}^{n} y_{i}}{n}$ of μ, but ultimately cares about the quantity of interest $\tau(\mu)=\mu^{2}$. The researcher can use the plug-in estimator $\hat{\tau}^{\mathrm{mle}}=\left(\hat{\mu}^{\mathrm{mle}}\right)^{2}$ of $\tau(\mu)$. Alternatively, the researcher can use the average-of-simulations estimator, estimating $\tau(\mu)$ as $\hat{\tau}^{\text {avg }}=\frac{1}{M} \sum_{i=1}^{M} \tau\left(\tilde{\mu}^{(i)}\right)$, where $\tilde{\mu}^{(i)} \sim \mathrm{N}\left(\hat{\mu}^{\mathrm{mle}}, \frac{1}{\sqrt{n}}\right)$ for $i \in\{1,2, \ldots, M\}$.

Below, I calculate the bias of each estimator. ${ }^{1}$

B. 1 The Bias in the ML Estimator

To simplify the notation below, I use $\hat{\mu}$ in place of $\hat{\mu}^{\text {mle }}$.
First, note that $\hat{\mu}=\frac{\sum_{i=1}^{n} y_{i}}{n}$ is an unbiased estimator so that $\mathrm{E}(\hat{\mu})=\mu=0$. We then have the common identity for mean-squared error: $\mathrm{E}\left((\hat{\mu}-\mu)^{2}\right)=\operatorname{Var}(\hat{\mu})-\mathrm{E}(\hat{\mu}-\mu)^{2}$. Substituting $\mu=0$, we have $\mathrm{E}\left(\hat{\mu}^{2}\right)=\operatorname{Var}(\hat{\mu})-\mathrm{E}(\hat{\mu})^{2}$. Substituting $\mathrm{E}(\hat{\mu})=\mu=0$, we have $\mathrm{E}\left(\hat{\mu}^{2}\right)=\operatorname{Var}(\hat{\mu})$. Then $\mathrm{E}\left(\hat{\mu}^{2}\right)=\operatorname{Var}\left(\frac{\sum_{i=1}^{n} y_{i}}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} y_{i}\right)$. Then, using the identify that the variance of the sum of independent random variables is the sum of their variances, we have $\mathrm{E}\left(\hat{\mu}^{2}\right)=\frac{1}{n^{2}}(n \times 1)=\frac{1}{n}$.

Since $\tau=\mu^{2}=0$, the bias in $\hat{\tau}=\left[\hat{\mu}^{\mathrm{mle}}\right]^{2}$ is $\frac{1}{n}-0=\frac{1}{n}$. Because there is no coefficientinduced bias, this is also the transformation-induced bias.

B. 2 The Bias in the Average-of-Simulations Estimator

To simplify the notation below, I use $\bar{\tau}$ in place of $\hat{\tau}^{\text {avg }}$.

[^1]First, compute $\mathrm{E}(\bar{\tau} \mid \hat{\mu})=\mathrm{E}\left[\frac{1}{M} \sum_{i=1}^{M}\left(\tilde{\mu}^{(i)}\right)^{2}\right]=\frac{1}{M} \sum_{i=1}^{M} \mathrm{E}\left[\left(\tilde{\mu}^{(i)}\right)^{2}\right]$. Then we have $\mathrm{E}(\bar{\tau} \mid \hat{\mu})=\frac{1}{M} \sum_{i=1}^{M}\left[\operatorname{Var}\left(\tilde{\mu}^{(i)}\right)+\mathrm{E}\left(\tilde{\mu}^{(i)}\right)^{2}\right]$. Substituting known values, we have $\mathrm{E}(\bar{\tau} \mid \hat{\mu})=$ $\frac{1}{M} \sum_{i=1}^{M}\left[\frac{1}{n}+\hat{\mu}^{2}\right]$. Simplifying, we have $\mathrm{E}(\bar{\tau} \mid \hat{\mu})=\frac{1}{M}\left[\frac{M}{n}+M \hat{\mu}^{2}\right]=\frac{1}{n}+\hat{\mu}^{2}$.

Next, apply the law of iterated expectations to find $\mathrm{E}(\bar{\tau})=\mathrm{E}(\bar{\tau} \mid \hat{\mu})$. Substituting, we have $\mathrm{E}(\bar{\tau})=\mathrm{E}\left(\frac{1}{n}+\hat{\mu}^{2}\right)$. Then, simplifying, we have $\mathrm{E}(\bar{\tau})=\frac{1}{n}+\mathrm{E}\left(\hat{\mu}^{2}\right)=\frac{1}{n}+\frac{1}{n}=\frac{2}{n}$.

The bias in $\hat{\tau}^{\text {avg }}$ is therefore $\frac{2}{n}$. Because simulation-induced bias is defined as $\mathrm{E}\left(\hat{\tau}^{\text {avg }}\right)-$ $\mathrm{E}\left(\hat{\tau}^{\mathrm{mle}}\right)$, the simulation-induced bias in this example is $\frac{2}{n}-\frac{1}{n}=\frac{1}{n}$. Thus, the simulationinduced and transformation-induced bias are exactly equal and the average-of-simulations estimator exactly doubles the bias in the ML estimator.

References

Casella, George, and Roger L. Berger. 2002. Statistical Inference. 2nd ed. Pacific Grove, CA: Duxbury.

Rainey, Carlisle. 2017. "Transformation-Induced Bias: Unbiased Coefficients Do Not Imply Unbiased Quantities of Interest." Political Analysis 25:402-409.

[^0]: ${ }^{\dagger}$ Carlisle Rainey is Associate Professor of Political Science, Florida State University, 540 Bellamy, Tallahassee, FL, 32306. (crainey@fsu.edu).

[^1]: ${ }^{1}$ I thank a reviewer for pointing out these results.

