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A. sTAN CODE

// STAN code for Bayesian bivariate model
// based on code by Bob Carpenter
// http://tinyurl.com/horbxuu

functions {
int sum(int([,] a) {
int s;
s <-= 0;
for (i in l:size(a))
for (j in l:size(alil]))
s <- s + ali,Jjl;

return s;

}
data {
int<lower=1> K;
int<lower=1> D;
int<lower=0> N;
int<lower=0, upper=1> y[N,D];
vector [K] x[N];
real instr[N]; //instrument
real SD; //prior SD
}
transformed data {
matrix[N,D] y2; //copy of y
int<lower=0> N_pos;
int<lower=1,upper=N> n_pos[sum(y)];
int<lower=1, upper=D> d_pos[size(n_pos)];
int<lower=0> N_neg;
int<lower=1,upper=N> n_neg[ (N * D) - size(n_pos)];
int<lower=1,upper=D> d_neg[size(n_neqg)];

N_pos <- size(n_pos);
N_neg <- size(n_negqg);
{

int i;

int 3J;

i <= 1;

j <= 1;

for (n in 1:N) {

for (d in 1:D) {

if (yln,d] == 1) {
n_pos[i] <- n;
d_pos[i] <- d;
i <=1+ 1;

} else {

n_neg[j] <- n;
d_neg[]j] <- d;
Jo<= 3+ 1;

}
y2 <- to_matrix(y);
}
parameters {
matrix[D,K] beta;
real beta2;
real pi;
cholesky_factor_corr[D] L_Omega;
vector<lower=0>[N_pos] z_pos;
vector<upper=0>[N_neg] z_neg;
}
transformed parameters {
vector [D] z[N];



for (n in 1:N_pos)

z[n_pos([n], d_pos[n]] <- z_pos[n];
for (n in 1:N_negq)
z[n_neg[n], d_neg[n]] <- z_negl[n];
}
model {

vector [N] treatment;
treatment <- col(y2,1);
to_vector (beta) ~ normal (0, SD);
beta2 ~ normal (0, SD);
pi 7 normal (0,SD);
L_Omega ~ 1lkj_corr_cholesky (D) ;
{
vector [D] beta_xI[N];
for(d in 1:D) {
for (n in 1:N){
beta_x[n,1l] <- row(beta,l) » x[n] + pixinstr[n];
beta_x[n,2] <- row(beta,2) * x[n] + treatment[n]xbeta2;

}

z ~ multi_normal_cholesky (beta_x, L_Omega);

}
generated quantities {
corr_matrix[D] Omega;
Omega <- multiply_lower_tri_self_ transpose (L_Omega) ;



B. A BAYESIAN FRAMEWORK FOR BIVARIATE PROBIT MODELS
Since both the treatment and outcome are binary, the likelihood function is not directly
tractable. We therefore use data augmentation, as proposed by Chib and Greenberg (1998),

which to reformulates the model in terms of a latent, continuous variable for treatment

x, T, 0 0
and outcome y* = (y*, T*). In addition, let X; = . For convenience, we
0 0 x; z

also define B = [+, 7,5, 3,]. This allows us to write the conditional distribution of the

augmented data as
fyi*1X,B, Q) o< exp[((yi* — X;B)Q Hyi* — X;B)]., 1)
The marginal posterior distributions for the augmented treatment data is:

(X + zm + py; — xiy2),1 — p?);I(—00,0) if T, =0

Tr|X, B,Q )

S + zm + ply) = Xy = B),1 = p?);1(0,00) i Ty =1
where I(-) indicates the allowable support of the truncated distributions. Likewise the
marginal posterior distributions for the outcome is is:

Xivo + TiB + p(T; — xXiy1 — zim), 1 — p?);1(—00,0) ify; =0
JX.B.O P(xXi72 p( gl ), 1= p?);I( ) ify 3

o(xiv1 + T8 + p(T} — xjy — i), 1 — p?);1(0,00)  ify; =1
Further, placing a conjugate prior of the structural parameters, 7(B) = ¢(By, X5,),
we get the usual multivariate Bayesian regression result, B ~ N (B, 3| B), where ) B =
(T + 2 XIQ7'X;) and B = (25 By + . X lyp).
To complete the model, it is necessary to specify priors for and calculate the covari-
ance matrix €2, which must be positive definite. In this case, no closed-form conditional
distribution is available. Chib and Greenberg (1998) and Chib (2003) recommend using a

Metropolis-Hastings step with a tailored non-central t-distribution as the proposal density



for a transformation of the parameter p. However, we found the mixing in this model to
be somewhat slow. Instead, we redefine the parameters in the model such that Q@ = LL?,
where L is a lower triangular matrix that results from the Cholensky decomposition of €2.
We then place a Lewandowski, Kurowicka and Joe (2009) prior over this triangular matrix,

which ensures a positive definite correlation matrix.



C. LOCAL AVERAGE TREATMENT EFFECTS

The local average treatment effect is defined as

A(LATE) Elylz =1] = Ely|z = (]

- E[T|z=1]- E[T|z = 0]

For each individual, this is equivalent to

[Pr(yi=1,Ti =1]zi = 1) + Pr(y; = LT = 0]zi = )] = [[Pr(y; = L, Ti = 1]zi = 0) + Pr(y: = 1,T; = 0]z; = 0)]]

Pr(T; =1z=1)— Pr(T; = 1]z =0)

Let —(2 be equivalent to €2 except that the off-diagonal elements are multiplied by —1. We

can define the interim quantity

AATE) _ M -0
‘ O (xjy1 + ) — P(x)y1)

M = (I)(2) TiY1 + 7 79 + @(2) —(Q]‘i"}/l + 71') 7 —Q
;Y2 + ﬂ TiY2
@ Liv1 Q pC) —ZLiv1 —Q
ziy2 + B Tiv2

This is again calculated for each observation at th observed values of z;. Thus, A

s A(LATE)/n

where

Q
I

(LATE)



D. ADDITIONAL DETAILS FOR SIMULATION STUDY

In the simulations in the main text, coefficients have Gaussian priors with mean zero
and standard deviation 2.5, which we found provided generally more accurate estimates
while not overly “shrinking’” the data towards zero in a probit setting. We estimated each
Stan model using 3,500 iterations on three chains with 500 iterations as warm up and
thinning of 3. We sporadically checked convergence using Gelman-Rubin statistics, but
discovered no issues. Note that we keep Stan’s default settings, except for when N=50,
we set the delta parameter to 0.95, which is suggested for small samples with this model.
Adjusting this rate should allow researchers to achieve even better results than presented
in the main text. In addition to the simulations in the main text, we also estimated all
Bayesian models with Gaussian priors with standard deviations of 1.5 and 3.5, and an
improper noninformative uniform prior (viz. no prior specified in St an at all). We show a
comparison for the models with different priors in the next section.

The Bayesian model estimated in St an provides results for all 120,000 simulated data
sets, while the ML estimator does not provide results for a small number of the simulated
data sets. Due to the random creation of the data in the first and second stage, some of the
estimations suffer from separation. This occurs relatively rarely and mostly when N = 50.
Since Stata throws an error when either the first or second stage suffers from separation,
it does not provide any results. Additionally in some instances the Stata ML algorithm
does not converge. Thus, there were a number of data sets for which Stata does not
provide any estimation results or for which no bootstrap of confidence intervals for the
ATE or LATE are possible. The results for these 2, 033 simulated data sets, i.e. less than 2%
of the total, were not analyzed for the Stata ML estimate. In addition, in rare cases Stata
converges to widely inaccurate estimates. When evaluating the ML procedure, therefore,
we drop any simulated data sets where the resulting covariance matrix is not proper.This
occurs for an additional 1466 cases in the Stata ML estimation.

In total, we dropped 2,033 + 1466 = 3499 of the 120,000 simulated data sets when



evaluating the ML estimator. We did not have to drop any additional simulations for the
Bayesian models. However, dropping these estimations for the St at a estimator biases our
results in favor of the ML estimator in comparison to the correctly specified Bayesian model,

especially considering that we leave out cases where the ML estimate is very inaccurate.!

E. ADDITIONAL RESULTS FROM SIMULATION STUDY

We begin by noting that the results in the main text also hold when considering mean
absolute error rather than mean squared error. This result is shown in Figure E.1.

Further, we also compared these methods in terms of 95% coverage probabilities for the
average treatment effect.? In particular, we are interested in comparing how each approach
accurately recovers the ATE as defined in the main text. When comparing the accuracy of
point estimates, this is relatively straightforward. However, to compare the coverage rates
of the two estimation methods we need to derive confidence intervals of the ATE for the
ML model, which is not directly available from the Stata output. To calculate standard
errors for the derived causal quantities of interest, we rely on a parametric bootstrapping
method. (We are grateful to an anonymous reviewer for suggesting this approach.)

Broadly speaking our strategy is to simulate draws from the assumed asymptotic
distribution of the parameters of the model and to base our calculations on these draws.
Specifically, assume that ¥ is the estimated variance covariance matrix provided by
Stata. Further, let p represent the arc-hyperbolic tangent of p from the main text, and
T = (7,7,7, 5, p) be the complete vector of parameters from the model. We assume
that the parameters in model are distributed according to following multivariate normal,
MVN(r,%).

Our general approach is to take a draw from this multivariate normal distribution and

'For the Stata 2SLS estimation we drop those simulations for which the absolute error

with respect to the late is greater than 2, resulting in 887 dropped simulations.

’Note that these general results hold when analyzing only the S parameter from

Equation (3) using the usual asymptotic standard errors (results not shown).
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transform p to p using the tangent function. We then calculate the ATE as specified in the
main text. We then repeat this process 1,000 times. We use calculate the 95% bootstrapped
confidence interval using the the 97.5 and 2.5 percentile estimates.’

Figure E.2 shows the coverage probabilities for the 95% confidence or credible intervals
on the ATE. Specifically, it shows the share of data sets at each parameter combination
for which the 95% confidence or credible intervals include the true parameter value.
Ideally, we would expect this to happen 95% of the time. Figure E.2 again shows the
Bayesian approach to be preferable, and the differences between the methods are espe-
cially pronounced for weak instruments and small samples. Bayesian Cls are somewhat
conservative, with the maximum and minimum coverage probabilities being 0.98 and
0.95 respectively. More broadly, the coverage rates fall between 94% and 97% for 8 of the
16 different parameter combinations shown in the figure. In contrast, the ML coverage
probabilities are too small. The smallest coverage rate is 0.69 (7 = 0.5, N = 50) while the
maximum is 0.93 (7 = 2, N = 500). Indeed, the coverage rate for the ML exceeds 90% for

only 6 of the 16 parameter combinations in Figure E.2.

3For the LATE calculations we use only 500 draws due to the computational demands

of these calculations.
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Figure E.1. This Figure shows the mean absolute error (MAE) for the ATE for the Bayesian estimate of the
treatment effect in comparison to the MAE of the maximum likelihood estimate. As in Figure 1 in the main
text, the top-left plot shows the MAEs for data sets with 50 observations. Going from the top left to the
bottom right the sample size increases for each plot. Gray vertical plots show the difference between the two
MAEs at each parameter value. It is immediately obvious that, again, across all parameter combinations
displayed, the Bayesian estimator outperforms the ML estimate in terms of the MAE. With increasing sample
size and stronger instruments, the difference decreases. Still, even at large sample sizes and with strong
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instruments the Bayesian estimate remains superior.
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Figure E.2. This Figure compares the 95% coverage probabilities on the ATE for both the Bayesian and
ML estimators. The Bayesian estimator is much closer to this value for nearly all parameter combinations,
although it is somewhat conservative. The coverage probabilities for the ML model are too small, especially
with weak instruments or small sample sizes.
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E. COMPARISON TO TWO-STAGE LEAST SQUARES

In this section we compare the estimates of the local average treatment effect (LATE)
for the each simulated data set for the Bayesian model (prior SD 2.5), the STATA MLE
estimator, and the STATA 2SLS estimator. Figure F.1 shows the mean squared error for
each of the three estimators for varying instrument strength and sample sizes. As one can
easily see, the 25LS estimator performs by far the worst on these simulated data sets.

Again, we can compare coverage for the Bayesian, Stata MLE, and 2SLS estimator.
Figure F.2 shows the coverage rates for all three estimators. As one can clearly see, the
MLE estimator is widely off the mark with weak instruments and small N, under-covering
significantly. Surprisingly, the coverage of the 2SLS estimators actually becomes worse
with larger samples and stronger instruments. We believe this to be the case because the
standard errors decrease even though the estimate is often false.

To further compare these methods, in Table F.1 we show the estimates for our applica-
tion (Sondheimer and Green 2010) in the main text, when applying standard IV methods
where the outcome is assumed to be continuous. Note that many of these estimates are
prima facia implausible. For instance, in the STAR experiment, 2SLS estimates the effect of
education as leading to a 90% increase in the predicted probability of voting in a federal
election. Note also, that the implied confidence interval falls well outside of the possible

[—1, 1] interval for both the STAR and IHAD experiments.
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Figure F.1. This Figure compares the mean squared error (MSE) for the Bayesian (prior SD = 2.5), ML
estimates, and the 2SLS estimates for subsets of the simulated data sets. The MSE is calculated based on
the estimated and true LATE. The top-left plot shows the MSEs for data sets including 50 observations
and different strength-levels of the instrument. Going from the top left to the bottom right the sample size
increases for each plot. Both the Bayesian and ML specifications outperform the 25LS estimate in terms of
the MSE across all parameter settings.
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Figure F.2. This Figure compares the 95% coverage probabilities for the Bayesian, Stata MLE, and 2SLS
estimators for the LATE estimate, which should be about 0.95 for a well-calibrated model. The Bayesian
estimator is much closer to this value for nearly all parameter combinations, although it is somewhat
conservative. The coverage probabilities for the MLE and 2SLS model are generally too small. For the 2SLS
estimate this is especially the case with strong instruments or large sample sizes.
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Table F.1. Estimating treatment effects for schooling experiments using 2SLS and LIML instrumental
variables models

Perry THAD STAR
2SLS  Fuller LIML 2SLS Fuller LIML 2SLS Fuller LIML
HS Graduation Level
Intercept  0.44 0.44 0.62 0.62 0.85 0.85
(0.06) (0.06) (0.08) (0.08) (0.01) (0.01)
Treatment 0.21 0.21 0.17 0.17 0.05 0.05

(0.09) (0.09) (0.13) (0.13) (0.03) (0.03)
Voter Turnout Level

Intercept  0.01 0.02 0.02 0.15 -0.35 -0.23
(0.18) (0.16) (0.59) (0.44) (0.70) (0.60)
HS Graduation 0.27 0.25 0.50 0.31 0.90 0.76
(0.32) (0.29) (0.86) (0.65) (0.80) (0.69)
N 123 123 58 58 811 811

Coefficients are 25LS/Fuller-corrected LIML estimates with standard errors in parentheses. Note that the
estimates of the effect of graduation on turnout are implausibly large for the STAR and IHAD experiments.
In the Fuller-corrected LIML models, we set a = 1.
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G. COMPARISON OF DIFFERENT PRIORS

In this section we provide comparison of the different prior specifications for the
Bayesian model and the Stata ML estimate. As one can see in Figure G.1, all Bayesian
specifications clearly outperform the ML estimates in terms of the MSE for the ATE. The
Bayesian model with the uniform prior performs very similar to the Stata ML model, but
slightly better. In general, the model with the Gaussian prior with standard deviation 2.5
performs best, except for very large sample sizes.

Figure G.2 provides the evaluation of the credible (confidence) intervals across the
different prior specifications of the Bayesian models and the ML estimates. As one can
see, when the prior on the coefficient is too tight, the Bayesian estimates may provide
too much shrinkage and the credible intervals are too tight (especially for small samples).
Essentially, the estimates of the Bayesian model with a prior standard deviation of 1.5
provide coefficient estimates that are very conservative (closer to zero). This is especially
visible in Figure G.3, which provides a comparison of the different MSEs for different
“true” treatment effects. Based on our experience and the simulation results, we would
therefore recommend researchers to use prior standard deviations of around 2.5 unless
sample sizes are extremely large. On the other hand, tight priors do give conservative
estimates and may therefore be used by researchers. As to be expected, the Bayesian
model with completely uninformative priors does not perform very well, which indicates
the importance and benefit of specifying reasonable priors. Indeed, without a prior, the
Bayesian method must function entirely off of the likelihood and behaves relatively poorly

for the reasons discussed in the main text.
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Figure G.1. This Figure compares the mean squared error (MSE) on the ATE for the Bayesian (all prior
specifications) and ML estimates for subsets of the simulated datasets. The top-left plot shows the MSEs for
data sets including 50 observations and different strength-levels of the instrument. Going from the top left
to the bottom right the sample size increases for each plot. All Bayesian specifications outperform the ML
estimate in terms of the MSE across all parameter settings and this pattern is particularly clear with small
samples and weak instruments. However, in terms of MSE, the prior specification with medium standard
deviation (2.5) generally performs the best, except for very large sample sizes. The Bayesian specification
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with the noninformative uniform prior performs more similar to the Stata estimate.
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Figure G.3. This Figure compares the mean squared error (MSE) on the ATE for the Bayesian (all prior
specifications) and ML estimates for subsets of the simulated data sets. The top-left plot shows the MSEs
for data sets with the true IV coefficient equal to 0.5 and different treatment strength. Going from the
top left to the bottom right the strength of the instrument increases for each plot. Again, in general the
Bayesian specifications with informative priors outperform the ML estimate in terms of the MSE. This pattern
is particularly clear with weak instruments and treatments. However, as one can clearly see, when the
treatment is particularly strong, the Bayesian specification with a tight prior variance shrinks the estimate
too far towards zero and thus suffers in terms of the MSE.
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