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Appendix 1 Adding Unrelated I(1) Regressors to a Cor-

rectly Specified GECM Does Not Unbal-

ance the Equation

Here, we consider the Kraft, Key, and Lebo analysis where two I(1) variables that are
cointegrated are analyzed with unrelated I(1) variables. This presents an interesting scenario
because researchers often control for variables that may not be related to the other variables,
because omitting a relevant variable can bias results, while including an unrelated variable
typically only risks increased standard errors. Enns & Wlezien (2017) argue that if two
variables are cointegrated, adding unrelated I(1) variables to the model (while inadvisable)
does not affect equation balance because the linear combination of all variables remains
unchanged. However, Kraft, Key, and Lebo argue that controlling for unrelated variables
creates equation imbalance and thus increases the rate of Type I errors. The declining rate
of Type I errors as T increases in Kraft, Key, and Lebo’s Figure 2 actually may support
what Enns and Wlezien posit; if the Type I error rate in Kraft, Key, and Lebo’s Figure
resulted because of imbalance, the false positive rate should not decline as the sample size
increases. (That is, equation balance does not depend on sample size.) To better understand
their results, we repeated Kraft, Key, and Lebo’s simulations setting T equal to 5,000 and
including 8 unrelated I(1) predictors. The rate of false positives for all unrelated long run
multipliers drops to 5.2 percent with a mean value of -.00002. Although we do not recommend
adding unrelated I(1) variables to models with cointegrated variables, consistent with Enns
and Wlezien, doing so does not appear to create equation imbalance.

Appendix 2 Combined Time Series with Additional In-

novation (q)
For the combined time series analysis, the results in the text use the following DGP,

Yt = (xIt + xSt ) (1)

We did not add a disturbance to this DGP because the DGP of both xIt and xSt contain
disturbance terms. Nevertheless, we wanted to be sure that our results were not sensitive to
this decision. Thus, we conducted the same simulations where the DGP for Y was,

Yt = (xIt + xSt ) + q, q N(0, 1) (2)

The results appear in Table A-1. The pattern of results is strikingly similar to what we saw
in Table 1.
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Appendix 3 Results Based on the ADL with Finite Se-

ries
Table A-2 reports the results based on estimating ADL models for each simulated time

series where T=50, 100, and 200. Here we see exactly what we expect on average given
the construction of the series, once again regardless of the ρ of the stationary component.
Interestingly, when we see departures from the mean expected value, the departures for the
Yt−1 and Xt−1 are equal and opposite. Ultimately, despite different orders of integration on
the two sides of the equation, at least in the DGPs, we are able to correctly identify the
relationship between the stationary xSt and the combined time series Y (which in theory
is integrated), even with fairly finite samples. While reassuring, note that our analyses
here are based on estimations that time series researchers would not undertake without first
diagnosing the stationarity of the variables, which we consider in the text. We did so here
because we know the GDP for our DV and IV and their interrelationships, and that the
ADL should capture the relationship on average, per Table 1.
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