# Online Appendix for Decomposing the Source of the Gender Gap in Legislative Committee Service: Evidence from U.S. States <br> Intended for online publication only. 

## Contents

A. 1 Information on Dataset Coverage 2
A. 2 Classifying Committees and Bills 4
A. 3 Further Tests for Difference-in-Differences Design 4
A. 4 Fundraising Predicts Committee Service 6
A. 5 Additional Statistical Results $\quad 7$

## A. 1 Information on Dataset Coverage

Table A. 1 - \# Legislator-Term Observations by State.

| State | Women | Men | Years | State | Women | Men | Years |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| AK | 174 | 573 | $1986-2014$ | AL | 100 | 953 | $1986-2014$ |
| AR | 297 | 1416 | $1986-2014$ | AZ | 409 | 816 | $1988-2014$ |
| CA | 353 | 1096 | $1986-2014$ | CO | 408 | 764 | $1986-2014$ |
| CT | 679 | 1896 | $1988-2014$ | DE | 168 | 598 | $1986-2014$ |
| FL | 464 | 1581 | $1986-2014$ | GA | 581 | 2534 | $1988-2014$ |
| HI | 237 | 678 | $1986-2014$ | IA | 373 | 1446 | $1986-2014$ |
| ID | 384 | 1071 | $1988-2014$ | IL | 559 | 1677 | $1986-2014$ |
| IN | 308 | 1493 | $1986-2014$ | KS | 574 | 1380 | $1988-2014$ |
| KY | 230 | 1495 | $1986-2014$ | LA | 89 | 661 | $1987-2011$ |
| MA | 634 | 2126 | $1988-2014$ | MD | 346 | 749 | $199-2014$ |
| ME | 744 | 1804 | $1988-2014$ | MI | 420 | 1467 | $1986-2014$ |
| MN | 698 | 1858 | $1986-2014$ | MO | 562 | 2039 | $1986-2014$ |
| MS | 148 | 978 | $1987-2011$ | MT | 447 | 1349 | $1986-2014$ |
| NC | 487 | 1782 | $1988-2014$ | ND | 252 | 1168 | $1986-2014$ |
| NE | 78 | 276 | $1986-2014$ | NH | 1819 | 3996 | $1988-2014$ |
| NJ | 243 | 1083 | $1987-2013$ | NM | 335 | 896 | $1988-2014$ |
| NV | 218 | 496 | $1988-2014$ | NY | 572 | 2303 | $1988-2014$ |
| OH | 356 | 1337 | $1986-2014$ | OK | 192 | 1612 | $1986-2014$ |
| OR | 280 | 796 | $1986-2014$ | PA | 463 | 2882 | $1986-2014$ |
| RI | 409 | 1415 | $1988-2014$ | SC | 280 | 1685 | $1988-2014$ |
| SD | 276 | 1143 | $1988-2014$ | TN | 274 | 1407 | $1986-2014$ |
| TX | 443 | 1975 | $1986-2014$ | UT | 224 | 1030 | $1986-2014$ |
| VA | 251 | 1325 | $1987-2013$ | VT | 831 | 1617 | $1988-2014$ |
| WA | 594 | 1184 | $1986-2014$ | WI | 412 | 1275 | $1986-2014$ |
| WV | 303 | 1366 | $1986-2014$ | WY | 234 | 883 | $1986-2014$ |

Table A. 2 shows the 14 states for which we have information on bill sponsorship. We count a legislator as sponsoring a bill if they are the primary sponsor of the bill. This definition changes somewhat from state to state (e.g. some states allow for more than one primary sponsor); however, our state-by-year FEs can account for such differences. See Fouirnaies and Hall (forthcoming) for additional details about the representativeness of these 14 states compared to other states. Notably, these states are similar in terms of professionalism, legislator salaries, the presence of term limits, and partisan control of the legislature.

Table A. 2 - \# Legislator-Term Observations with Sponsorship Information by State.

| State | Women | Men | Years | State | Women | Men | Years |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AR | 250 | 1158 | $1986-2014$ | AZ | 382 | 753 | $1990-2014$ |
| CA | 252 | 677 | $1992-2014$ | CO | 218 | 394 | $1996-2014$ |
| FL | 348 | 1129 | $1990-2014$ | LA | 71 | 474 | $1995-2011$ |
| ME | 743 | 1804 | $1988-2014$ | MI | 312 | 958 | $1992-2014$ |
| MO | 401 | 1318 | $1994-2014$ | MT | 222 | 538 | $2000-2014$ |
| NV | 127 | 237 | $1998-2014$ | OH | 229 | 743 | $1996-2014$ |
| OK | 127 | 1035 | $1992-2014$ | SD | 136 | 538 | $1996-2014$ |

## A. 2 Classifying Committees and Bills

We use the following search terms to classify committees. For the classification of bills we use the replication data from Fouirnaies and Hall (forthcoming) that use the same approach and similar word stems. ${ }^{5}$

```
qui foreach v in cmt chair vice {
    gen `v'_health = regexm(`v',"health|hosp|medic")
    gen `v'_educ = regexm(`v',"educ|school|univer|teach")
    gen `v'_social = regexm(`v',"social|human|age|elder|retir")
    gen `v'_welfare = regexm(`v', "welfare")
    gen `v'_fin = regexm(`v',"financi|bank|insuran")
    gen `v'_commerce = regexm(`v',"busi|commerce|trade|indus")
}
```


## A. 3 Further Tests for Difference-in-Differences Design

Table A. 3 tests the parallel trends for the difference-in-differences design for Table 1 in two ways. First, we add district-specific linear time trends to relax the parallel trends assumption, finding a similar estimate to the main table (this estimate is presented in the first column for comparison). As column 2 shows, district linear trends do not meaningfully change any of the estimates across the three panels. Second, we add a lead of the treatment variable (electing a woman legislator), to look for evidence of pre-trending. As column 3 shows, we find none.

Table A. 3 - Robustness: No Evidence of Pre-treatment Trends. There is no evidence of pretreatment trends which supports the parallel trends assumption.
$\left.\begin{array}{lcccccc}\hline \hline & \begin{array}{c}(1) \\ \text { Member of Committees }\end{array} & \begin{array}{c}\text { (2) } \\ \text { Log }\end{array} & (5) & \text { \# of Bills }\end{array}\right)$

The sample is restricted to single-member districts. Robust standard errors clustered by district in parentheses.

[^0]Table A. 4 - Democratic Subsample: Women Are More Likely to Work on Women's Issues.

|  | $(1)$ <br> Member of Committees <br> on Health or Education | $(2)$ <br> on Health or Education |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Woman Legislator | 0.15 | 0.12 | 0.12 | 0.20 | 0.10 | 0.04 |
|  | $(0.01)$ | $(0.01)$ | $(0.02)$ | $(0.02)$ | $(0.04)$ | $(0.05)$ |
| \# Observations | 46,284 | 43,181 | 15,032 | 7,380 | 6,811 | 3,931 |
| Baseline Mean | 0.33 | 0.33 | 0.37 | 1.81 | 1.84 | 1.90 |
| Chamber-by-Year FEs | Yes | Yes | Yes | Yes | Yes | Yes |
| District FEs | No | Yes | Yes | No | Yes | Yes |
| Log First-Election Donations <br> from Health and Education | No | No | Yes | No | No | Yes |

Columns 1 and 4 reflect the overall difference between men and women. Columns 2 and 5 include district fixed effects to account for district preferences. Columns 3 and 6 adjust for money raised in first election as a proxy for background. Robust standard errors clustered by district in parentheses.

## Table A. 5 - Republican Subsample: Women Are More Likely to Work on Women's Issues.

|  | $(1)$ <br> Member of Committees <br> on Health or Education | on Health or Education |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Woman Legislator | 0.12 | 0.11 | 0.10 | 0.14 | 0.10 | 0.06 |
|  | $(0.01)$ | $(0.01)$ | $(0.02)$ | $(0.02)$ | $(0.04)$ | $(0.05)$ |
| \# Observations | 42,128 | 38,821 | 16,969 | 7,465 | 6,913 | 4,742 |
| Baseline Mean | 0.32 | 0.31 | 0.36 | 1.90 | 1.96 | 1.97 |
| Chamber-by-Year FEs | Yes | Yes | Yes | Yes | Yes | Yes |
| District FEs | No | Yes | Yes | No | Yes | Yes |
| Log First-Election Donations | No | No | Yes | No | No | Yes |
| from Health and Education |  |  |  |  |  |  |

Columns 1 and 4 reflect the overall difference between men and women. Columns 2 and 5 include district fixed effects to account for district preferences. Columns 3 and 6 adjust for money raised in first election as a proxy for background. Robust standard errors clustered by district in parentheses.

## A. 4 Fundraising Predicts Committee Service

In the paper, we control for fundraising from women's issues sectors in a legislator's first election as a proxy for their background. In this section, we show that first-election fundraising from particular industries strongly predicts future service on committees relevant to that industrye.g., if a legislator raises a lot of money from the agriculture industry the first time she runs for election, she is more likely to serve on the agriculture committee in the future than a legislator who raises less money from the agriculture committee. This result suggests that first-election fundraising is a useful proxy for pre-existing attributes of different candidates that make them more or less relevant to a given industry, including their professional backgrounds before becoming politicians.

Figure A. 1 - Predicting Committee Service Using First-Election Fundraising. The graph presents on the x-axis binned averages of total log money raised from industry $j$ to legislator $i$ and on the $y$-axis the probability that legislator $i$ serves on a committee relevant to industry $j$ at any time in his or her career.


Next, we can examine the correlation between legislator background and fundraising directly for legislators in California, using data on schoolboard elections. ${ }^{6}$ Table A. 6 shows the results. For all three outcome variables, we see that former schoolboard members raise more money from the education sector than do other candidates. This suggests that first-election fundraising from sectors is a useful indicator of legislator background, at least for education.

[^1]Table A. 6 - Education Fundraising Relates to Candidate Background. Legislators who are former schoolboard members in California raise more money from the education sector the first time they run for the state legislature.

|  | $\$$ from Educ | $\log \$$ from Educ +1 | Raise Any Money from Educ |
| :--- | :---: | :---: | :---: |
|  | $(1)$ | $(2)$ | $(3)$ |
| Schoolboard Member | 6109.94 | 2.69 | 0.27 |
|  | $(3074.98)$ | $(0.70)$ | $(0.07)$ |
| $\#$ Observations | 512 | 512 | 512 |

Robust standard errors in parentheses.

## A. 5 Additional Statistical Results

Table A. 7 shows the main effects broken down by whether a district is switching from a man to a woman representative or from a woman to a man. In all specifications, the coefficients show the difference in probability of committee sponsorship or total bill sponsorship for the woman legislator relative to the man. For the committee assignment specification, the effect is slightly larger when a woman replaces a man than vice versa, but in the bill sponsorship analysis the effect is larger when a woman is replaced by a man. Future work in this area might further explore how the gender gap evolves over time after districts have been represented by a woman for several electoral cycles.

To address the fact that committees vary in their importance across state, we also allow the effect of a woman being elected to office to vary flexibly by a measure of state legislative professionalism. Table A. 8 examines heterogeneous effects by state legislative professionalism. In more professionalized states, committees tend to have more power and resources relative to less professionalized states. The theoretical expectations are a bit unclear. On one hand, many of the more professionalized legislatures tend to lean Democratic (e.g. New York and California). On the other hand, the gender gap may be particularly pronounced when competition for committee assignments increases. We interact the legislative professionalism index introduced by Squire (2007) with our treatment of electing a woman. Interestingly, we find some modest (although noisy) evidence that the gender gap in committee assignment is exacerbated as professionalization increases. However, after accounting for district preferences and legislator backgrounds, we find no similar effect for bill sponsorship (column 6). This finding lends credence to the idea that something about the committee assignment process within the legislature is largely responsible for the over-representation of women on women's issue committees and suggests a promising avenue for future research.

Table A. 7 -Heterogeneity in committee effects depending on whether the representative switches from being a man to a woman or a woman to a man.

|  | Full | Female | Male to | Full | Female | Male to |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sample | to Male | Female | Sample | to Male | Female |
|  | $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ |
|  | Member of Committees |  | Log \# of Bills |  |  |  |
|  | on Health or Education | on Health or Education |  |  |  |  |
| Woman Legislator | 0.12 | 0.07 | 0.14 | 0.11 | 0.16 | 0.10 |
|  | $(0.01)$ | $(0.01)$ | $(0.01)$ | $(0.02)$ | $(0.04)$ | $(0.03)$ |
| \# Observations | 87,099 | 18,980 | 67,994 | 14,612 | 3,528 | 11,063 |
| Baseline Mean | 0.32 | 0.38 | 0.30 | 1.86 | 1.89 | 1.85 |
| Chamber-by-Year FEs | Yes | Yes | Yes | Yes | Yes | Yes |
| District FEs | Yes | Yes | Yes | Yes | Yes | Yes |

Robust standard errors clustered by district in parentheses.

Table A. 8 - Effect Heterogeneity: Variation in Effects across Levels of Legislative Professionalization. There is no evidence of pretreatment trends which supports the parallel trends assumption.

|  | Member of Committees on Health or Education |  |  | Log \# of Bills on Health or Education |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Woman Legislator | $\begin{gathered} 0.12 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.09 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.08 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.14 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.05 \\ (0.04) \end{gathered}$ | $\begin{gathered} 0.05 \\ (0.05) \end{gathered}$ |
| Woman Legislator $\times$ | 0.08 | 0.17 | 0.23 | 0.23 | 0.29 | 0.06 |
| Professionalization | (0.04) | (0.06) | (0.12) | (0.11) | (0.17) | (0.21) |
| \# Observations | 89,641 | 87,099 | 34,061 | 14,881 | 14,612 | 9,311 |
| Baseline Mean | 0.32 | 0.32 | 0.36 | 1.85 | 1.86 | 1.89 |
| Chamber-by-Year FEs | Yes | Yes | Yes | Yes | Yes | Yes |
| District FEs | No | Yes | Yes | No | Yes | Yes |
| Log First-Election Donations from Health and Education | No | No | Yes | No | No | Yes |

[^2]Finally, we also examine if women candidates are less likely to be assigned to committees and sponsor legislation in areas that are typically considered to be "male dominated." Two committees that tend to be strongly associated with men are commerce and finance (Dolan 2004; Provins 2017). When we replicate the main analysis using these two issue areas, we find that women are 4 percentage points less likely to be assigned to these committees (Table A.9). These results suggest that perhaps stereotypes about women's issues are stronger than those about men's issues, although more research is needed on this topic. For transparency, in Table A. 10 we show the probability of assignment broken down by committee type when a woman is elected to office. Estimates are from the two-ways fixed effects models described in the main text with district and state-by-year FEs.

Table A. 9 - Women Are Less Likely to Work on traditional Men's
Issues.

|  | $(1)$ |  | $(2)$ |
| :--- | :---: | :---: | :---: |
|  | Member of Committees |  |  |
|  | on Commerce or Finance |  |  |

Robust standard errors clustered by district in parentheses.

Table A. 10 - Women Representatives and Committee Service in State Legislatures: Difference-in-Differences design. A woman representative is substantially more likely to serve on committees whose jurisdictions relate to issues the literature identifies as womens' issues (highlighted in grey), relative to a hypothetical man elected from the same district at the same time.

|  | Change in Probability <br> of Committee Assignment <br> After Electing a Woman |
| :--- | ---: |
| Committee | $\mathbf{0 . 1 1 6 ( 0 . 0 0 7 )}$ |
| Women's Issues | $-0.005(0.005)$ |
| Agriculture | $0.015(0.005)$ |
| Appropriations | $-0.027(0.006)$ |
| Commerce | $0.057(0.006)$ |
| Education | $0.002(0.007)$ |
| Energy | $0.002(0.002)$ |
| Ethics | $-0.024(0.005)$ |
| Finance | $0.093(0.006)$ |
| Health | $-0.004(0.006)$ |
| Judiciary | $-0.017(0.004)$ |
| Labor | $-0.011(0.004)$ |
| Rules | $0.078(0.006)$ |
| Social | $-0.034(0.006)$ |
| Transportation | $-0.013(0.004)$ |
| Ways and Means | $0.014(0.003)$ |
| Welfare |  |

Numbers in second column are twoway fixed-effects estimates. Robust standard errors clustered by district in parentheses. The first row presents an estimate pooling over the women's issues committees, which are defined to be education and health.


[^0]:    ${ }^{5}$ The only relevant difference is that Fouirnaies and Hall (forthcoming) also include the word stem child when they classify education bills.

[^1]:    ${ }^{6}$ https://wWw.sos.ca.gov/elections/county-city-school-district-ballot-measure-electionresults/

[^2]:    The sample is restricted to single-member districts. Robust standard errors clustered by district in parentheses.

