Does a Universal Basic Income Affect Voter Turnout? Evidence from Alaska

Online Appendix

Table of Contents

1.	Descriptives	3
	Table A1: Variable Names, Definitions and Sources	3
	Table A2: Dividend Payments	4
	Table A3: Variable Summary Statistics	5
	Table A4: The Dividend as a Share of Personal Income and Poverty Thresholds	7
	Election Day Registration	8
	Figure A1: Introduction of EDR by Year	8
	Figure A2: Population Growth Rates	9
2.	Aggregate-Level Analyses	10
	Robustness: The Parallel Trends Assumption	10
	Table A5: Parallel Trends Assumption	10
	Robustness: New Differences-in-Differences Methods	11
	Table A6: DiD Adjusting Strategies	11
	Robustness: Analyzing Midterm and Presidential Elections separately	12
	Table A7: Comparing Midterm and Presidential Elections	12
	Robustness: Second Set of Turnout Data	12
	Table A8: DiD Estimations with Elections Project Data	13
	Robustness: Differences-in-Differences Using Single Years	13
	Table A9: DiD Estimations Comparing Only Single Years, CPS Data	14
3.	Individual-Level Analyses	15
	Heterogenous Treatment Effects	15
	Table A10: Education as a Predictor for Income in Alaska	15
	Table A11: Heterogeneous Treatment Effects, by Race	16
	Figure A3: Marginal Effect of Dividend on Turnout with 95% CI, by Race	17
	Table A12: Heterogeneous Treatment Effects, by Agegroup	17
	Figure A4: Marginal Effect of Dividend on Turnout in Alaska with 95% CI, by Age	18
	Individual-Level DiD Model Results	19
	Table A13: Full Individual-Level DiD Estimations with Reported Fixed Effects	19
	Table A14: Generalized DiD Model Estimates, Individual-Level Data	23
R	eferences	24

1. Descriptives

Table A1: Variable Names, Definitions and Sources

	Variable Names	
Variable	Definition	Source
	State-level turnout by the Current Population Survey, Reported Voting for Total Voting-	
	Age Populations, by State for Congressional Elections and Presidential Elections, in	(U.S. Census Bureau, Current
Turnout	percent of state population, aged 18 years and over	Population Survey 2019a; 2019b)
Dividend dummy	Interaction term dummy variable set to 1 for Alaska starting in 1982, 0 for all other states	
		(SEER Program, National Cancer
Ln total population	Total population	Institute 2018), own calculation
	Natural logarithm of the per capita GDP in 2016 USD, corresponds to the value of goods	(Bureau of Labor Statistics (BLS)
	and services produced in the States divided by the total population by state and adjusted for	2020b; SEER Program, National
	inflation. The GDP figures are from the Bureau of Economic Analysis (BEA), the total	Cancer Institute 2018; U.S. Bureau
	population is from the SEER Program and the consumer price index used for inflation	of Economic Analysis, U.S.
In GDP per capita	adjustment is from the Bureau of Labor Statistics	Department of Commerce 2020b)
		(SEER Program, National Cancer
% Africanamerican	Percentage of the population that is African American	Institute 2018)
		(National Conference of State
Election Day		Legislatures 2019), enhanced by
Registration	Dummy variable set to 1 if state allows EDR, 0 otherwise	own research
	Percentage of the civilian noninstitutional state population aged 16 years and over that is	(Bureau of Labor Statistics (BLS)
Unemployment rate	unemployed	2020a)
	Represents the average distance between all pairs of proportional income in the population.	
Gini coefficient	It varies between zero and one, with higher values indicating greater inequality	(Frank 2015)
		SEER Program, National Cancer
% Population aged 65+	Share of the total state population age 65 and older.	Institute 2018)
Presidential election year	Dummy variable set to 1 for presidential election year, 0 otherwise	
		(Alaska Department of Revenue
Dividend in USD /1000	Dividend payment in 2016 USD	2020)
Placebo dividend	Dummy variable set to 1 for Alaska in 1980, 0 for all other states	

	Dividendi i dyniento	
Year	Nominal	Real (2016 dollars)
1982	1,000.00	2,395.93
1983	386.15	887.29
1984	331.29	730.82
1985	494.00	1,053.59
1986	556.26	1,165.97
1987	708.19	1,435.06
1988	826.93	1,617.25
1989	873.16	1,636.13
1990	952.63	1,701.16
1991	931.34	1,604.76
1992	915.84	1,539.76
1993	949.46	1,557.03
1994	983.90	1,580.50
1995	990.30	1,553.36
1996	1,130.68	1,727.55
1997	1,296.54	1,939.05
1998	1,540.88	2,273.68
1999	1,769.84	2,557.08
2000	1,963.86	2,744.28

Table A2: Dividend Payments

		Alaska				
	Mean	Median	Std. Dev.	Min	Max	Obs
Aggregate-Level Data						
Turnout	0.59	0.59	0.05	0.51	0.69	12
Turnout Presidential Elections	0.61	0.59	0.05	0.57	0.69	6
Turnout Midterm Elections	0.56	0.57	0.03	0.51	0.59	6
Dividend in USD	1,748	1,659	592	731	2,744	10
Population	538,175	548,780	80,664	402,051	627,963	12
GDP per capita	79,379	75,309	20,897	57,531	125,020	12
% Africanamerican	0.04	0.04	0.00	0.03	0.04	12
Unemployment rate	0.09	0.09	0.02	0.06	0.11	12
Gini coefficient	0.59	0.58	0.08	0.49	0.70	12
% Population aged 65+	0.04	0.04	0.01	0.03	0.06	12
Election Day Registration	0	0	0	0	0	12
Individual-Level Data						
Voted	0.66	1	0.47	0	1	14,099
Age	38.78	36	14.07	18	99	16,269
Race: White	0.81		0.39	0	1	13,174
Race: Black	0.03		0.18	0	1	544
Race: American Indian/Aleut	0.05		0.22	0	1	848
Race:Asian	0.02		0.14	0	1	306
Race: Other	0.09		0.28	0	1	1,397
Female	0.50	1	0.50	0	1	16,269
Hispanic	0.02	0	0.14	0	1	16,269
Empstat: Armed Forces	0.01		0.09	0	1	123
Empstat: Employed	0.67		0.47	0	1	10,714
Empstat: Unemployed	0.06		0.24	0	1	951
Empstat: NILF	0.26		0.44	0	1	4,153
Educ	4.59	4	1.24	0	7	16,067
		All other st				,
Turnout	0.54	0.54	0.10	0.26	0.76	600
Turnout Presidential Elections	0.60	0.60		0.40	0.76	300
Turnout Midterm Elections	0.48	0.47		0.26	0.73	300
Dividend in USD	-	-	-	-	-	-
Population	4 986 105	3 358 901	5,376,669	430,953	3.40e+07	600
GDP per capita	39,662	37,407	13,472	23,065	149,244	600
% Africanamerican	0.11	0.07	0.12	0.00	0.71	600
Unemployment rate	0.06	0.06		0.00	0.15	600
Gini coefficient	0.54	0.54		0.02	0.15	600
% Population aged 65+	0.12	0.12		0.07	0.00	600
Election Day Registration	0.09	0.12		0.07	1	600
Individual-Level Data	0.07	0	0.20	0	1	000
Voted	0.59	1	0.49	0	1	1,100,854
Age	44.33	41	17.91	18	99	1,233,968
Race: White	0.87	17	0.34	0	1	1,069,289
Race: Black	0.10		0.29	0	1	117,993
Race: American Indian / Aleut	0.00		0.07	0	1	5,463
Race:Asian	0.02		0.13	0	1	20,033
- core en instant	0.02		0.10	0	1	_0,000

Table A3: Variable Summary Statistics

Race: Other	0.02		0.13	0	1	21,190
Female	0.53	1	0.50	0	1	1,233,968
Hispanic	0.06	0	0.24	0	1	1,215,097
Empstat: Armed Forces	0.00		0.04	0	1	1,624
Empstat: Employed	0.62		0.48	0	1	768,264
Empstat: Unemployed	0.04		0.19	0	1	45,479
Empstat: NILF	0.34		0.47	0	1	415,865
Educ	4.31	4	1.37	0	7	1,232,207

Note: Education ranges from 0-7 with (0) "None" (1) "Grade 1-4" (2) "Grade 5-8" (3) "Grade 9-11" (4) "High School" (5) "Some College" (6) "BA Degree" (7) "Post-Grad".

T	he PFD in r	elation to P	ersonal Incon	ne in Alaska	and U.S. P	overty Thre	sholds
	_	hresholds					
		in USD	in %	in U	SD	in %, share	of the PFD
Year	Dividend	PI Alaska	Dividend/PI	Individual	Family of Four	Individual	Family of Four
1980	-	15,531	-	4,190	8,414	-	-
1982	1,000	19,424	5%	4,901	9,862	20%	41%
1984	331	19,702	2%	5,278	10,609	6%	12%
1986	556	20,331	3%	5,572	11,203	10%	20%
1988	827	20,420	4%	6,022	12,092	14%	27%
1990	953	23,213	4%	6,652	13,359	14%	29%
1992	916	24,240	4%	7,146	14,335	13%	26%
1994	984	25,713	4%	7,547	15,141	13%	26%
1996	1,131	26,953	4%	7,995	16,036	14%	28%
1998	1,541	29,220	5%	8,316	16,660	19%	37%
2000	1,964	31,974	6%	8,794	17,603	22%	45%

 Table A4: The Dividend as a Share of Personal Income and Poverty Thresholds¹

 The PED in relation to Personal Income in Alaska and U.S. Poverty Thresholds

¹ (Alaska Department of Revenue 2020; U.S. Bureau of Economic Analysis, U.S. Department

of Commerce 2020a; U.S. Census Bureau 2020)

Election Day Registration

Figure A1:	Introduction	of EDR	by Year
------------	--------------	--------	---------

		Elections in Analysis Perio						Period	riod				
State		1978	1980	1982	1984	1986	1988	1990	1992	1994	1996	1998	2000
Alabama	AL												
Alaska	AK												
Arizona	AZ												
Arkansas	AR												
California	CA												
Colorado	CO												
Connecticut	СТ												
Delaware	DE												
District of Columbia	DC												
Florida	FL												
Georgia	GA												
Hawaii	HI												
Idaho	ID												
Illinois	IL												
Indiana	IN												
lowa	IA												
Kansas	KS												
Kentucky	KY												
Louisiana	LA												
Maine	ME												
Maryland	MD												
Massachusetts	MA												
Michigan	MI												_
Minnesota	MN												
Mississippi	MS												
Missouri	MO												
Montana	MT												
Nebraska	NE												
Nevada	NV												
New Hampshire	NH												
New Jersey	NJ												
New Mexico	NM												
New York	NY												
North Carolina	NC												
North Dakota	ND												
Ohio	OH												
Oklahoma	OK												
Oregon	OR												
Pennsylvania	PA												
Rhode Island	RI												
South Carolina	SC												
South Dakota	SD												
Tennessee	TN												
Texas	TX												
Utah	UT												
Vermont	VT												
Virginia	VA												
Washington	WA												
West Virginia	WV												
Wisconsin	WI												
Wyoming	WY												

Note: Election day registration has been introduced in 6 states until the 2000 November General Election. Oregon did allow its voters to register on election day until the policy's repeal in 1985 (Carbo and Wright 2012, 69). Voters in Oregon had to register at another location before being able to vote which may well be expected to raise the cost of voting, costs that election day registration should in fact reduce (Grumbach and Hill 2021). Oregon is therefore not included in the election day registration control variable (Knack 2001).

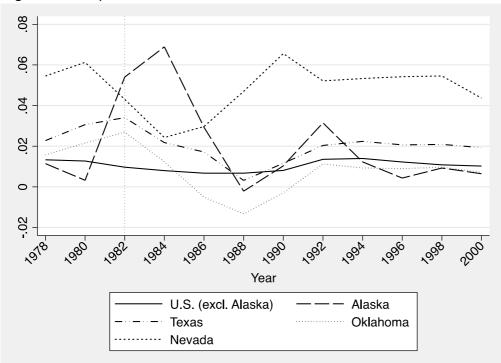


Figure A2: Population Growth Rates²

² (SEER Program, National Cancer Institute 2018)

2. Aggregate-Level Analyses

Robustness: The Parallel Trends Assumption

The identifying assumption of the differences-in-differences setup is the parallel trends assumption, meaning that the treatment and the control group would follow the same trend with regards to the dependent variable in absence of the treatment: the introduction of the Alaskan UBI. The violation of this assumption opens way to the possibility that the increase in turnout in Alaska was caused by other unmeasured confounding factors. Besides using state fixed-effects to control for time-invariant unobserved factors and time fixed-effects to absorb differences across elections, another option is to conduct a 'placebo' DiD estimation. The 'in-time placebo' only includes the pre-treatment period, where I employ the same approach as displayed in Table 1 to examine the potential turnout effect of the introduction of a placebo dividend in 1980 (Abadie, Diamond, and Hainmueller 2010; 2015).

	araller Trenus As	Sumption							
Election Placebo Synthetic control method, following Abadie, Diamond ar									
Years	Dividend	Н	Hainmueller (2010; 2015)						
	1978-1980	1978-1982	1978-1990	1978-2000					
Model	(1)	(2)	(3)	(4)					
Dividend	-0.081	0.063***	0.055^{***}	0.061***					
	(0.058)	(0.010)	(0.002)	(0.005)					
Constant	0.474^{***}	0.509^{***}	0.509***	0.509^{***}					
	(0.006)	(0.005)	(0.006)	(0.005)					
Year FEs	Х	Х	Х	Х					
State FEs	Х	Х	Х	Х					
N. of Obs.	102	150	350	600					
Within R2	0.858	0.674	0.578	0.707					

Table A5: Parallel Trends Assumption

Notes: Regression coefficients shown with standard errors in parentheses. The dividend in Model 1 is a *Placebo dividend* that coded 1 for Alaska in 1980, after the placebo introduction of the treatment and 0 otherwise. Standard errors in Models 2-4 are clustered by the state. The synthetic control group was constructed using the covariates population size, GDP per capita, %Africanamerican, Unemployment rate, the Gini coefficient, % Population aged 65+ and EDR. The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

The results of Model 1 presented in Table A5 report an insignificant placebo treatment effect on Alaska compared to the untreated states which indicates, that in absence of the treatment, both groups would have followed parallel trends over time hence suggesting the parallel trends assumption to hold.

A third option is to employ the synthetic control method proposed by Abadie, Diamond and Hainmueller (2010; 2015). It relaxes the parallel trends assumption by matching the synthetic control to the actual treatment group as closely as possible, based on a comparison of the pre-treatment covariates between Alaska and the initial control group units. The 'synthetic Alaska' is then constructed by reweighting the states in the control group. The estimates in Table 1, Model 7 show a turnout increase by 6.6 percentage points over the period 1978-2000 and are hence robust against using the synthetic control method where the estimate is at an average 6.1 percentage points.

Robustness: New Differences-in-Differences Methods

Using the estimation method as proposed by Callaway and Sant'Anna (2021) allowed me to estimate the group-time average treatment effect of the UBI introduction in Alaska, an overall treatment effect parameter that does "not directly restrict heterogeneity with respect to observed covariates" (2021, 201). The estimations show that state-level turnout had increased by an average 10.7pp over the period 1978-2000 with the effect being significant at the 0.01 level. The baseline results of Table 1 (Models 1, 4 and 7) hence also hold against using the estimation method by Callaway and Sant'Anna.

Table A6: DiD Ac	djusting Strategies		
	Group-time average tr	eatment effect parameter, fo	llowing Callaway and
		Sant'Anna (2021)	
Election Years	1978-1982	1978-1990	1978-2000
Model	(1)	(2)	(3)
Dividend	0.123**	0.094**	0.107**
dummy	(0.009)	(0.006)	(0.006)
95% CI	[0.105, 0.141]	[0.084, 0.105]	[0.096, 0.118]

Notes: The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

Robustness: Analyzing Midterm and Presidential Elections separately

When analyzing midterm and presidential elections separately it becomes apparent that the effects for midterm elections were especially strong and highly significant. Midterm elections have historically yielded lower turnout rates, the difference in means in Alaska has been at 5 percentage points over the period of 1978-2000.

	Table A7. Companing Midlenn and Fresidential Liections						
	Mi	Presidential Elections					
Election Years	1978-1982	1978-1990	1978-2000	1978-1984	1978-1990	1978-2000	
Model	(1)	(2)	(3)	(4)	(5)	(6)	
Dividend dummy	0.207^{**}	0.066^{**}	0.066^{***}	0.015	0.026	0.061^{*}	
	(0.065)	(0.019)	(0.013)	(0.020)	(0.017)	(0.024)	
Controls	Х	Х	Х	Х	Х	Х	
Constant	4.544	0.010	0.965	6.482^{**}	0.057	1.302	
	(3.534)	(1.539)	(0.672)	(2.166)	(0.728)	(0.796)	
Year FEs	Х	Х	Х	Х	Х	х	
State FEs	Х	Х	Х	Х	Х	Х	
N. of Obs.	102	204	306	102	153	306	
Within R2	0.483	0.176	0.224	0.351	0.308	0.527	

Table A7: Comparing Midterm and Presidential Elections

Notes: Regression coefficients shown with robust standard errors in parentheses. Dividend dummy is coded 1 for Alaska after the introduction of the dividend and 0 otherwise. The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

Robustness: Second Set of Turnout Data

The dataset on the official state-level turnout rate employed in the main part of this paper is from the Current Population Survey (CPS) and includes two pre-treatment periods (U.S. Census Bureau, Current Population Survey 2019a; 2019b). In order to increase the robustness of my results, I ran a DiD analysis using a second set of turnout data by the United States Elections Project (McDonald 2020). The Elections Project data uses the voting-eligible population (VEP) as the denominator in calculating the turnout rate. It - hence in contrast to the CPS data - adjust for citizenship and people having lost their right to vote which paints a more accurate picture of the actual turnout rate (Childers and Binder 2012; Holbrook and Heidbreder 2010; Mellon et al. 2018; Tolbert and Smith 2005; Uggen, Larson, and Shannon 2016). The Elections Project data however contains only one pre-treatment period. The results of this estimation are reported

in Table A8 and show, that the findings from the main part of this paper (Table 1) are robust to using a second set of turnout data from the United States Elections Project.

	Short-Term	Medium-Term	Long-Term
Election Years	1980-1982	1980-1990	1980-2000
Model	(1)	(2)	(3)
Dividend dummy	0.128**	0.089***	0.084***
	(0.043)	(0.020)	(0.015)
In Total population	0.680^*	0.086	0.001
	(0.327)	(0.075)	(0.031)
In GDP per capita	-0.023	0.067	0.031
	(0.243)	(0.040)	(0.018)
% Africanamerican	-2.287	-2.360**	-0.470
	(2.437)	(0.694)	(0.466)
Unemployment rate	-0.470	0.942^{***}	0.657^{***}
	(0.645)	(0.236)	(0.126)
Gini coefficient	0.250	-0.152	0.159
	(0.436)	(0.125)	(0.167)
% Population aged 65+	7.386	1.721	0.263
	(4.725)	(0.863)	(0.491)
Election day registration			0.012
			(0.021)
Constant	-9.950	-1.351	0.120
	(5.869)	(1.151)	(0.477)
Year FEs	X	X	X
State FEs	Х	Х	Х
N. of Obs.	101	305	560
Within R2	0.905	0.805	0.798

Table A8: DiD Estimations with Elections Project Data

Notes: Regression coefficients shown with robust standard errors in parentheses. Number of Observations is denoted as *N. of Obs*. Dividend dummy is coded 1 for Alaska after the introduction of dividend and 0 otherwise. Coefficients for the fixed effects are not reported. The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

Robustness: Differences-in-Differences Using Single Years

The differences-in-differences analysis I conducted (see Table 1, main text) estimated the average effect of the Alaskan UBI on turnout. This effect may however be overestimated in the medium- and long-run should the turnout-effect have been unproportionally high for the early post-introduction elections. For robustness purposes I therefore also specify the DiD model as to only compare the pre-treatment elections of 1978 and 1980 to the 1990 and the 2000 election

with the elections in between being omitted from the models. This approach is analogous to Bechtel and Hainmueller (2011). Table A9 reports the results of this analysis.

Table A9. DID EStima	Table A9. DID Estimations Comparing Only Single Years, CPS Data									
		n-Term	Long-Term							
Election Years	Pre-introduction	Pre-introduction period & 1990		n period & 2000						
Model	(1)	(2)	(3)	(4)						
Dividend dummy	0.122^{***}	0.135**	0.086^{***}	0.141^{*}						
	(0.010)	(0.049)	(0.009)	(0.063)						
In Total population		0.070		-0.070						
		(0.068)		(0.037)						
In GDP per capita		0.002		0.037						
		(0.071)		(0.078)						
% Africanamerican		-2.133**		-0.850						
		(0.710)		(0.573)						
Unemployment rate		0.439		0.612						
		(0.602)		(0.556)						
Gini coefficient		-0.131		0.058						
		(0.409)		(0.342)						
% Population aged		0.351		-0.312						
65+		(1.593)		(1.320)						
Election day		0.000		-0.046						
registration		(.)		(0.031)						
Constant	0.474^{***}	-0.370	0.474^{***}	1.180						
	(0.005)	(1.380)	(0.006)	(0.957)						
Year FEs	Х	Х	Х	Х						
State FEs	Х	Х	Х	Х						
N. of Obs.	153	153	153	153						
Within R2	0.730	0.751	0.706	0.735						

Table A9: DiD Estimations Comparing Only Single Years, CPS Data

Notes: Regression coefficients shown with robust standard errors in parentheses. Number of Observations is denoted as N. of Obs. Dividend dummy is coded 1 for Alaska after the introduction of the dividend and 0 otherwise. The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

3. Individual-Level Analyses

Heterogenous Treatment Effects

In the section on turnout enhancing mechanisms in the main paper I analyze for heterogeneous turnout effects by socioeconomic background and use education as a proxy for household resources, as data on household income only becomes available in 1982 (Flood, Sarah et al. 2021). I therefore run a regression where family income is the dependent variable and I interact Alaska with educational attainment to show, that education is indeed a good predictor for income in Alaska with the effect being significant at the 1% level.

Years	1982-2000
Model	(1)
Alaska	121.995***
	(8.912)
Educational attainment	55.847***
	(1.334)
Alaska x Educational attainment	-15.200***
	(1.358)
Constant	113.883***
	(8.669)
Year FEs	Х
N. of Obs.	1,019,813
Within R2	0.271

Table A10: Education as a Predictor for Income in Alaska

The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

I further estimate heterogenous effects by race, the five races included in the sample are White, Black, American Indian/Aleut, Asian or Pacific Islander and Other. The results are reported in Table A11.

Election Years	1978-1982	1978-1990	1978-2000
Model	(1)	(2)	(3)
Dividend	0.136***	-0.004	-0.000
	(0.030)	(0.012)	(0.013)
Black	-0.019	-0.005	-0.004
	(0.012)	(0.011)	(0.010)
American Indian/Aleut		-0.154***	-0.132***
		(0.030)	(0.020)
Asian/Pacific Islander		-0.138*	-0.186***
		(0.054)	(0.027)
Other (single) race, n.e.c.	-0.128***	-0.138***	-0.131***
-	(0.027)	(0.024)	(0.023)
Dividend x Black	-0.237***	-0.139***	-0.120***
	(0.011)	(0.011)	(0.009)
Dividend x American		0.176^{***}	0.086^{***}
Indian/Aleut		(0.032)	(0.021)
Dividend x Asian or Pacific		0.031	0.062^{*}
Islander		(0.056)	(0.027)
Dividend x Other	0.132***	0.125***	0.125***
	(0.027)	(0.025)	(0.025)
Constant	1.077	-0.997	-0.182
Constant	(2.357)	(0.928)	(0.528)
Year FEs	(2.337) X	(0.928) X	(0.328) X
State FEs	X	X	X
N. of Obs.	306,018	688,941	
R2	0.084	0.085	1,099,013 0.093
R∠	0.064	0.065	0.095

Table A11: Heterogeneous	Treatment Effects.	by Race
	rioutinont Encoto,	<i>by</i> 1.000

Notes: Regression coefficients shown with robust standard errors in parentheses (standard errors are clustered by state). Number of Observations is denoted as N. of Obs. Coefficients for the fixed effects are not reported. The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

The marginal effect plot of Figure A3 shows, that Alaskan citizens did not react uniformly to the introduction of the dividend, but instead with strong marginal effects for American Indians/Aleut and turnout-depressing effects for the share of the population that is black.

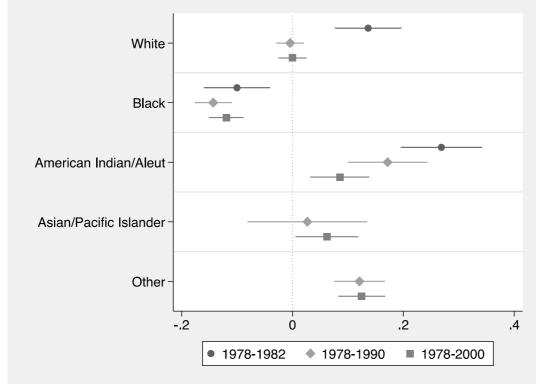


Figure A3: Marginal Effect of Dividend on Turnout with 95% CI, by Race

Testing for heterogeneous effects by agegroup shows, that with the interaction of the dividend dummy and of the agegroup being positive in the short- and medium run that the turnout increasing effect of the dividend increases with age.

Election Years	1978-1982	1978-1990	1978-2000
Model	(1)	(2)	(3)
Dividend	0.113***	-0.018	0.022
	(0.030)	(0.012)	(0.011)
Agegroup	0.091***	0.091^{***}	0.091^{***}
	(0.001)	(0.001)	(0.001)
Dividend x Agegroup	0.015^{***}	0.009^{***}	-0.005***
	(0.001)	(0.001)	(0.001)
Constant	0.135	-1.407	-0.583
	(2.296)	(0.945)	(0.543)
Year FEs	Х	Х	Х
State FEs	Х	Х	Х
N. of Obs.	306,018	688,941	1,099,013
R2	0.162	0.162	0.167

Table A12: Heterogeneous Treatment Effects, by Agegroup

The distribution of age among the Alaskan population in Figure A4 shows that it is rightskewed, yet with the share of the two youngest age groups decreasing over time. It can further be seen, that the dividend has a stronger marginal turnout effect among older citizens, this holds both in the short-and medium-run with the effect being statistically indistinguishable from 0 in the long run.

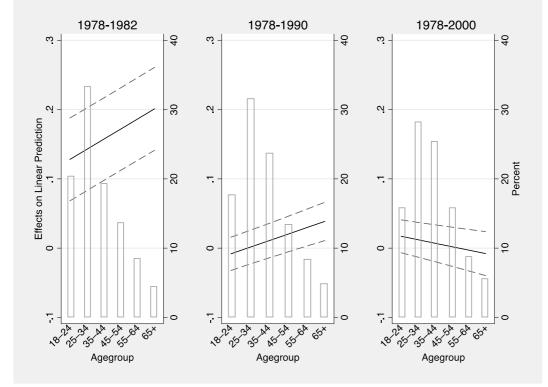


Figure A4: Marginal Effect of Dividend on Turnout in Alaska with 95% CI, by Age

Individual-Level DiD Model Results

				Esumai					000
Election		1978-198	82		1978-	1990		1978-20	000
Years	(1)	(2)	(2)	(4)	(5)	(\mathbf{C})	(7)	(0)	(0)
Model	(1) 0.038***	(2) 0.028***	(3)	(4)	(5) -0.031**	(6)	$\frac{(7)}{0.162^{***}}$	(8) 0.074***	(9) 0.051 ^{**}
Treatyear			0.015	0.014					
dummy	(0.007)	(0.007)	(0.009)	(0.011)	(0.011)	(0.019)	(0.010)	(0.009)	(0.018)
Aaska	0.070***	0.066***	0.480	0.057***	0.054***	0.415**	0.054***	0.050***	0.228*
dummy	(0.002) 0.077^{***}	(0.004) 0.095***	(0.337) 0.153 ^{***}	(0.003) 0.033 ^{***}	(0.005) 0.037 ^{***}	(0.137) 0.009	(0.004) 0.047 ^{***}	(0.005) 0.047^{***}	(0.087)
Treatyear x									0.007
Alaska	(0.006)	(0.006)	(0.030)	(0.005)	(0.005)	(0.012)	(0.005)	(0.005)	(0.013)
[Dividend									
dummy]		0.091***	0.091***		0.091***	0.091***		0.091***	0.091***
Agegroup									
Famala		(0.001) 0.012^{***}	(0.001) 0.012^{***}		(0.001) 0.015^{***}	(0.001) 0.015 ^{***}		(0.001) 0.017^{***}	(0.001) 0.017 ^{***}
Female									
White		(0.003) 0.000	(0.003) 0.000		(0.002) 0.000	(0.002) 0.000		(0.002) 0.000	(0.002) 0.000
white									
Dlash		(.) 0.017	(.) 0.017		(.) 0.028 ^{**}	(.) 0.029 ^{**}		(.) 0.028^{**}	(.) 0.028 ^{**}
Black									
Asian		(0.011)	(0.011)		(0.010) -0.112*	(0.010) -0.114 [*]		(0.010) -0.158 ^{***}	(0.010) -0.161 ^{***}
Asian					(0.047)	(0.049)			
Other		-0.089***	-0.088***					(0.023) -0.087***	(0.024) -0.086 ^{***}
Oulei		(0.025)	(0.025)		(0.022)	(0.022)		(0.018)	(0.017)
Uispania		-0.020	-0.020		-0.022)	-0.022)		(0.018) - 0.029^{**}	(0.017) - 0.030^{***}
Hispanic		(0.019)	(0.019)		(0.014)	(0.021)		(0.008)	(0.008)
origin Employed		(0.019)	(0.019)		(0.014)	(0.014)		(0.008)	(0.008)
Employed Unemployed		-0.091***	-0.092***		-0.087***	-0.087***		-0.083***	-0.084***
Unemployed		(0.005)	(0.092)		(0.005)	(0.005)		(0.003)	(0.004)
NILF		-0.064***			(0.003) -0.060 ^{***}	(0.003) -0.060 ^{***}		-0.058***	-0.058***
INILI		(0.003)	(0.003)		(0.003)	(0.003)		(0.002)	(0.002)
Educational		0.097***	0.097***		0.098***	0.098***		0.102***	0.102***
attainment		(0.002)	(0.002)		(0.002)	(0.002)		(0.002)	(0.002)
ln total		(0.002)	0.092		(0.002)	(0.002) 0.126 [*]		(0.002)	0.055
population			(0.144)			(0.057)			(0.033)
ln GDP per			(0.144) -0.173 [*]			-0.064			-0.054
-			(0.072)			(0.040)			(0.028)
capita Gini			0.128			-0.019			(0.028) 0.271 [*]
coefficient			(0.270)			(0.143)			(0.121)
Election day			(0.270) 0.097**			0.036**			-0.005
registration			(0.097)			(0.013)			(0.017)
Alabama			(0.051)			(0.013)			(0.017)
Alaska	-	-	-	-	-	-	-	-	-
Arizona	-0.034***	-0.086***	-0.026	-0.030***	-0.075***	-0.032	-0.035***	-0.077***	-0.065***
Alizolia	(0.000)	(0.003)	(0.053)	(0.000)	(0.003)	(0.016)	(0.000)	(0.002)	(0.007)
Arkansas	(0.000) 0.001^{**}	0.003	0.044		(0.003) -0.012***	0.052	-0.028***	(0.002) -0.028 ^{***}	-0.004
AIKalisas					(0.001)				
California	(0.000) 0.076^{***}	(0.001) 0.020^{***}	(0.078)	(0.001) 0.064 ^{***}	(0.001) 0.010^{**}	(0.032)	(0.000) 0.063 ^{***}	(0.001) 0.017^{***}	(0.019)
California			-0.083			-0.201			-0.080
Colorada	(0.000) 0.042***	(0.003)	(0.263) 0.082	(0.000) 0.038***	(0.003)	(0.108)	(0.000) 0.039***	(0.003)	(0.064)
Colorado		-0.001			-0.006^{*}	0.046^{*}		-0.006^{*}	0.016
	(0.000)	(0.003)	(0.048)	(0.000)	(0.002)	(0.019)	(0.000)	(0.002)	(0.013)

Table A13: Full Individual-Level DiD Estimations with Reported Fixed Effects

Connecticut	0.102***	0.041***	0.120**	0.073***	0.013***	0.068**	0.070***	0.012***	0.041*
	(0.000)	(0.002)	(0.041)	(0.000)	(0.002)	(0.021)	(0.000)	(0.002)	(0.016)
Delaware	0.034***	-0.002	0.234	-0.004***	-0.041***	0.219^{*}	-0.002***	-0.040***	0.089
	(0.001)	(0.001)	(0.271)	(0.001)	(0.002)	(0.107)	(0.000)	(0.001)	(0.065)
District of	-0.038***	-0.116***	0.254	-0.006***	-0.087***	0.223	0.036***	-0.044***	0.117
Columbia	(0.001)	(0.005)	(0.274)	(0.001)	(0.005)	(0.114)	(0.001)	(0.005)	(0.077)
Florida	0.003^{***}	-0.050***	-0.127	0.000	-0.054***	-0.177**	0.001	-0.050***	-0.118**
	(0.000)	(0.002)	(0.133)	(0.001)	(0.002)	(0.059)	(0.001)	(0.002)	(0.037)
Georgia	-0.104***	-0.110***	-0.124*	-0.097***	-0.101***	-0.139***	-0.089***	-0.095***	-0.113***
	(0.000)	(0.001)	(0.050)	(0.000)	(0.001)	(0.023)	(0.000)	(0.001)	(0.015)
Hawaii	0.072^{***}	0.089^{***}	0.284	0.049^{***}	0.071^{***}	0.268^{**}	0.020^{***}	0.060^{***}	0.153^{**}
	(0.000)	(0.017)	(0.204)	(0.001)	(0.017)	(0.083)	(0.000)	(0.013)	(0.051)
Idaho	0.108***	0.080^{***}	0.226	0.091***	0.060^{***}	0.240^{**}	0.070^{***}	0.045***	0.117^{*}
	(0.000)	(0.003)	(0.204)	(0.000)	(0.002)	(0.081)	(0.000)	(0.002)	(0.048)
Illinois	0.086^{***}	0.046***	0.001	0.067***	0.029***	-0.084	0.056***	0.019***	-0.026
	(0.000)	(0.001)	(0.158)	(0.001)	(0.001)	(0.062)	(0.000)	(0.001)	(0.035)
Indiana	0.032^{***}	0.022^{***}	0.019	0.016^{***}	0.004^{*}	-0.029	0.001	-0.012***	-0.020
	(0.000)	(0.002)	(0.051)	(0.000)	(0.002)	(0.020)	(0.000)	(0.002)	(0.012)
Iowa	0.070^{***}	0.031***	0.098^*	0.047^{***}	0.012^{***}	0.064^{**}	0.051***	0.016^{***}	0.043**
	(0.000)	(0.002)	(0.045)	(0.000)	(0.002)	(0.020)	(0.000)	(0.002)	(0.014)
Kansas	0.060^{***}	0.005^{*}	0.090	0.046^{***}	-0.003	0.073^{*}	0.040^{***}	-0.008***	0.027
	(0.000)	(0.002)	(0.074)	(0.000)	(0.002)	(0.030)	(0.000)	(0.002)	(0.019)
Kentucky	-0.091***	-0.093***	-0.072***	-0.093***	-0.088***	-0.074***	-0.075***	-0.069***	-0.061***
	(0.000)	(0.002)	(0.011)	(0.000)	(0.002)	(0.005)	(0.000)	(0.002)	(0.004)
Louisiana	-0.086***	-0.081***	-0.015	-0.018***	-0.014***	-0.001	-0.011***	-0.007***	-0.003
	(0.000)	(0.001)	(0.034)	(0.000)	(0.001)	(0.014)	(0.000)	(0.000)	(0.007)
Maine	0.136***	0.105***	0.119	0.114^{***}	0.082^{***}	0.202^{*}	0.107^{***}	0.078^{***}	0.156^{**}
	(0.000)	(0.003)	(0.206)	(0.000)	(0.002)	(0.081)	(0.000)	(0.002)	(0.045)
Maryland	0.018***	-0.028***	-0.002	-0.004***	-0.050***	-0.049***	0.008^{***}	-0.041***	-0.034***
-	(0.000)	(0.001)	(0.019)	(0.000)	(0.001)	(0.012)	(0.000)	(0.001)	(0.008)
Massachusetts	s 0.122***	0.066***	0.075	0.096***	0.040***	0.015	0.091***	0.035***	0.032*
	(0.000)	(0.002)	(0.060)	(0.001)	(0.003)	(0.027)	(0.001)	(0.002)	(0.016)
Michigan	0.095***	0.074***	0.034		0.026***	-0.065	0.051***	0.029***	-0.004
U	(0.000)	(0.002)	(0.126)	(0.001)	(0.002)	(0.049)	(0.000)	(0.001)	(0.028)
Minnesota	0.193***	0.155***	0.099***	0.162***	0.127***	0.103***	0.151***	0.116***	0.131***
	(0.000)	(0.003)	(0.022)	(0.000)	(0.002)	(0.009)	(0.000)	(0.002)	(0.020)
Mississippi	0.051***	0.042***	0.061		0.010***	0.057*	0.008***	0.003**	0.015
11	(0.000)	(0.001)	(0.064)	(0.000)	(0.001)	(0.027)	(0.000)	(0.001)	(0.016)
Missouri	0.067***	0.036***	0.041	0.033***	0.003	-0.017	0.037***	0.009***	0.003
	(0.000)	(0.002)	(0.036)	(0.000)	(0.001)	(0.015)	(0.000)	(0.001)	(0.009)
Montana	0.127***	0.092***	0.265		0.085***	0.291**	0.107***	0.072***	0.148*
	(0.000)	(0.003)	(0.230)	(0.001)	(0.003)	(0.093)	(0.000)	(0.003)	(0.056)
Nebraska	0.061***	0.017***	0.136		0.011***	0.140*	0.043***	0.001	0.057
	(0.000)	(0.002)	(0.132)	(0.001)	(0.002)	(0.054)	(0.000)	(0.002)	(0.034)
Nevada	-0.056***	-0.093***	0.124		-0.097***	0.111	-0.058***	-0.088***	-0.008
	(0.001)	(0.002)	(0.229)	(0.001)	(0.002)	(0.085)	(0.000)	(0.002)	(0.047)
New	0.059***	0.002	0.152		-0.038***	0.146	0.004***	-0.039***	0.050
Hampshire	(0.001)	(0.003)	(0.206)	(0.000)	(0.002)	(0.079)	(0.000)	(0.002)	(0.047)
New Jersey	0.033***	-0.012***	-0.027		-0.035***	-0.093*	0.016***	-0.033***	-0.051*
	(0.000)	(0.002)	(0.095)	(0.001)	(0.002)	(0.039)	(0.001)	(0.002)	(0.023)
New Mexico	0.054***	0.045***	0.183	0.020***	0.013*	0.153*	0.011***	0.007	0.063
	(0.000)	(0.007)	(0.158)	(0.000)	(0.005)	(0.060)	(0.000)	(0.004)	(0.035)
New York	0.043***	-0.003	-0.079		-0.017***	-0.179^*	0.031***	-0.011***	-0.080
	(0.000)	(0.002)	(0.220)	(0.001)	(0.002)	(0.087)	(0.000)	(0.002)	(0.050)
North	-0.097***		-0.126^*			-0.104***	-0.049***	-0.061***	-0.076***
	0.071	0.102	0.120	0.017	5.557	01101	0.017	0.001	0.070

0 1	$\langle 0, 0, 0, 0 \rangle$	(0.001)	$\langle 0, 0, c, 0 \rangle$	(0,000)	(0,000)	(0,000)	(0.001)	(0.001)	(0,017)
Carolina	(0.000)	(0.001)	(0.060)	(0.002)	(0.002)	(0.026)	(0.001)	(0.001)	(0.017)
North Dakota	0.149***	0.118***	0.321	0.151***	0.121***	0.356**	0.128***	0.099***	0.199**
<u></u>	(0.000)	(0.003)	(0.258)	(0.001)	(0.003)	(0.103)	(0.000)	(0.002)	(0.064)
Ohio	0.022***	-0.002	-0.061	0.021***	0.000	-0.114	0.019***	-0.002	-0.040
~	(0.000)	(0.002)	(0.149)	(0.001)	(0.002)	(0.058)	(0.000)	(0.002)	(0.034)
Oklahoma	0.025***	-0.016***	0.052	0.005***	-0.024***		0.002***	-0.024***	-0.012
	(0.001)	(0.002)	(0.041)	(0.000)	(0.002)	(0.016)	(0.000)	(0.002)	(0.010)
Oregon	0.115***	0.068^{***}	0.135*	0.102***	0.054^{***}	0.112***	0.099***	0.053***	0.079***
	(0.000)	(0.002)	(0.059)	(0.000)	(0.002)	(0.023)	(0.000)	(0.002)	(0.014)
Pennsylvania	0.008^{***}	-0.018***	-0.095	-0.017***	-0.047***	-0.176**	-0.023***	-0.053***	-0.103**
	(0.000)	(0.002)	(0.162)	(0.001)	(0.002)	(0.063)	(0.000)	(0.002)	(0.036)
Rhode Island	0.114***	0.078^{***}	0.224	0.090^{***}	0.057^{***}	0.243**	0.084^{***}	0.049^{***}	0.137**
	(0.001)	(0.002)	(0.203)	(0.001)	(0.002)	(0.080)	(0.000)	(0.002)	(0.049)
South	-0.101***	-0.089***	-0.077^{*}	-0.095***	-0.092***	-0.069***	-0.071***	-0.074***	-0.060***
Carolina	(0.000)	(0.001)	(0.031)	(0.001)	(0.001)	(0.011)	(0.001)	(0.001)	(0.006)
South Dakota	0.159***	0.128***	0.287	0.131***	0.102***	0.325**	0.102***	0.078^{***}	0.161*
	(0.000)	(0.003)	(0.252)	(0.001)	(0.003)	(0.102)	(0.000)	(0.003)	(0.062)
Tennessee	-0.014***	-0.000	-0.006	-0.058***	-0.046***	-0.062***	-0.061***	-0.049***	-0.057***
	(0.000)	(0.001)	(0.024)	(0.000)	(0.001)	(0.010)	(0.000)	(0.001)	(0.006)
Texas	-0.069***		-0.143	-0.056***	-0.071***	-0.222**	-0.053***	-0.063***	-0.139**
	(0.000)	(0.003)	(0.191)	(0.000)	(0.003)	(0.079)	(0.000)	(0.002)	(0.047)
Utah	0.124***	0.083***	0.192	0.091***	0.052***	0.173**	0.057***	0.023***	0.073*
Otun	(0.000)	(0.003)	(0.140)	(0.000)	(0.002)	(0.053)	(0.000)	(0.002)	(0.030)
Vermont	0.011***	-0.030***	0.162	0.034***	-0.006^*	0.251*	0.042***	0.002	0.119
v crinont	(0.000)	(0.003)	(0.292)	(0.000)	(0.002)	(0.115)	(0.042)	(0.002)	(0.069)
Virginia	-0.028***	-0.058***	-0.058	-0.046***	-0.078^{***}	-0.109***	-0.035***	-0.070***	-0.076***
virginia	(0.000)	(0.001)	(0.049)	(0.000)	(0.001)	(0.023)	(0.000)	(0.001)	(0.015)
Washington	0.037***	(0.001) - 0.009^{**}	(0.049) 0.041	0.024***	(0.001) -0.023***	-0.015	0.029***	(0.001) -0.014 ^{***}	-0.005
Washington	(0.037)			(0.024)			(0.029		
West Vincinia		(0.003)	(0.025)	(0.000) -0.058 ^{***}	(0.002) -0.035 ^{***}	(0.014)	-0.074***	(0.002) -0.057 ^{***}	(0.010)
West Virginia		0.005*	0.075			0.053			-0.012
****	(0.000)	(0.002)	(0.100)	(0.001)	(0.002)	(0.042)	(0.000)	(0.002)	(0.026)
Wisconsin	0.118***	0.081***	0.000	0.087***	0.048***	0.000	0.083***	0.047***	0.055**
	(0.000)	(0.002)	(.)	(0.000)	(0.002)	(.)	(0.000)	(0.002)	(0.020)
Wyoming	0.086***	0.043***	0.373	0.061***	0.024***	0.331**	0.066***	0.032***	0.168*
	(0.000)	(0.003)	(0.310)	(0.000)	(0.002)	(0.124)	(0.000)	(0.002)	(0.078)
1978	-	-	-	-	-	-	-	-	-
1980	0.145***	0.140***	0.132***	0.145***	0.140***	0.136***	0.145***	0.140^{***}	0.134***
	(0.009)	(0.009)	(0.010)	(0.009)	(0.009)	(0.008)	(0.009)	(0.009)	(0.009)
1982	0.000	0.000	0.000	0.024^{*}	0.059^{***}	0.054^{**}	-0.123***		-0.032
	(.)	(.)	(.)	(0.010)	(0.010)	(0.017)	(0.010)	(0.009)	(0.017)
1984				0.142***	0.167***	0.165***	-0.006	0.062^{***}	0.078^{***}
				(0.009)	(0.009)	(0.014)	(0.006)	(0.005)	(0.013)
1986				-0.005	0.009	0.008	-0.153***	-0.096***	-0.084***
				(0.008)	(0.008)	(0.010)	(0.010)	(0.009)	(0.014)
1988				0.120***	0.127^{***}	0.128^{***}	-0.027***	0.022^{***}	0.028^{**}
				(0.008)	(0.008)	(0.009)	(0.006)	(0.005)	(0.009)
1990				-	-	-	-0.148***	-0.104***	-0.104***
							(0.009)	(0.009)	(0.011)
1992							0.029***	0.060***	0.058***
							(0.005)	(0.005)	(0.007)
1994								-0.121***	-0.119***
							(0.010)	(0.009)	(0.010)
1996							-0.035***		-0.023***
							(0.004)	(0.004)	(0.004)
1998								-0.158***	-0.157***
1770								0.100	

							(0.009)	(0.008)	(0.008)
2000							-	-	-
Constant	0.474^{***}	-0.169***	0.135	0.488^{***}	-0.167***	-1.406	0.490^{***}	-0.179***	-0.588
	(0.005)	(0.010)	(2.296)	(0.006)	(0.011)	(0.946)	(0.006)	(0.011)	(0.543)
N. of Obs.	312,360	306,018	306,018	701,264	688,941	688,941	1,114,953	31,099,013	1,099,013
R2	0.035	0.162	0.162	0.032	0.162	0.162	0.033	0.167	0.167
		1	1.1 1			.1	(1 1		1 . 11

Notes: Regression coefficients shown with robust standard errors in parentheses (standard errors are clustered by state). Not in labor force is denoted as NILF. Dividend dummy is coded 1 for Alaska after the introduction of the dividend and 0 otherwise. Employed, Alabama and 1978 are base categories and therefore no results are reported. The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

	Short-Term	Medium- Term	Long-Term	Post-Intr	oduction
Election Years	1978-1982	1978-1990	1978-2000	1982-1990	1982-2000
Model	(1)	(2)	(3)	(4)	(5)
Dividend in	0.064***	0.035***	0.028***	0.097***	0.064***
USD/1000	(0.012)	(0.005)	(0.006)	(0.014)	(0.004)
Agegroup	0.091^{***}	0.091***	0.091^{***}	0.093***	0.091***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Female	0.012^{***}	0.015^{***}	0.017^{***}	0.016^{***}	0.017^{***}
	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
Race: Asian		-0.113*	-0.161***	-0.113*	-0.161***
		(0.050)	(0.024)	(0.049)	(0.024)
Race: Black	0.017	0.029**	0.028**	0.041***	0.035**
	(0.011)	(0.010)	(0.010)	(0.011)	(0.010)
Race: Other	-0.088***	-0.097***	-0.086***	-0.099***	-0.086***
	(0.025)	(0.022)	(0.017)	(0.020)	(0.016)
Hispanic origin	-0.020	-0.021	-0.030***	-0.020	-0.031***
1 6	(0.019)	(0.014)	(0.008)	(0.012)	(0.007)
Unemployed	-0.092***	-0.087***	-0.084***	-0.081***	-0.079***
F)	(0.005)	(0.005)	(0.004)	(0.006)	(0.005)
NILF	-0.064***	-0.060***	-0.058***	-0.059***	-0.057***
	(0.003)	(0.003)	(0.002)	(0.003)	(0.003)
Educational	0.097***	0.098***	0.102***	0.098***	0.103***
attainment	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
In total population	0.092	0.120*	0.052	0.181	0.030
in total population	(0.144)	(0.056)	(0.034)	(0.094)	(0.037)
ln GDP per capita	-0.173*	-0.068	-0.047	-0.086	-0.051
in ODI per cupitu	(0.072)	(0.038)	(0.030)	(0.062)	(0.041)
Gini coefficient	0.128	-0.064	0.270*	-0.187	0.294*
Shin essentielent	(0.270)	(0.161)	(0.118)	(0.198)	(0.111)
Election day			-0.004		0.007
registration			(0.017)		(0.015)
Asian		-0.113*	-0.161***	-0.113*	-0.161***
		(0.050)	(0.024)	(0.049)	(0.024)
Constant	0.135	-1.262	-0.605	-2.053	-0.444
	(2.296)	(0.945)	(0.542)	(1.695)	(0.613)
Year FEs	X	X	X	X	X
State FEs	Х	Х	Х	Х	Х
N. of Obs.	306,018	688,941	1,099,013	483,722	893,794
R2	0.162	0.162	0.167	0.162	0.169

Table A14: Generalized DiD Model Estimates, Individual-Level Data

Notes: Regression coefficients shown with robust standard errors in parentheses (standard errors are clustered by state). Not in labor force is denoted as NILF. Number of Observations is denoted as N. of Obs. Dividend in USD / 1000 is the dividend payment in 2016 dollars. The significance of the estimation coefficients is reported as ***p<0.01, **p<0.05, *p<0.1.

References

- Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program." *Journal of the American Statistical Association* 105 (490): 493–505. https://doi.org/10.1198/jasa.2009.ap08746.
- ———. 2015. "Comparative Politics and the Synthetic Control Method." American Journal of Political Science 59 (2): 495–510. https://doi.org/10.1111/ajps.12116.
- Alaska Department of Revenue. 2020. "Summary of Dividend Applications & Payments." Permanent Fund Dividend Division. 2020. https://pfd.alaska.gov/Division-Info/Summary-of-Applications-and-Payments.
- Bechtel, Michael M., and Jens Hainmueller. 2011. "How Lasting Is Voter Gratitude? An Analysis of the Short- and Long-Term Electoral Returns to Beneficial Policy." *American Journal of Political Science* 55 (4): 852–68. https://doi.org/10.1111/j.1540-5907.2011.00533.x.
- Bureau of Labor Statistics (BLS). 2020a. Local Area Unemployment Statistics (LAUS) 1980-2018. https://www.bls.gov/lau/data.htm.
- ———. 2020b. Consumer Price Index Research Series Using Current Methods (CPI-U-RS). https://www.bls.gov/cpi/research-series/home.htm#CPI-U-RS%20Data.
- Callaway, Brantly, and Pedro H.C. Sant'Anna. 2021. "Difference-in-Differences with Multiple Time Periods." *Journal of Econometrics* 225 (2): 200–230. https://doi.org/10.1016/j.jeconom.2020.12.001.
- Carbo, Steven, and Brenda Wright. 2012. "The Promise and Practice of Election Day Registration." In *America votes! a guide to modern election law and voting rights*, edited by Benjamin E. Griffith and American Bar Association, 2nd ed. Chicago: American Bar Association, Section of State and Local Government Law.

- Childers, Matt, and Mike Binder. 2012. "Engaged by the Initiative? How the Use of Citizen Initiatives Increases Voter Turnout." *Political Research Quarterly* 65 (1): 93–103. https://doi.org/10.1177/1065912910388191.
- Flood, Sarah, King, Miriam, Rodgers, Renae, Ruggles, Steven, Warren, J. Robert, and Westberry, Michael. 2021. "Integrated Public Use Microdata Series, Current Population Survey: Version 9.0." Minneapolis, MN: IPUMS. https://doi.org/10.18128/D030.V9.0.
- Frank, Mark W. 2015. "Measures of Income Inequality, 1917-2015." In U.S. State-Level Income Inequality Data. https://www.shsu.edu/eco_mwf/inequality.html.
- Grumbach, Jacob M., and Charlotte Hill. 2021. "Rock the Registration: Same Day Registration Increases Turnout of Young Voters." *The Journal of Politics*, October. https://doi.org/10.1086/714776.
- Holbrook, Thomas, and Brianne Heidbreder. 2010. "Does Measurement Matter? The Case of VAP and VEP in Models of Voter Turnout in the United States." *State Politics & Policy Quarterly* 10 (2): 157–79. https://doi.org/10.1177/153244001001000203.
- Knack, Stephen. 2001. "Election-Day Registration: The Second Wave." American Politics Research 29 (1): 65–78. https://doi.org/10.1177/1532673X01029001005.
- McDonald, Michael P. 2020. "November General Elections, 1980-2014 State Turnout Rates." United States Elections Project. http://www.electproject.org/home/voter-turnout/voterturnout-data.
- Mellon, Jonathan, Geoffrey Evans, Edward A. Fieldhouse, Jane Green, and Christopher Prosser. 2018. "Opening the Can of Worms: Most Existing Studies of Aggregate Level Turnout Are Meaningless." *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.3098436.
- National Conference of State Legislatures. 2019. Same Day Voter Registration. https://www.ncsl.org/research/elections-and-campaigns/same-day-registration.aspx.

25

- SEER Program, National Cancer Institute. 2018. Survey of Epidemiology and End Results (SEER) U.S. State and County Population Data. Edited by National Bureau of Economic Research. https://data.nber.org/data/seer_u.s._county_population_data.html.
- Tolbert, Caroline J., and Daniel A. Smith. 2005. "The Educative Effects of Ballot Initiatives on Voter Turnout." *American Politics Research* 33 (2): 283–309. https://doi.org/10.1177/1532673X04271904.
- Uggen, Christopher, Ryan Larson, and Sarah Shannon. 2016. "6 Million Lost Voters: State-Level Estimates of Felony Disenfranchisement, 2016." The Sentencing Project. https://www.sentencingproject.org/publications/6-million-lost-voters-state-levelestimates-felony-disenfranchisement-2016/#VI.%20References.
- U.S. Bureau of Economic Analysis, U.S. Department of Commerce. 2020a. *Personal Income*. https://www.bea.gov/data/income-saving/personal-income-by-state.
- ———. 2020b. Per Capita Real GDP by State (SAGDP10N). https://apps.bea.gov/iTable/iTable.cfm?reqid=70&step=30&isuri=1&major_area=0&a rea=xx&year=-1&tableid=513&category=1513&area_type=0&year_end=-1&classification=naics&state=0&statistic=1&yearbegin=-1&unit_of_measure=levels.
- U.S. Census Bureau. 2020. Poverty Thresholds for 1980-2000 by Size of Family and Number of Related Children Under 18 Years. https://www.census.gov/data/tables/timeseries/demo/income-poverty/historical-poverty-thresholds.html.
- U.S. Census Bureau, Current Population Survey. 2019a. Reported Voting for Total and Citizen Voting-Age Populations, by State for Congressional Elections: 1974-2018. https://www.census.gov/data/tables/time-series/demo/voting-and-registration/votinghistorical-time-series.html.

—. 2019b. Reported Voting for Total and Citizen Voting-Age Populations, by State for Presidential Elections: 1972-2016. https://www.census.gov/data/tables/timeseries/demo/voting-and-registration/voting-historical-time-series.html.