
Problems with Products?
Control Strategies for Models with Interactive and

Quadratic Effects

Supplementary Materials

Janina Beiser-McGrath∗ Liam F. Beiser-McGrath†

This document contains supplementary information related to the main text.

∗Senior Research Fellow, Department of Politics and Public Administration, Universität Kon-
stanz. Contact e-mail: janina.beiser@uni-konstanz.de
†Senior Research Fellow, Universität Konstanz. Research Associate, ETH Zürich. Contact
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1 Additional example illustrating the logic of the problem

of omitted product terms

We provide a second example for the problems that can occur when product

terms amongst the control variables are omitted based on Williams and Whit-

ten (2015), the paper we replicate in the article. The authors hypothesize that

the state of the economy in a country will affect the vote share of the party of the

prime minister more than the vote share of other parties. Another factor that has

the potential to affect different parties’ vote shares is the timing of an election,

that is whether elections are called earlier than constitutionally required. The

authors expect that early elections increase the vote share of the prime minis-

ter’s party compared to opposition parties. There are several reasons to believe

that the state of the economy and early elections are linked. Firstly, govern-

ments have incentives to call early elections if the economy is in good shape.

Secondly, economic crises may reveal irreconcilable ideological differences be-

tween coalition partners and require early elections. Thirdly, political instabil-

ity may stifle economic growth. Even though the authors are interested in the

moderating effect of the state of the economy on the party of the prime minister,

they include two interaction terms in their model: one between the variable on

whether a party is the party of the prime minister and the state of the economy

and one between the measure on prime minister’s party and the time left until

elections are constitutionally required.1 If they had failed to do so, their find-

ing on the interactive relationship between economic performance and being

1They also include interactions between a variable on coalition partners and those two po-
tentially moderating variables.
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the party of the prime minister could reflect a potentially moderating effect of

early elections on the variable on the prime minister’s party and a correlation

between the state of the economy and early elections.

2 Bias Analysis for Omitted Product Terms

2.1 Omitting an Interaction Term That Shares a Constitutive Term

with an Included Interaction Term

In a first step, let us consider the following data generating process in scalar

notation

yi = β0 + β1ai + β2bi + β3ci + β4di + β5aibi + εi. (1)

For the sake of simplicity, we assume that ai, bi, ci, and di are mean-centered

and have unit variance. Also, let ai, bi, ci, and di follow a multivariate normal

distribution and the standard OLS assumptions about εi apply.2

Now consider a situation where we estimate yi from (1) with a misspecified

model in which the relevant interaction term abi is omitted, and an alternative

(”false”) term, aci, is used instead:

yi = β∗0 + β∗1ai + β∗2bi + β∗3ci + β∗4di + β∗5aici + ui. (2)

Knowing the true data generating process, it is clear that β∗5 = 0 and ui =

2Note that while the assumptions about the scaling of the regressors have no substantial
impact on the presented results, the consequences of relaxing the assumption of multivariate
normality are discussed in the next section.
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β5aibi + εi. Now let us switch to matrix notation and define

Xn×6 =



1 a1 b1 c1 d1 a1c1

1 a2 b2 c2 d2 a2c2
...

...
...

...
...

...

1 an bn cn dn ancn


, Yn×1 =



y1

y2
...

yn



abn×1 =



a1b1

a2b2
...

anbn


, εn×1 =



ε1

ε2
...

εn


,

and β∗6×1 = (β∗0 , β
∗
1 , β

∗
2 , β

∗
3 , β

∗
4 , 0)

′. Then, using the information about the true

data generating process, the estimated model (2) may be written as Y =Xβ∗+

β5ab + ε. Finally, plugging the latter expression into the OLS estimator for β∗

and taking expectations yields

E(β̂∗) = β∗ + β5(X
′X)−1X ′ab =



β∗0 + γ̂0β5

β∗1 + γ̂1β5

β∗2 + γ̂2β5

β∗3 + γ̂3β5

β∗4 + γ̂4β5

γ̂5β5


, (3)

with the γs being the estimated coefficients from the auxiliary regression
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aibi = γ0 + γ1ai + γ2bi + γ3ci + γ4di + γ5aici + ηi. (4)

Expression (3) shows that the estimated coefficients of the misspecified model

will be biased if 1) the effect of the omitted interaction term on the dependent

variable, β5, is non-zero; and 2) the respective OLS coefficient of regressing the

regressors of the misspecified model on the omitted interaction term, γ̂k, is non-

zero.

The analytic result of (3) follows the same logic as the well known equation for

omitted variable bias (Greene, 2003): The coefficients for the constitutive terms

of the omitted, true, interaction term, ai and bi, will be biased in the misspecified

model as long as β5, the coefficient of the true interaction term, is non-zero. Af-

ter all, they have an interactive effect that cannot be captured without including

an interaction term. In our context, that means that the estimates for the consti-

tutive term of the included interaction, ai, and additive control variable bi will

be biased. This is a rather unsurprising result as it has become a well known

fact that testing conditional hypotheses with purely additive models will lead

to biased coefficients.

What is more interesting, however, is that the estimated coefficient for the in-

teraction aici is also biased. This coefficient is of primary interest because re-

searchers including interaction terms are usually interested in testing whether

there is a conditional effect of ai and ci on the response. Hence, any bias in the

estimated coefficient for aici relates directly to the risk of drawing wrong con-

clusions about the presence of a presumed conditional effect of these variables
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on the outcome. According to expression (3), β̂5
∗

will be biased if both β5 and

γ5 are non-zero. Let us assume that this is the case for the former, and focus on

the latter. If we define γ = (γ0, γ1, γ2, γ3, γ4, γ5)
′, we can derive the OLS estimate

γ̂5 by solving the linear equation system (X ′X)γ = X ′ab. Under the above

made distributional assumptions, doing so yields that the bias associated with

the OLS estimate of the ”false” multiplicative term aici is3

γ̂5β5 = β5 ∗
var(ai)cov(bi, ci) + cov(ai, bi)cov(ai, ci)

var(ai)var(ci) + cov(ai, ci)2
. (5)

Expression (5) shows under which conditions β̂5
∗

will be biased. If the constitu-

tive terms of the ”false” interaction term, ai and ci, are each correlated with one

of the constitutive terms of the omitted ”true” interaction term, ai and bi, then

the OLS estimator of the ”false” interaction term will be biased. Moreover, for

bias it is sufficient for ci, the false moderator of ai, and bi, the true moderator of

ai to be correlated. In addition, it is also sufficient for ci and bi to both be cor-

related with ai. It is very important to note that these biases occur even though

the constitutive terms of the omitted interaction term have been included in the

estimated model as additive regressors.

2.2 Omitting a Squared Term That Shares a Constitutive Term with an

Included Interaction term

While the previous section has established that omitted interaction terms may

lead to biased coefficients for included interaction terms, in this section, we
3For the full derivation of this result, see section 3.1.
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show that the same argument is applicable to quadratic terms. An interaction

term included in a regression specification can pick up the non-linear effects

of the variables included in the interaction term, suggesting conditional effects

even when they do not exist.45

Consider a data generating process similar to (1), but including a squared term

instead of a multiplicative term

yi = β0 + β1ai + β2bi + β3ci + β4di + β5a
2
i + εi, (6)

and let the same distributional assumptions apply as above. In this data gen-

erating process a has a non-linear effect upon the outcome, the shape of which

is determined by β1 and β5. Suppose, that we estimate the response yi with the

same misspecified model used previously

yi = β∗0 + β∗1ai + β∗2bi + β∗3ci + β∗4di + β∗5aici + ui. (7)

Hence, we specify that the effect of ai is conditional upon ci. It is easy to see that

the effects of ai and ci (as well as all other variables) will be biased to the degree

that they are partially correlated with the omitted squared term. Moreover, if

we proceed analogously to the previous section, we can derive that the OLS

4Naturally a similar logic to the previous subsection holds, an included non-linear effect can
pick up an omitted non-linear effect. In this paper we focus exclusively on quadratic terms, and
not higher powers, because testing a second-order polynomial is usually the first step in assess-
ing curvilinear effects, and hypothesised relationships with third- or higher-order polynomials
are extremely rare in political science.

5A similar case of misspecification is shown in Hainmueller and Hazlett (2014) in a Monte
Carlo experiment.
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estimator for the ”false” product term aici will incur the following bias:6

γ̂5β5 = β5 ∗
2 ∗ var(ai)cov(ai, ci)

var(ai)var(ci) + cov(ai, ci)2
. (8)

Expression (8) shows that the OLS estimator of the unnecessary interaction ef-

fect aici is biased to the extent that ci is correlated with ai as it partly captures

the non-linear effect of ai.

Once we consider the fact that interaction terms and squared terms are math-

ematically equivalent to the extent that they are both products of explanatory

variables, it becomes clear that the cases discussed in this and the previous sec-

tion may be subsumed under a more general result: Omitting relevant prod-

uct terms biases the estimated parameters for included product terms if their

respective constitutive variables covary, regardless of whether these product

terms represent curvilinear or conditional effects7. After all, the issue we discuss

here is an incorrect conclusion about the degree to which a variable moderates

another one or indeed itself.

2.3 Omitting Product Terms That Do Not Share a Constitutive Term

with an Included Product Term

So far we have shown how omitting relevant interactions or squared terms can

bias included interaction terms that they share a constitutive term with. While

6For a formal derivation, see section 3.1.
7For the purpose of this paper, we use the term ”product terms” when referring to

interaction- and squared terms. We are certain that the results presented in this paper also
apply to higher-order products, but for the sake of parsimony and current specifications within
the literature, we leave formal proof of this proposition to future research.
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these results are quite intuitive, we show now that omitting a relevant product

term can bias a product interaction term even if the two products do not share

any constitutive terms.

Suppose we estimate a model where

yi = β∗0 + β∗1ai + β∗2bi + β∗3ci + β∗4di + β∗5cdi + ui. (9)

Following the previous logic, if the true model8 contains an interaction term abi,

omitting this term introduces the following bias to the coefficient of the included

interaction term cdi

γ̂5β5 = β5 ∗
cov(ai, ci)cov(bi, di) + cov(ai, di)cov(bi, ci)

var(ci)var(di) + cov(ci, di)2
. (10)

Therefore, as long as there is a non-zero covariance between each interaction

term in the included interaction and one of the interaction terms in the excluded

interaction, conclusions on the effect of the included interaction will be biased.

Specifically, here, β5 is biased if either a and c and b and d are correlated or if a

and d and b and c are correlated.

A similar problem can occur for the case of omitted quadratic terms. For exam-

ple if the true model9 contains quadratic term a2i , omitting this term biases the

included interaction term cdi in the following way

8i.e. yi = β0 + β1ai + β2bi + β3ci + β4di + β5aibi + εi
9i.e. yi = β0 + β1ai + β2bi + β3ci + β4di + β5a

2
i + εi
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γ̂5β5 = β5 ∗
2 ∗ cov(ai, ci)cov(ai, di)

var(ci)var(di) + cov(ci, di)2
. (11)

Thus, as long as the constitutive term of the squared term is correlated with

both constitutive terms of the included interaction, the inference about the in-

teraction will be biased.
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3 Derivation of Analytical Results

3.1 Linear Models and Multivariate Normal Data

In this section we will briefly derive the bias expressions in the previous section.

We have established that the total bias associated with the estimated term β̂∗5 is

given by γ̂5β5. Whereas β5 is determined by the data generating process, we

know that γ̂5 is the OLS estimator of γ5 in the linear model

aibi = γ0 + γ1ai + γ2bi + γ3ci + γ4di + γ5cidi + ηi. (12)

Writing the OLS estimator of model (12) in matrix notation (and using the same

definitions as in section 2.1) yields γ̂ = (X ′X)−1X ′ab. Rearranging this expres-

sion yields the linear equation system (X ′X)−1γ̂ = X ′ab. Taking expectations

on both sides, we can write this system in scalar notation with the following six

equations:

E(aibi) = γ̂0 + γ̂1E(ai) + γ̂2E(bi) + γ̂3E(ci) + γ̂4E(di) + γ̂5E(cidi)

E(a2i bi) = γ̂0E(ai) + γ̂1E(a
2
i ) + γ̂2E(aibi) + γ̂3E(aici) + γ̂4E(aidi) + γ̂5E(aicidi)

E(aib
2
i ) = γ̂0E(bi) + γ̂1E(aibi) + γ̂2E(b

2
i ) + γ̂3E(bici) + γ̂4E(bidi) + γ̂5E(bicidi)

E(aibici) = γ̂0E(ci) + γ̂1E(aici) + γ̂2E(bici) + γ̂3E(c
2
i ) + γ̂4E(cidi) + γ̂5E(c

2
i di)

E(aibidi) = γ̂0E(di) + γ̂1E(aidi) + γ̂2E(bidi) + γ̂3E(cidi) + γ̂4E(d
2
i ) + γ̂5E(cid

2
i )

E(aibicidi) = γ̂0E(cidi) + γ̂1E(aicidi) + γ̂2E(bicidi) + γ̂3E(c
2
i di) + γ̂4E(cid

2
i ) + γ̂5E(c

2
i d

2
i )

Since we assume all explanatory variables to be mean centered, all expectations

in the above equations equal corresponding central moments. Hence, since

we assume unit variance, all expectations of squared terms equal unity. Fur-
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thermore, because under multivariate normality all odd central moments equal

zero, all expectations involving three factors vanish. Thus, the linear equation

system simplifies to the following expressions:

E(aibi) = γ̂0 + 0 + 0 + 0 + 0 + γ̂5E(cidi)

0 = 0 + γ̂1 + γ̂2E(aibi) + γ̂3E(aici) + γ̂4E(aidi) + 0

0 = 0 + γ̂1E(aibi) + γ̂2 + γ̂3E(bici) + γ̂4E(bidi) + 0

0 = 0 + γ̂1E(aici) + γ̂2E(bici) + γ̂3 + γ̂4E(cidi) + 0

0 = 0 + γ̂1E(aidi) + γ̂2E(bidi) + γ̂3E(cidi) + γ̂4 + 0

E(aibicidi) = γ̂0E(cidi) + 0 + 0 + 0 + 0 + γ̂5E(c
2
i d

2
i )

(13)

Fortunately, this system allows to derive γ̂5 through elimination using only the

first and last equation. Doing so yields

γ̂5 =
E(aibicidi)− E(aibi)E(cidi)

E(c2i d
2
i )− E(cidi)2

. (14)

Attentive readers will recognize that the numerator of expression (14) is equal

to cov(aibi, cidi), and the denominator equals var(cidi). It is more instructive,

however, to simplify (14) to covariances between the explanatory variables.

For the numerator, we may do so using Isserlis’ Theorem on higher order mo-

ments in multivariate normal distributions (see Isserlis 1918), which implies

that E(aibicidi) = E(aibi)E(cidi) + E(aici)E(bidi) + E(aidi)E(bici). For the de-

nominator, we may use the result by (Bohrnstedt and Goldberger, 1969) for the
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variance of products under multivariate normality, according to which

var(cidi) = E(ci)
2var(di) + E(di)

2var(ci)

+ 2E(ci)E(di)cov(cidi) + var(ci)var(di) + cov(cidi)
2

= var(ci)var(di) + cov(cidi)
2.

Using these two results, we may write the total bias associated with β̂∗5 as

γ̂5β5 = β5 ∗
cov(ai, ci)cov(bi, di) + cov(ai, di)cov(bi, ci)

var(ci)var(di) + cov(ci, di)2
. (15)

To derive expression 11 from section 2.4, we may proceed analogously. In this

case, we solve the linear equation system (X ′X)−1γ̂ =X ′a2 to receive

γ̂5 =
E(a2i cidi)− E(a2i )E(cidi)

E(c2i d
2
i )− E(cidi)2

,

which, using the same sources as above, simplifies to

2 ∗ cov(ai, ci)cov(ai, di)
var(ci)var(di) + cov(ci, di)2

. (16)

3.2 Linear Models and Non-Normal Data

In section 3.1, all presented derivations have rested on the assumption of mul-

tivariate normally distributed explanatory variables. Now we will show that in

the case of non-normal data, the illustrated bias may even occur if the respec-

tive constitutive variables do not covary, but have non-zero higher order central
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cross-moments. Reconsider the data generating process:

yi = β0 + β1ai + β2bi + β3ci + β4di + β5aibi + εi. (17)

As in the previous section, let ai, bi, ci, and di be mean-centered and have unit

variance. Now, however, we do not assume multivariate normality. Instead, we

assume all pairwise covariances between the explanatory variables equal zero:

cov(x, y) = 0 for all pairs (x, y)|x, y ∈ (ai, bi, ci, di) except x = y. Suppose, again,

we estimate the response yi with a misspecified model in which aibi is omitted,

and the product term cidi is included as a regressor instead

yi = β∗0 + β∗1ai + β∗2bi + β∗3ci + β∗4di + β∗5cidi + ui. (18)

It is easy to see from expression (3) that in the multivariate normal case, under

the present assumption of zero covariance between the explanatory variables

the OLS estimators for β∗5 would be unbiased.

Using the same definitions as in section 2.1 and proceeding analogously, we

may again obtain the bias associated with OLS estimator for the ”false” interac-

tion term cidi, β̂5
∗
, by solving the linear equation system (X ′X)γ =X ′ab.

Since the data generating process and the estimated model are the same as in

section 2.2, finding the bias associated with β̂∗5 again requires solving the linear

equation system given in (13). Now, however, we are operating under differ-

ent distributional assumptions, namely that the explanatory variables are not

multivariate normally distributed, but instead all covariances equal zero. Thus,

all expectations of products involving only two factors vanish. Moreover, as
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above, expectations of the explanatory variables equal zero, and, since we as-

sume unit variance, expectations of squared terms equal unity. Therefore, the

linear equation system simplifies to

0 = γ̂0 + 0 + 0 + 0 + 0 + 0

E(a2i bi) = 0 + γ̂1 + 0 + 0 + 0 + γ̂5E(aicidi)

E(aib
2
i ) = 0 + 0 + γ̂2 + 0 + 0 + γ̂5E(bicidi)

E(aibici) = 0 + 0 + 0 + γ̂3 + 0 + γ̂5E(c
2
i di)

E(aibidi) = 0 + 0 + 0 + 0 + γ̂4 + γ̂5E(cid
2
i )

E(aibicidi) = 0 + γ̂1E(aicidi) + γ̂2E(bicidi) + γ̂3E(c
2
i di) + γ̂4E(cid

2
i ) + γ̂5E(c

2
i d

2
i ).

We can solve this linear equation system for γ̂5 using sequential elimination,

which yields

γ̂5 =
E(aibicidi)− E(a2i bi)E(aicidi)− E(aib2i )E(bicidi)

E(c2i d
2
i )− E(aicidi)2 − E(bicidi)2 − E(c2i di)2 − E(cid2i )2

(19)

− E(c2i di)E(aibici)− E(cid2i )E(aibidi)
E(c2i d

2
i )− E(aicidi)2 − E(bicidi)2 − E(c2i di)2 − E(cid2i )2

.

Note that since we have assumed all explanatory variables to be mean centered,

all expected values in the numerator and denominator are third and fourth cen-

tral cross-moments of the explanatory variables.10 The relationship between this

expression and its equivalent in section 2.2 is that in the latter case, the assump-

tion of multivariate normality ensures that third and fourth central moments

equal zero.

Even without analyzing the expression in detail, it is clear that it will generally

10E.g., if E(x) = E(y) = E(z) = 0, then E(xyz) = E((x− E(x))(y − E(y))(z − E(z))).
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be non-zero. Hence, with non-normally distributed explanatory variables, the

discussed bias may occur even if the latter are pairwise uncorrelated. While it

is the case that misspecified control variables will lead to biased estimates for

product terms if the explanatory variables are appropriately correlated11, the

argumentum e contrario that uncorrelated explanatory variables prevent the dis-

cussed bias from occurring is not valid. In fact, as far as the analysis in this paper

goes, pairwise uncorrelatedness only ensures the absence of the discussed bias

if either the explanatory variables are multivariate normal (as shown above),

or if we can be certain that our explanatory variables also comply with stricter

forms of independence than zero covariance12, for instance in randomized ex-

periments. Consequently, in political research, where most empirical analysis

relies on observational data that is neither normally distributed nor statistically

independent, controlling for pairwise uncorrelatedness cannot replace correctly

specifying the funtional form of our control variables when testing conditional

or curvilinear effects.

11To be exact, it must be mentioned that we have only provided formal proof for the propo-
sition that covariant explanatory variables produce the illustrated bias for the case of normally
distributed data. There is, however, no reason to believe that this should be any different with
non-normally distributed data, since mathematically, the only difference between the two cases
is that in the latter, third and fourth central cross-moments do not simplify, and thus make a
closed-form representation of the bias significantly more complex.

12Specifically, Bohrnstedt and Goldberger (1969) show that pairwise conditional indepen-
dence and homoskedasticity are sufficient for third and fourth cross-moments to reduce to zero.
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4 Examples of omitted product terms from the literature

An example of the practice can be found in Wegenast and Basedau (2014). A

previous article of one of the authors, Basedau and Lay (2009), argues that states

with high oil revenues will be able to avoid civil conflict, for example by repress-

ing or paying off opposition. In a model that includes a variable on oil produc-

tion per capita as well as its squared term, the authors find some evidence sug-

gesting that oil revenue has an inversely u-shaped effect on the probability of

civil conflict breaking out.13 Wegenast and Basedau (2014) argue that the effect

of ethnic fractionalization on ethnic conflict should be higher in resource-rich

states. In their empirical test, they split the sample at different levels of oil pro-

duction per capita and test the effect of ethnic fractionalization on ethnic con-

flict in each subsample. Despite the previous finding by one of the authors, they

do not consider the possibility of a curvilinear effect of oil-production in their

models.14 They also do not consider the possibility of a quadratic effect of ethnic

fractionalization, despite stating that previous research has found a curvilinear

effect of the variable on conflict. Similarly, the authors do not control for the

possibility of other factors moderating any of their variables of interest, despite

describing previous research that finds that the effect of ethnic fractionalization

on conflict depends on a state’s regime type.

In Wood (2014), the author tests whether rebel groups in civil wars kill larger

numbers of civilians after experiencing battlefield losses. The author hypoth-

13They find this effect only in some specifications, depending on the set of control variables
and on which outliers they drop.

14They note, however, that they consider this mechanism not to be a threat to their argument
as previous research did not find coercive capacity to play an important role in reducing conflict
and as only few states have large enough oil revenues for the payoff mechanism to apply.
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esizes that several factors moderate the effect of losses: control over territory,

support by third states, financing via natural resource wealth and central con-

trol. To test these hypotheses at the macro-level, the author includes an interac-

tion term between losses and one of the moderating variables of interest in the

model while including the other potentially moderating variables as linear con-

trol variables. It is easy to imagine that territorial control and external sources

of finance or a financing via resources are correlated.

Another example of the issue can be found in Koga (2011). Here, the author

tests whether a country’s regime type moderates the effect of other variables on

the likelihood of intervening in foreign civil wars on behalf of either the oppo-

sition or the government or in general. In a first set of models, the author finds

that a country’s Polity score moderates the effect of other variables such as for

example rebel strength on the government’s likelihood to intervene elsewhere

on behalf of the opposition. As the argument is specifically about the size of the

winning coalition as opposed to the regime type per se, the author replicates

these models using the size of the winning coalition instead of the Polity score

in the interactions of interest. She notes that as the size of the winning coalition

is only one aspect of a state’s regime type she controls for the Polity score in

the models using the winning coalition’s size in order to be able to distinguish

effects. For this, she adds the Polity score in a linear fashion despite finding in

previous models that the Polity score moderates the effects of some of the vari-

ables of interest that are now interacted with the selectorate size.

Our final example is Danneman and Ritter (2014). One of the authors’ hypothe-

ses is that higher levels of civil conflict in neighbour states increase a state’s level
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of repression. As they want to test whether repression is used before domestic

conflict breaks out, they interact the variable on neighbourhood civil war with

variables on civil war or dissent in the country in question. They also include

a control variable on regime type in a linear fashion, despite citing previous

papers that have found non-linearities in the effect of regime type on govern-

ment repression. Non-linearity in the effect of regime type could be picked up

by the interaction terms, especially as civil conflict in a state and its neighbour

are likely to be a function of regime type and regime types tend to cluster geo-

graphically as well.
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5 Simulation-based illustrations of inferential errors stem-

ming from omitted product terms

We illustrate the problem of omitted product terms using simulated data with

1000 observations. Consider the first case: Here, the true data generating pro-

cess is yi = βxxi + βz1z1i + βxz1xiz1i + βz2z2i + εi.15 We set all coefficients to the

value 1. z1 and z2 have means 0, variances 1 and a covariance of .5. Figure 1 in

the Manuscript shows results from OLS models using once the correct model

specification (top row) and once an incorrect specification that includes an irrel-

evant interaction term xz2 and omits the relevant interaction term xz1 (bottom

row).16 Using the incorrect specification, a researcher draws incorrect conclu-

sions about the moderating variable of x. Naturally, as the interaction term

xz1 is not included in the incorrect model, she finds x to have a constant effect

across values of z1 (bottom left panel). Instead, she finds a significantly positive

interaction between x and z2 with a coefficient of magnitude .49 (bottom right

panel) even though z2 does not moderate the effect of x in the underlying data

generating process.

If both xz1 and xz2 are relevant in the data generating process (yi = βxxi+βz1z1i+

βxz1xiz1i+βz2z2i+βxz2xiz2i+εi), the issue of incorrect inference occurs as well. For

this illustration we also draw on a simulated dataset of 1000 observations. We

set βxz2 to −1 and all other coefficients to 1. z1 and z2 have means 0, variances 1

15In all examples presented in this section we draw εi from a normal distribution with mean
0 and variance 1. The same is the case for all variables that are not specified to be correlated
with other variables.

16Throughout this section, marginal effects of variables with more than one moderating vari-
able have been calculated setting the respective other moderating variable to 0.
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and a covariance of .5. The researcher erroneously omits interaction term xz1 in

the incorrectly specified linear model. As the bottom row of Figure A.1 shows,

and expectedly, the researcher is again unable to uncover the moderating effect

of z1 on x as no interaction term is included. In addition, the conclusion about

the moderating effect of z2 on x is incorrect: the estimated moderating effect of

z2 also picks up the positive moderating effect of omitted moderator z1 and the

researcher finds the interaction term xz2 to have a coefficient of -.51 even though

the coefficient in the data generating process is -1.

The logic also applies in a case where a relevant squared term that shares a con-

stitutive term with an included interaction is omitted – and vice versa. Consider

the following case, again based on 1000 simulated observations. Now the data

generating process is yi = bxxi + bz1z1i + bxxx
2
i + εi, so now x has a u-shaped

effect. Again, all coefficients are set to 1. Now, x and z1 have means 0, vari-

ances 1 and a covariance of .5. Figure A.2 contrasts OLS results from the correct

model specification (top row) with results using an incorrect specification where

the researcher erroneously omits the squared term xx and instead includes in-

teraction term xz1 (bottom row). The incorrectly specified model is unable to

uncover the u-shaped effect of x and instead attributes a moderating effect on x

to z1 (interaction coefficient of .89) that does not exist in the true data generating

process.

An omitted product term – squared or interactive – can even bias an included

product term if it does not share a constitutive term with it. We illustrate this

issue in a final example using simulated data with n=1000. Here, the data gen-

erating process is yi = βx1x1i+βz1z1i+βx1z1x1iz1i+βx2x2i+βz2z2i+βx2z2x2iz2i+εi
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Figure A.1: Conclusions about moderating variables of x based on correct (y =
βxx + βz1z1 + βxz1xz1 + βz2z2 + βxz2xz2) and incorrect model specification (y =
βxx+ βz1z1 + βz2z2 + βxz2xz2).

with all coefficients set to 1. Now the two interaction terms do not share any

constitutive term. Instead, x1 and x2 have means 0, variances 1 and a covari-

ance of .5. The same is the case for z1 and z2. As before, the researcher omits

the interaction between x1 and z1 in the incorrect specification. Figure 2 in the

Manuscript compares OLS results using the incorrect specification (bottom row)
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Figure A.2: Conclusions about moderating variables of x based on correct (y =
βxx+βz1z1+βxxxx) and incorrect model specification (y = βxx+βz1z1+βxz1xz1).

with results from the correctly specified model. Again, the researcher misses

that variable x1 is moderated by variable z1 as no interaction term has been in-

cluded. In addition, the moderating effect of variable z2 on x2 is overestimated

(coefficient of 1.22 when the coefficient in the data generating process is 1) as it

also reflects the omitted interaction between x1 and z1.
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6 Monte Carlo Experiments - Interactions Between Binary

Independent Variables

Figures A.3 to A.6 displays the results for the Monte Carlo experiments where

binary-binary and binary continuous interactions are included. The specifica-

tion for the relevant variables is:

yi = βaai + βbbi + βcci + βabaibi + βacaici + εi (20)

However now a and b are binary independent variables. This means that the

interaction ab is a binary-binary interaction, and the interaction ac is a binary-

continuous interaction. Specifically we make a and b binary variables, such

that they equal 1 if the draw from the multivariate normal distribution was

above 0, and 0 otherwise. This means that we include binary-binary and binary-

continuous interactions within the scenario. The resulting binary variables have

a correlation of approximately 0.4 with the continuous variables, when the draws

are from a multivariate normal distribution where ρ = 0.5. The results for this

scenario echo those in the main text. For the scenario the sample size is 500, and

the correlation between variables is 0.5.

In general the Monte Carlos find that KRLS and the adaptive Lasso perform

well at recovering the conditional effects of the binary variables. However in

this circumstance BART does not perform well, with considerable uncertainty

and the relevant effects being estimated close to zero. Therefore in such cir-

cumstances we would recommend the use of KRLS or the adaptive Lasso over
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BART.
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Figure A.3: Estimated second differences for relevant variables. The confidence
intervals generated by the adaptive Lasso, KRLS, BART, an over-specified non-
regularized parametric model (Logit) and the correctly specified model for each
iteration are displayed in grey, while the mean of the second differences for all
240 simulations is displayed in white. Columns indicate the statistical model
used, and rows indicate the level of correlation between the independent vari-
ables.
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Figure A.4: The median estimated second differences for relevant variables by
statistical model used. Columns indicate the level of correlation between the
independent variables, while colour and shape indicate the statistical model
used.
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Figure A.5: Estimated second differences for irrelevant product terms. Each
white point corresponds to the mean second difference estimated for every com-
bination of variables, that have no conditional effect. All of these second differ-
ences should be equal to zero. The confidence/credible intervals generated by
the adaptive Lasso, KRLS, BART, and an over-specified non-regularized para-
metric model (Logit) for each iteration are displayed in grey. Columns indicate
the statistical model used, and rows indicate the level of correlation between
the independent variables.
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Figure A.6: The median estimated second differences for irrelevant product
terms by statistical model used. Each point corresponds to the median second
difference estimated for every combination of variables that have no conditional
effect. Columns indicate the level of correlation between the independent vari-
ables, while colour and shape indicate the statistical model used.
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7 Monte Carlo Experiments - How Inferences Are Sensi-

tive to Number of Covariates Included

7.1 Second Differences for Relevant Variables by Number of Covari-

ates
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Figure A.7: Estimated second differences for relevant variables. The confidence
intervals generated by the adaptive Lasso, KRLS, BART, an over-specified non-
regularized parametric model (Logit) and the correctly specified model for each
iteration are displayed in grey, while the mean of the second differences for all
240 simulations is displayed in white. Columns indicate the statistical model
used, and rows indicate the level of correlation between the independent vari-
ables.
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7.2 Median Second Differences for Relevant Variables by Number of

Covariates
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Figure A.8: The median estimated second differences for relevant variables by
statistical model used. Columns indicate the level of correlation between the
independent variables, while colour and shape indicate the statistical model
used.
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7.3 Second Differences for Irrelevant Variables by Number of Covari-

ates
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Figure A.9: Estimated second differences for irrelevant variables. The confi-
dence intervals generated by the adaptive Lasso, KRLS, BART, an over-specified
non-regularized parametric model (Logit) and the correctly specified model for
each iteration are displayed in grey, while the mean of the second differences for
all 240 simulations is displayed in white. Columns indicate the statistical model
used, and rows indicate the level of correlation between the independent vari-
ables.
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7.4 Median Second Differences for Irrelevant Variables by Number of

Covariates
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Figure A.10: The median estimated second differences for irrelevant variables
by statistical model used. Columns indicate the level of correlation between the
independent variables, while colour and shape indicate the statistical model
used.
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8 Monte Carlo Experiments - The Size of Uncertainty As-

sociated with Different Estimators

8.1 2.5th and 97.5th Percentiles of Second Differences for Irrelevant

Variables
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Figure A.11: The 2.5th and 97.5th percentiles of the estimated second differences
for irrelevant variables by statistical model used. Columns indicate the level of
correlation between the independent variables, while colour and shape indicate
the statistical model used.

36



●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●

●
●

●
●
●

●
●
●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●
●

●
●
●
●

●
●

●
●
●
●

●
●

●
●
●
●

●
●

●
●
●

●
●
●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●

●
●

●
●
●
●

●
●

●
●
●
●
●
●

n = 500 n = 1000 n = 3000

−0.4 0.0 0.4 −0.4 0.0 0.4 −0.4 0.0 0.4
2.5th and 97.5th Percentile of 2nd Differences

V
ar

ia
bl

es
 fo

r 
2n

d 
D

iff
er

en
ce

model

●● KRLS

Lasso

Over−Specified Logit

BART

Figure A.12: The 2.5th and 97.5th percentiles of the estimated second differences
for irrelevant variables by statistical model used. Columns indicate the number
of observations, while colour and shape indicate the statistical model used.
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Figure A.13: The 2.5th and 97.5th percentiles of the estimated second differ-
ences for irrelevant variables by statistical model used. Columns indicate the
number of independent variables included, while colour and shape indicate the
statistical model used.
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Figure A.14: The 2.5th and 97.5th percentiles of the estimated second differ-
ences for irrelevant variables by statistical model used. These models include
binary independent variables, as in section 6 of the appendix. Colour and shape
indicate the statistical model used.
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8.2 Mean Confidence/Credible Interval Length for Irrelevant Variables
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Figure A.15: The mean confidence/credible length for irrelevant variables by
statistical model used. Columns indicate the level of correlation between the
independent variables, while colour and shape indicate the statistical model
used.
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Figure A.16: The mean confidence/credible length for irrelevant variables by
statistical model used. Columns indicate the number of observations, while
colour and shape indicate the statistical model used.
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Figure A.17: The mean confidence/credible length for irrelevant variables by
statistical model used. Columns indicate the number of independent variables
included, while colour and shape indicate the statistical model used.
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Figure A.18: The mean confidence/credible length for irrelevant variables by
statistical model used. These models include binary variables, as in section 6 of
the appendix. Colour and shape indicate the statistical model used.
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9 Further Results from the Empirical Illustration using Williams

and Whitten (2015)

9.1 Restricted Models

Tables A.1 and A.2, display the results from the original Williams and Whitten

specification and the restricted version.17 If the authors had not included the ad-

ditional interactive terms alongside the two interactions between the dummies

on prime minister and coalition party and economic growth and instead just

added all control variables in a non-interactive fashion (Models 2 in Tables A.1

and A.2), results on the marginal effect of growth on different types of parties

would not have changed.18 But the authors’ inclusion of additional interactive

terms affects conclusions about the effects of the dummy variables on being a

coalition party and the party of the prime minister at different levels of GDP

per capita growth in the high clarity setting.

17Tables are produced using the stargazer package in R (Hlavac, 2018).
18Results comparing the restricted and the original model refer to a specification with a spatial

lag. In the original model, we average over the model observations’ values of all additional
variables that are interacted with the variables of interest.
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Results from the original and a restricted model that only includes interactions

between growth and the two dummies on party type are illustrated in Figure

A.19. Consider for example the high clarity setting where the degree to which

the prime minister’s party is punished for low and rewarded for high growth

depends on the inclusion of additional interaction terms. Here, the original

model finds that prime minister’s parties have a general advantage over coali-

tion partners that becomes larger as economic growth increases. The restricted

model, on the other hand, finds that in fact coalition parties have an advantage

over prime minister’s parties but also that this effect diminishes with growth.

This difference in overall advantage also affects the degree to which the prime

minister’s party is punished for low and rewarded for high growth: in the orig-

inal model, the marginal effect of being the prime minister’s party is negative

but insignificant when growth is low and becomes positive at a growth rate of

about 1.7 per cent, a value between the 33th and the 34th percentile of the sam-

ple distribution. The effect becomes significantly positive at a growth rate of

about 6.7 per cent. In the restricted model, on the other hand, the dummy on

being a prime minister’s party has a significantly negative effect when growth

is low and only becomes positive at a growth rate of about 9.6 percent, a value

that lies between the 97th and the 98th percentile of the sample distribution.

Here, the positive effect never reaches statistical significance. Thus, while in the

original model economic voting directed towards the prime minister’s party

manifests itself in rewarding this party for already moderate levels of growth,

in a model without additional interactions economic voting with respect to the

prime minister’s party means punishing the prime minister’s party for low lev-

els of growth. In both the restricted and the sophisticated model the coalition
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partner is punished until growth reaches about 6.7 and 7.7 per cent respectively,

both above the 90th percentile of the distribution. This means that while in the

restricted model there is not much difference in how economic voting affects

prime minister’s and coalition parties, the sophisticated model suggests that

coalition partners are punished for low growth while prime minister’s parties

benefit from high growth.
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Figure A.19: Marginal effect of party type at different levels of growth. Com-
parison category is opposition party.
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Table A.3: Variable Labels

Variable Label Variable Name
Outcome variable change
GDP Growth rgdppc growth
Rho w change
PM’s Party prime dummy
Coalition Party xregbet
ENP eff par
V otet−1 lag pervote
Niche Party niche
# Government Parties gparties
Time Left in CIEP ciep perc
PartyShiftt party shift t
PartyShiftt−1 party shift t1
Majority majority

9.2 Adaptive Lasso

Tables A.4 and A.5 display the results from using the adaptive Lasso on the

variables included by Williams and Whitten. The variable names are located in

A.3
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Figure A.20 shows results on party type depending on growth using the adap-

tive Lasso at a polynomial expansion of degree two.
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Figure A.20: Effect of party type at different levels of growth in high and low
clarity settings. Comparison category is opposition party. Lasso degree of poly-
nomial expansion: 2.
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10 Review of the Existing Literature

We have surveyed 40 recent papers in top journals and top subfield journals

of Political Science that cite Brambor, Clark and Golder’s seminal paper. More

specifically, the papers surveyed were published in the American Journal of

Political Science, the American Political Science Review, Comparative Political

Studies, International Organization, the Journal of Conflict Resolution, and the

Journal of Politics between May 2014 and April 2016. One paper was excluded

as it did not include a product term in its specification, but instead cites Bram-

bor, Clark and Golder for the use of simulation to generate predicted probabili-

ties. The following table displays the results from doing so.
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Table A.4: Williams and Whitten (2015) - Adaptive Lasso for Low Clarity Sam-
ple

Estimate Std. Error 2.5% 97.5%
(Intercept) 1.34 1.13 -0.12 4.25
w change -0.01 0.01 -0.02 0.00

xregbet -2.38 1.11 -4.68 -0.57
eff par -0.14 0.44 -1.53 0.16

lag pervote 0.02 0.06 -0.01 0.20
ciep perc -0.02 0.02 -0.06 0.01

party shift t 0.01 0.03 -0.01 0.11
w change.eff par -0.00 0.00 -0.01 0.00

w change.lag pervote -0.00 0.00 -0.00 -0.00
w change.niche 0.01 0.00 0.00 0.01

w change.gparties 0.00 0.00 0.00 0.01
w change.party shift t -0.00 0.00 -0.00 0.00

w change.party shift t1 -0.00 0.00 -0.00 0.00
w change.majority 0.00 0.00 -0.00 0.01

rgdppc growth.prime dummy 0.27 0.17 0.00 0.64
rgdppc growth.lag pervote -0.00 0.00 -0.01 0.00

rgdppc growth.gparties -0.04 0.04 -0.12 0.00
rgdppc growth.party shift t -0.00 0.00 -0.01 0.00

rgdppc growth.majority 0.10 0.11 0.00 0.33
prime dummy.eff par 0.05 0.33 0.00 1.01

prime dummy.lag pervote -0.05 0.04 -0.12 0.00
prime dummy.gparties -0.02 0.43 -1.38 0.25

prime dummy.ciep perc 0.04 0.02 0.00 0.06
prime dummy.party shift t 0.03 0.03 0.00 0.11

xregbet.eff par 0.15 0.20 0.00 0.61
xregbet.lag pervote -0.04 0.03 -0.10 0.00

xregbet.gparties 0.24 0.30 0.00 0.92
xregbet.ciep perc 0.04 0.02 0.00 0.08

eff par.lag pervote -0.01 0.01 -0.04 0.00
eff par.party shift t1 0.01 0.01 0.00 0.03

lag pervote^2 -0.00 0.00 -0.00 0.00
lag pervote.niche -0.06 0.04 -0.14 0.00

lag pervote.gparties 0.00 0.01 0.00 0.04
lag pervote.ciep perc 0.00 0.00 0.00 0.00

niche.ciep perc 0.01 0.01 0.00 0.04
niche.party shift t1 0.00 0.02 0.00 0.06

gparties^2 0.03 0.04 -0.05 0.13
gparties.party shift t1 -0.00 0.01 -0.03 0.00

ciep perc.majority -0.01 0.01 -0.04 0.00
party shift t.party shift t1 0.00 0.00 0.00 0.00

party shift t1^2 0.00 0.00 0.00 0.00
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Table A.5: Williams and Whitten (2015) - Adaptive Lasso for High Clarity Sam-
ple

Estimate Std. Error 2.5% 97.5%
(Intercept) 1.13 2.71 -0.44 9.11

eff par -0.14 1.68 -4.91 1.77
w change.lag pervote -0.00 0.00 -0.00 0.00

rgdppc growth.prime dummy 0.08 0.34 0.00 1.14
prime dummy.lag pervote -0.13 0.09 -0.39 0.00

prime dummy.ciep perc 0.05 0.04 0.03 0.18
xregbet.lag pervote -0.05 0.07 -0.22 0.00

eff par.party shift t1 0.00 0.01 -0.01 0.03
lag pervote.niche -0.08 0.10 -0.36 0.00
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