
Supplementary Appendix for

“Estimating Controlled Direct Effects through Marginal

Structural Models”

Comparison to Mediation analysis and Structural Nested Mean

Models

MSMs overcome limitations that other tools like mediation analysis and structural nested

mean models have. For example, causal mediation analysis (Imai, Keele, and Tingley 2010;

Pearl 2001) decomposes the total effect of a treatment on an outcome into direct and indirect

effects (Imai et al. 2011). However, when one of the confounders is affected by the baseline

treatment, mediation analysis is not appropriate because its procedure requires modeling

the outcome as a function of treatment history and those problematic confounders affected

by the treatment. Therefore, by explicitly conditioning on them we induce post-treatment

control bias as explained above (Montgomery, Nyhan, and Torres 2018). More specifically,

this method estimates the values of the mediator (the intermediate treatment stage) based

on a model that includes relevant confounders and a baseline treatment. Then, the fitted

probabilities for each of the values of the treatment are used to predict the outcome. However,

for this second step, the model of the outcome includes all treatment stages and all relevant

confounders.

Another alternative for the estimation of the ACDE in dynamic settings is the struc-

tural nested mean models (SNMMs) approach (Acharya, Blackwell, and Sen 2016; Robins

1997, 1999).1 SNMMs are a powerful alternative for the estimation of treatment effects

especially when the treatments are continuous or comprise a large number of categories

(Vansteelandt, Joffe et al. 2014). However, even though SNMMs have the great advantage

1For this purpose, these models decompose the overall treatment effect into components that allow for
the identification of “demediated” effects.
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of working for any type of treatments and confounders, they cannot handle any type of

outcome. Most SNMMs cannot impose restrictions on the finite support of the outcome

(Robins 1999) and are therefore unsuitable for the study of ordinal, multinomial, and count

variables.2 Furthermore, SNMMs are less intuitive and accessible than MSMs and its core

concept of “balancing” the sample (Vansteelandt, Joffe et al. 2014). As Acharya, Blackwell,

and Sen (2016) indicate, “when the treatment and mediator are binary or only take on a

few values, nonparametric or semi-parametric approaches exist to estimating the ACDE, re-

ducing the need for parametric models.” In summary, MSMs are accessible, straightforward

and often more suitable for the estimation of controlled direct effects when the treatment

has few values.

2In their paper Acharya, Blackwell, and Sen (2016) present the implementation of SNMMs for contin-
uous variables. Vansteelandt (2010) extends and elaborates on the application of SNMMs to dichotomous
outcomes.
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Weighting and pseudo-sample

Table SA.1: From Table 1: Calculation of weights for each stratum in sample (full-table)

Z(0) Z(1) X(1) f(Z(1)|Z(0)) f(Z(1)|Z(0), X(1)) W(t)−1
Original-pop

N
Pseudo-pop

N

0 0 0 0.600 0.706 0.850 12, 000 10, 200
0 0 1 0.600 0.462 1.299 6, 000 7, 794
0 1 0 0.300 0.235 1.277 4, 000 5, 108
0 1 1 0.300 0.385 0.779 5, 000 3, 895
0 2 0 0.100 0.059 1.695 1, 000 1, 695
0 2 1 0.100 0.154 0.649 2, 000 1, 298
1 0 0 0.367 0.467 0.786 7, 000 5, 502
1 0 1 0.367 0.267 1.375 4, 000 5, 500
1 1 0 0.400 0.333 1.201 5, 000 6, 005
1 1 1 0.400 0.467 0.857 7, 000 5, 999
1 2 0 0.233 0.200 1.165 3, 000 3, 495
1 2 1 0.233 0.267 0.873 4, 000 3, 492
2 0 0 0.200 0.400 0.500 2, 000 1, 000
2 0 1 0.200 0.100 2.000 1, 000 2, 000
2 1 0 0.333 0.400 0.832 2, 000 1, 664
2 1 1 0.333 0.300 1.110 3, 000 3, 330
2 2 0 0.467 0.200 2.335 1, 000 2, 335
2 2 1 0.467 0.600 0.778 6, 000 4, 668

Note: Z(0) is parents’ income where 0 is low, 1 is middle and 2 is high. Z(1) is income in adulthood where
0 is low, 1 is middle and 2 is high. X(1) is post-High School education where 0 is no college and 1 is college.
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Simulation 1: comparison of bias between weight estimation meth-

ods (Section 2.3)

For the comparison of weighting techniques, I simulate a dataset with n = 1, 000 where the

main outcome of interest is attendance of a rally (0=No, 1=Yes). The data includes two

relevant sequences of covariates: parents’ income and income in adulthood (the treatment

sequence), and whether parents and respondent attended college (the confounders sequence).

In this setup, college attendance of a subject acts as a confounder of income (second stage

of the treatment) and rally attendance, but is also affected by parents’ income (baseline

treatment). The parameters are tuned to purposely allow for the possibility of observing

samples in which the positivity assumption is not fulfilled. This is, there are combinations

of the sequence treatment and college attendance that do not have any observations. The

parameters and specification of the simulation are presented below. The idea behind this

specification is to illustrate the advantages of MSMs over traditional models even when one

of the main assumptions that the former requires are mildly violated. Second, I use this

data to estimate and record the ACDEs from four different models: the saturated or näıve

model, and three MSMs that use weights calculated using ologit, GAM and RF models.

The specification of the outcome model is the following:

Pr(Y = 1|
−→
Z ) = logit−1(α0 +Z(0)β +Z(1)γ + (Z(0) × Z(1))δ) (1)

The rest of the parameters are specified in the following way:

Baseline covariate: parents’ college attendance

X
(0)
i ∼ Bernoulli(1, 0.5)
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Baseline treatment: parents’ income

Z
(0)
i ∼ Categorical(3,pi)

pi = (F (ηi1), F (ηi2)− F (ηi1), 1− F (ηi2))

F (ηik) =
exp(θk − ηik)

1 + exp(θk − ηik)

ηik = −2.5 + 1.5X
(0)
i + ui

ui ∼ N (0, 0.5)

(θ1, θ2) = (−1.25, 0.45)

Covariate affected by baseline treatment: subject’s college attendance

X
(1)
i ∼ Bernoulli(1, p

†
i )

p†i =
exp(−2.5 + 0.5X

(0)
i + 1.1Z

(0)
i + u†i )

1 + exp(−2.5 + 0.5X(0) + 1.1Z(0) + u†i )

u†i ∼ N (0, 0.35)

Second-stage treatment: subject’s income

Z
(1)
i ∼ Categorical(3,p∗i )

p∗i = (F (η∗i1), F (η∗i2)− F (η∗i1), 1− F (η∗i2))

F (η∗ik) =
exp(θ∗k − η∗ik)

1 + exp(θ∗k − η∗ik)

η∗ik = −3.5 + 0.2X
(0)
i + 1Z

(0)
i + 0.6X

(1)
i + u∗i

u∗i ∼ N (0, 0.5)

(θ∗1, θ
∗
2) = (−1.05, 0.65)
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Outcome: participation in a rally

Yi ∼ Bernoulli(p+i )

p+i =
exp(η+i )

1 + exp(η+i )

η+i = −3 + 0.2X
(0)
i + 1.5Z

(0)
i + 0.4X

(1)
i + 0.2Z(1) + u+i

u+i ∼ N (0, 0.4)

For this exercise, I calculated nine potential outcomes according to the multiple combinations

of the baseline and second-stage treatment values. The true controlled direct effects of the

baseline treatment are calculated for each individual using this framework. The results are

presented in Figure 3 in the manuscript.
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Simulation 2

The following simulations illustrate the advantages that marginal structural models have

over saturated models that control for post-treatment confounders under several conditions.

I conduct three sets of simulations, each changing the value of one of the following

parameters while keeping the others constant: number of observations (n), the effect of

a covariate on the treatment sequence, X(0), and the effect of a confounder of treatment

and outcome affected by the baseline treatment. In each set I generate a set of variables

with the structure presented below: a baseline treatment stage with three values Z(0), a

binary covariate X(1) affected by the baseline treatment, an intermediate treatment stage

affected by both X(0) and Z(0), an outcome Y generated by all of these variables. The third

simulation also includes another binary covariate W (1) affected by the baseline treatment.

Covariates X(0), W (1) and X(1) confound the relationship between the outcome and the

treatment stages.

Baseline covariate

X
(0)
i ∼ Bernoulli(1, 0.4)

Baseline treatment

Z
(0)
i ∼ Categorical(3,pi)

pi = (F (ηi1), F (ηi2)− F (ηi1), 1− F (ηi2))

F (ηik) =
exp(θk − ηik)

1 + exp(θk − ηik)

ηik = −2.5 + β1X
(0)
i + ui

ui ∼ N (0, 0.5)

(θ1, θ2) = (−1.25, 0.05)
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When held constant β1 = 1.

Covariates affected by baseline treatment

X
(1)
i ∼ Bernoulli(1, p

†
i )

p†i =
exp(η†i )

1 + exp(η†i )

η†i = −2.5 + 0.5X
(0)
i + 1.1Z

(0)
i + u†i

u†i ∼ N (0, 0.035)

W
(1)
i ∼ Bernoulli(1, p‡i )

p‡i =
exp(η‡i )

1 + exp(η‡i )

η‡i = −2.5 + 0.5X
(0)
i − 1.5Z

(0)
i + u‡i

u‡i ∼ N (0, 0.035)

Second-stage treatment

Z
(1)
i ∼ Categorical(3,p∗i )

p∗i = (F (η∗i1), F (η∗i2)− F (η∗i1), 1− F (η∗i2))

F (η∗ik) =
exp(θ∗k − η∗ik)

1 + exp(θ∗k − η∗ik)

η∗ik = −3.5 + β2X
(0)
i + 1Z

(0)
i + 0.6X

(1)
i + γ1W

(1)
i + u∗i

u∗i ∼ N (0, 0.5)

(θ∗1, θ
∗
2) = (−1.05, 0.65)

When held constant, β2 = 0.5 and γ1 = 0.6.
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Outcome

Yi ∼ Bernoulli(p+i )

p+i =
exp(η+i )

1 + exp(η+i )

η+i = −3 + 0.2X
(0)
i + γ2W

(1)
i + 1.5Z

(0)
i + 0.4X

(1)
i + 0.2Z(1) + u+i

u+i ∼ N (0, 0.4)

When held constant, γ2 = 0.3.

The three sets of simulations have the main objective of comparing and analyzing

the biases in the estimation of controlled direct effects in situations where the sequential

ignorability and positivity assumptions required by MSMs are violated.

The first simulation varies the number of observations in the simulated datasets (from

60 to 2,000). The objective of this exercise is to explore the sample size properties of the

IPTW estimator while also setting scenarios, such as those with very few observations,

where the positivity assumption is likely to be violated. When held constant in the rest of

the simulations, n = 1, 000.

The second simulation varies the effect of a confounder X(0) on the treatment as-

signment (both the effect of X(0) on Z(0) [denoted by β1] and Z(1) [denoted by β2]). This

exercise also helps to illustrate the bias that arises in cases where the treatment assignment

is heavily unbalanced and therefore causing 1) certain covariate and treatment histories to

be empty and/or 2) to obtain extreme weights for some combinations of such variables.

Finally, the third simulation explores the magnitude and variance of the bias when

the researcher omits a confounder of the second stage of the treatment and the outcome. In

the simulation, I increase the importance of such confounder by varying the impact of W (1)

on the treatment Z(1) (denoted by γ1) and on the outcome Y (denoted by γ2).

In order to assess and compute the bias for each case, I generate a set of potential
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outcomes to calculate the “true” controlled direct effects of Z(0) on Y . There are nine

CDEs which I present in Table SA.2. Then, for each set of simulations I estimated the

CDEs based on the observed outcomes using two modeling strategies: a marginal structural

model (MSM) which implies a weighted regression of the outcome on the two treatments

using weights estimated through IPTW, and a saturated model which includes confounders

affected by the treatment. For illustrative purposes, weights were estimated using categorical

logistic regressions.

Table SA.2: Simulated controlled direct effects

CDE YZ(0)=a,Z(1)=b − YZ(0)=a′,Z(1)=b

1 Y10 − Y00
2 Y20 − Y00
3 Y20 − Y10
4 Y11 − Y01
5 Y21 − Y01
6 Y21 − Y11
7 Y12 − Y02
8 Y22 − Y02
9 Y22 − Y12

For each of the varying values of the parameters of interest, I simulate 400 datasets.

After collecting the relevant estimates of ACDEs from a MSM and a saturated model in each

dataset, I take the difference between such estimates and the true controlled direct effects.

These values represent a measure of bias. Figure SA.1 below shows three panels with the

distributions of bias when estimating CDE number 1 using either a MSM or a saturated

model under different conditions. In each panel, the y-axis indicates the magnitude of the

bias in the estimation of CDE 1, while the upper and lower x-axes show the different values

that the parameter of interests take in each set of simulated datasets. The lines indicate the

mean bias: red and dashed for the saturated model, and bold and black for the MSM. The

gray areas indicate the 5th and 95th percentiles in the distribution of bias.

The results for the first simulation varying the sample size show that although MSMs

slightly overestimate the real CDE 1 in small samples (with around 60 to 100 observations),
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the bias quickly converges to 0 and stays steady for large sample sizes. However, the estimate

of ACDE 1 using the saturated model remains biased even when sample size increases.

Controlling for the covariate affected by the baseline treatment originates this bias. Although

the average bias is close to 0 when implementing a MSM, it is important to consider that its

variance is 1) higher than the variance of bias from the saturated model, and 2) decreases at

the same time as sample size increases. In general, saturated models perform better in terms

of standard errors. A result that does not come as a surprise given the weighting process

involved in the estimation of ACDEs in a MSM framework.

The second simulation increases the importance of one of the pre-treatment covariates

affecting the assignment of both stages of treatment. Increasing the effect of X(0) on Z(0)

and Z(1) yields the following results. Under this setting, we find that, as expected, the

estimates of ACDE 1 using MSMs start unbiased when the effect of the covariate is 0 or

about 0.5 (which once plugged in a the link function it represents a substantive effect in

terms of probabilities). When the effects increase, we observe that the average bias departs

from zero in both negative and positive directions. This bias, however, is still smaller than

the almost constant and negative bias in the estimates that a saturated model yield. Further,

we observe an increase in the variance of the bias distribution of MSMs as the effect of X(0)

becomes more important. And even in the case where the effect is zero, the variance of the

MSM bias is significantly larger than the one for the saturated model.

Finally, the third simulation shows the distributions of bias when a covariate affected

by the baseline treatment gets stronger AND when it is omitted from both the MSM and

saturated models. In this case, we observe that the estimator is nearly unbiased when

this effect is zero, but has a positive trend departing from zero. However, this bias is

consistently lower than the one yielded by the saturated model who shows a decreasing trend

in terms of bias. While it might appear counterintuitive, this trend can be explained by the

“accumulation” of different biases and the bias trade-off that was explained in Section 1 of

this text: while ignoring an increasingly strong confounder can have pernicious consequences
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as the bold line in this simulation shows, including it may also be problematic. In this cases,

it seems that the bias generated by post-treatment control is higher than the confounding

bias, and therefore we observe a still biased but improving trend in the results.

The main conclusions that we derive from this exercise is that 1) MSMs perform

significantly better than saturated models in terms of bias, but 2) the variance of the bias

of MSMs suggests a less efficient estimator. This is consistent with the results found by

Westreich et al. 2012 in which they also conduct a set of simulations to compare bias,

standard errors and mean squared errors. The evaluation of whether the increased in variance

that comes from weighting is outweighed by the reduction in bias that MSMs offer heavily

depends on the particular characteristics of the study: the distribution of treatments, the

effect of the confounders, etc. For example, if the post-treatment confounder has a very

small effect on the treatment sequence and outcome, then a small bias is preferred to large

variances. However, the simulations above, conducted under different settings, suggest that

the increased variance associated with weighting versus over-adjusting is not too costly. As

the graphs show, the MSMs provide a much better coverage of the real estimates than

saturated models even at the tail of the bias distribution.
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Figure SA.1: Distribution of bias: MSMs vs saturated models
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Application

Data description

The sample framework of the Youth-Parent Socialization Panel is composed of senior High

School students in 1965. For this wave, the data comes from a nationally representative

sample of 1,669 students distributed across 97 public and nonpublic schools selected with

probability proportional to size. In the 1965 wave the parents of the students were also

interviewed. For the majority of the students, either one or both parents were interviewed.

However, for a small number of cases, no parent was interviewed. For the 1973, 1982 and

1997 waves, students were recontacted and resurveyed. Although most of the surveys were

completed face-to-face, a number of them in the follow-up waves were completed through

mail interviews and computer-assisted telephone interviews (CATI).

For the first treatment stage, these covariates include education of both mother and

father, and race and level of interest in politics of the head of the household. These measures

were collected from the parents in 1965. Only in those cases were there was no information

available either from the mother or the father, I use the student’s answers to those questions.

For the second stage, the confounders are the student’s characteristics such as edu-

cation, political interest, political efficacy and political knowledge as indicators of political

skills, motivations and self-confidence. For the full model, I include gender and race of the

student as “non-problematic” confounders given that income cannot affect these variables.

Wording

Outcome variables

• Attend a rally

– Question: Have you gone to any political meetings, rallies, dinners, or other things
like that since 1973?

– Answers: Yes, No

• Donate money
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– Question: Have you given any money or bought any stickers to help a particular
party, candidate, or group pay campaign expenses since 1973?

– Answer: Yes, No

Treatment variables

• Parents’ income: Quartiles based on the categories answered by student’s parents in
1965

– Question: About what do you think your total income will be this year for yourself
and your immediate family?

• Income in adulthood: Quartiles based on the categories answered by student in 1982

– Question: Please look at this page and tell me the letter of the income group that
includes the income of all members of your family living here in 1981 before taxes.
This figure should include salaries, wages, pensions, dividends, interest, and all
other income. If uncertain: what would be your best guess?

Extended analysis

The weights estimated from Equation 12 in the main text aim to balance the second stage of

the treatment, income in adulthood, across confounders. Figure SA.2 shows that the weights

lead to a more balanced sample. This figure illustrates the difference in the standardized

coefficients of the confounders on income in adulthood in the original population (left side)

and the pseudo-population (right side). The figure shows that while in the original population

all covariates significantly predict levels of income in adulthood, in the pseudo-population,

almost all of these are no longer significantly associated with the latter. In other words, we

successfully “broke” the link between post-treatment confounders and treatment.
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Figure SA.2: Balancing covariates
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