
TAKING DYADS SERIOUSLY

Abstract. International relations scholarship concerns dyads, yet standard modeling ap-proaches fail to adequately capture the data generating process behind dyadic events andprocesses. As a result, they suffer from biased coefficients and poorly calibrated standarderrors. We show how a regression-based approach, the Additive and Multiplicative Effects(AME) model, can be used to account for the inherent dependencies in dyadic data andglean substantive insights in the interrelations between actors. First, we conduct a simula-tion to highlight how themodel captures dependencies and show that accounting for theseprocesses improves our ability to conduct inference on dyadic data. Second, we comparethe AMEmodel to approaches used in three prominent studies from recent international re-lations scholarship. For each study, we find that compared to AME, the modeling approachused performs notably worse at capturing the data generating process. Further, conven-tional methods misstate the effect of key variables and the uncertainty in these effects.Finally, AME outperforms standard approaches in terms of out-of-sample fit. In sum, ourwork shows the consequences of failing to take the dependencies inherent to dyadic dataseriously. Most importantly, by better modeling the data generating process underlyingpolitical phenomena, the AME framework improves scholars’ ability to conduct inferentialanalyses on dyadic data.
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Appendix A. AME Monte Carlo Markov Chain Algorithm
Given initial values of {β, a,b,U,V, Σab , ρ, and σ2ε }, the algorithm proceeds as follows until con-

vergence:1
• sample θ | β,X, θ, a,b,U,V, Σab , ρ, and σ2ε (Normal)
• sample β | X, θ, a,b,U,V, Σab , ρ, and σ2ε (Normal)
• sample a,b | β,X, θ,U,V, Σab , ρ, and σ2ε (Normal)
• sample Σab | β,X, θ, a,b,U,V, ρ, and σ2ε (Inverse-Wishart)
• update ρ using aMetropolis-Hastings stepwith proposal p∗ |p ∼ truncatednormal[−1,1] (ρ,σ2ε )
• sample σ2ε | β,X, θ, a,b,U,V, Σab , and ρ (Inverse-Gamma)
• For each k ∈ K :

– Sample U[,k ] | β,X, θ, a,b,U[,−k ],V, Σab , ρ, and σ2ε (Normal)
– Sample V[,k ] | β,X, θ, a,b,U,V[,−k ], Σab , ρ, and σ2ε (Normal)
– Sample D[k ,k ] | β,X, θ, a,b,U,V, Σab , ρ, and σ2ε (Normal)2

1Further details on the full conditional distributions and estimation approach underlying AME can be foundin Hoff (2021).2Subsequent to estimation, Dmatrix is absorbed into the calculation for V as we iterate through K . 1



Appendix B. Additional Replication Information
For each of the replications involving a binary dependent variable we provide a table of coef-

ficient estimates that includes the original GLM estimation and the results from the AME model.
We have adopted for presentation purposes only the use of significance testing on these obser-
vational data for facile comparison with the replicated studies. However, note that we do provide
predictive heuristics for these models as well.
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Reiter & Stam (2003). Additional information for the Reiter & Stam (2003) re-estimation.
Variable GLM (Logit) AME
Intercept -4.784 -3.224(0.097) (0.076)Pers/Democ Directed Dyad 1.026 0.252(0.14) (0.066)Democ/Pers Directed Dyad 0.083 0.114(0.191) (0.089)Personal 0.281 0.212(0.265) (0.11)Military -0.323 -0.005(0.574) (0.234)Single -0.677 -0.033(0.144) (0.081)Democracy -1.073 -0.247(0.194) (0.069)Contiguous 2.912 1.311(0.09) (0.038)Major Power 2.174 0.931(0.101) (0.107)Ally 0.078 0.157(0.086) (0.042)Higher/Lower Power Ratio -0.316 -0.106(0.027) (0.012)Economically Advanced -0.175 0.057(0.131) (0.055)Years Since Last Dispute -0.381 -0.124(0.023) (0.008)Cubic Spline 1 -0.004 -0.001(0.000) (0.000)Cubic Spline 2 0.002 0.001(0.000) (0.000)Cubic Spline 3 -0.001 0.000(0.000) (0.000)

Table B1. Parameter comparison for Reiter & Stam (2003). Standard errors inparentheses.
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Weeks (2012). Additional information for the Weeks (2012) re-estimation.
Variable GLM (Logit) AME
(Intercept) -3.784 -2.432(0.423) (0.122)Machine -0.459 -0.003(0.174) (0.041)Junta 0.515 0.031(0.169) (0.045)Boss 0.649 -0.04(0.153) (0.046)Strongman 0.832 0.04(0.132) (0.044)Other Type 0.147 -0.001(0.132) (0.034)New/Unstable Regime -0.312 -0.042(0.092) (0.033)Democracy Target 0.185 0.025(0.115) (0.026)Military Capabilities Initiator 5.234 0.044(1.69) (0.387)Military Capabilities Target 6.34 -0.938(1.675) (0.477)Low Trade Dependence -24.794 -4.872(12.866) (3.126)Both Major Powers 1.136 1.114(0.547) (0.232)Minor/Major 0.772 0.506(0.239) (0.112)Major/Minor 0.711 0.766(0.225) (0.153)Contiguous 2.172 0.709(0.32) (0.063)Log Dist. Between Capitals -0.209 -0.129(0.038) (0.01)Alliance Similarity Dyad -0.999 -0.061(0.144) (0.062)Alliance Similarity With System Leader Initiator 0.11 0.08(0.24) (0.061)Alliance Similarity Leader Target 0.203 0.079(0.244) (0.057)Time Since Last Conflict -0.229 -0.067(0.018) (0.006)Spline1 -0.001 0.000(0.000) (0.000)Spline2 0.000 0.000(0.000) (0.000)Spline3 0.000 0.000(0.000) (0.000)

Table B2. Parameter comparison for Weeks (2012)). Standard errors in parentheses.
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Gibler (2017). Additional information for the Gibler (2017) re-estimation.
Variable GLM (Logit) AME
(Intercept) -5.826 -4.056(0.366) (0.168)Allied 0.133 0.058(0.102) (0.026)Joint Democracy -0.527 0.03(0.099) (0.023)Peace Years -0.261 -0.063(0.016) (0.004)Spline 1 -0.001 0.000(0.000) (0.000)Spline 2 0.000 0.000(0.000) (0.000)Spline 3 0.000 0.000(0.000) (0.000)Contiguity 2.427 0.594(0.196) (0.028)Parity -0.77 0.006(0.551) (0.085)Parity at Entry Year 2.034 -0.221(0.617) (0.084)Rivalry 2.034 0.679(0.213) (0.032)

Table B3. Parameter comparison for Gibler (2017). Standard errors in parentheses.
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Appendix C. Additional Simulations: Non-Linear Data
Aronow et al note that “fitting a linear approximation to mildly non-linear data” can be problem-

atic for dyadic random effect models. We agree on the importance of testing this in the context of
the simulation that we posed in the paper. Aronow et al incorporate non-linearmisspecification by
adding in squared version of the key dyadic homophily variable to the DGP for their simulations:
Yi ,j = β0 + β1Xi ,j + β2X

2
i ,j + εi ,j . Here X is their representation of homophily and is considered ob-

served, while X 2 is their check for robustness to misspecification and is unobserved. We incorpo-
rate the same type of misspecification into our probit simulation setup: Zi ,j = µ+βXi ,j +γWi ,j +εi ,j ,
whereW now instead of being drawn from a separate normal distribution is just the squared ver-
sion of X . For the simulation we set values of µ, β , and γ to -2, 1, and 1, respectively. Results are
shown below in Figures 1 and 2 below. As in the paper, along the x-axis we implement a standard
model that does not take any steps to account for dependencies, AME, and the Oracle model, and
as in the paper we find that the AME approach provides a number of benefits in terms of bias and
coverage over the standard approach of not dealing with dependencies.

Figure 1. Regression parameter estimates for the standard, AME, and oracle mod-els from 1,000 simulations. Summary statistics are presented through a traditionalbox plot, and the estimates from each simulation are visualized as well as points.
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Figure 2. Proportion of times the true value fell within the estimated 95% confi-dence interval for the standard, AME, and oracle models from 1,000 simulations.
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Appendix D. Additional Simulations: Correlation with Omitted Variable
Estimation certainly gets more challenging when the omitted variable is correlated with the ob-

served variable. In the case of normal linear regression, we can show that in general a regression
coefficient is unbiased for its “unconditional effect”, which is the direct effect plus something re-
lated to the direct effects of any omitted variables that it is correlated with. For example, suppose
in our simulation setup Xi ,j is correlated withWi ,j via the relationWi ,j = αXi ,j + e i ,j . Then:

Yi ,j = µ + βXi ,j + γWi ,j + εi ,j

= µ + (γα + β )Xi ,j + (γZi ,j + εi ,j )

= µ + β̃Xi ,j + ε̃i ,j

The naivemodel is in some sense still “correct” as it is an unbiased estimator of the unconditional
(direct plus indirect) effect γα + β of X onY . However, there is no way to eliminate this extra bias
without making further assumptions about the nature of the omitted variable. Additonally, in the
binary case with the probit setup, other sources of bias get introduced as well because of the
nonlinearity of the population moments as a function of the parameters. An interesting question
is whether or not we can reduce the bias in the network setting by assuming the omitted variable
wi ,j is the product of latent node-specific factors. An idea related to this is discussed in Minhas
et al. (2017).
For now though to show the amount of bias that gets introduced into our setup when X andW

are correlated we repeat our simulation exercise but induce varying levels of correlation between
X andW . Results with X andW correlated at 0.4 and then 0.7 are shown below, respectively.
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Figure 3. Regression parameter estimates for the standard, AME, and oracle mod-els from 1,000 simulations. Summary statistics are presented through a traditionalbox plot, and the estimates from each simulation are visualized as well as points.
X andW are correlated at 0.4 in this case.
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Figure 4. Regression parameter estimates for the standard, AME, and oracle mod-els from 1,000 simulations. Summary statistics are presented through a traditionalbox plot, and the estimates from each simulation are visualized as well as points.
X andW are correlated at 0.7 in this case.
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Appendix E. AME Tutorial
Using the AMEN function requires formatting data into a particular structure. The primary dis-

tinction in data formatting is whether the outcome of interest represents a directed or undirected
network.
If undirected, the AMEN function has three main inputs:
• Y: aT length list of n ×n adjacency matrices, whereT = number of years in the dataset and
n = number of nodes in the network.
– An adjacencymatrix describes relationships between nodes in a particular year of data.
For example, in an adjacencymatrix of interstateMIDs, row i and column j takes a value
of ’1’ if country i and country j had a MID in that year, and ’0’ otherwise. The diagonal
in the adjacency matrix is typically missing. Y is a list of these adjacency matrices for
the outcome variable, where each element in the list is a different year of data.

• Xdyad: aT length list of n × n × p arrays, where p = number of dyadic covariates in dataset.
– An array is a data object in R that contains a series of ’stacked’ matrices for each year
of data. An array of dimension (2, 3, 4), for example, contains 4 rectangular matrices
each with 2 rows and 3 columns. Each matrix in the array describes the relationship
between nodes with respect to some covariate. For example, for interstate alliances,
row i and column j takes a value of ’1’ if country i and country j had an alliance in
that year, and ’0’ otherwise. An array contains a matrix of this kind for each covariate
going into the model. Xdyad is a list of these arrays, where each element in the list is a
different year of data.

• Xrow: aT length list of n × p matrices, where p = number of monadic (nodal) covariates in
dataset.
– Each matrix in Xrow has the nodes running down the rows and the covariates in the
dataset running along the columns. An entry in the matrix captures the value that a
node takes on for each covariate in a given year. For example, if column j is GDP per
capita and column k is population, then row i , column j measures country i ’s GDP per
capita and row i , column k measures country i ’s population in a given year. Xrow is a
list of these matrices, where each element in the list is a different year of data.
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If directed, AMEN further requires:
• Xrow: a T length list of n × p matrices, where p = number of sender (nodal) covariates in
dataset.
– Xrow here is nearly identical to the undirected case. The only difference is that rather
than each matrix containing covariate data on all nodes, in the directed context each
matrix only contains data on the nodes that are acting as senders in that particular
year. Using interstate MIDs as an example, if in 1983 only two countries initiated MIDs,
Xrow would only contain data for those two countries (i.e., Xrow would only have two
rows).

• Xcol: a T length list of n × p matrices, where p = number of receiver (nodal) covariates in
dataset.
– Xcol here is nearly identical to Xrow, except each matrix contains data on receiver
nodes, not sender nodes. Using interstate MIDs as an example, if in 1983 only two
countries had MIDs initiated against them, Xcol would only contain data for those two
countries (i.e., Xcol would only have two rows).

Beyond the data inputs, the AMEN function requires additional specification:

• model: how to model the outcome variable, e.g., ‘logit’
• symmetric: whether the input network is symmetric
• intercept: whether to estimate an intercept
• nscan: number of iterations of the Markov chain
• burn: burn-in period
• odens: thinning interval
• R: dimension of the multiplicative effect (referred to as K in the paper)
• gof: whether to calculate goodness of fit statistics

There is often little theoretical reason to choose a particular value of R (above). One strategy is
to estimate models at different values of R and compare goodness of fit statistics across models.
Given the computational time needed for parameter estimates to converge, parallelization strate-
gies are recommended to speed up analysis. In addition, providing AMEN function with starting11



values, either dictated by theory, previous research, or previous runs can also help speed up con-
vergence time.
The code below presents an example of an AMEmodel running in parallel across 4 different lev-

els of R. Note also that the model is using starting values from a previous run, defined in startVals.
# running in pa r a l l e l vary ing k

imps = 10000 ; brn = 25000 ; ods = 10 ; latDims = 0:3

# Run amen in pa r a l l e l

l ibrary ( doPara l le l ) ; l ibrary ( foreach ) ; c l =makeCluster ( 4 ) ; reg i s terDoPara l le l ( c l )
foreach ( i i = 1 : length ( latDims ) , .packages=c ( "amen" ) ) %dopar% {

# load prev ious model run

load ( prevModelFiles [ i i ] )
# ex t ra c t s t a r t va l s

s tar tVa ls0 = ameFit$ ' s t a r tVa l s '
# dump re s t

rm( ameFit )

ameFit = ame_ repL (
Y=yL is t , Xdyad=xDyadList , Xrow=NULL , Xcol=NULL ,
model=" bin " , symmetric=FALSE , intercept=TRUE ,R=latDims [ i i ] ,
nscan=imps , seed=1 , burn=brn , odens=ods ,
plot=FALSE , print=FALSE , gof=TRUE , s ta r tVa l s =startVa ls0 ,
periodicSave=TRUE )

save ( ameFit , f i l e =paste0 ( 'model_k ' , latDims [ i i ] , ' _ v2 . rda ' ) )
}
stopCluster ( c l )
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