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A. STAN CODE

// STAN code for Bayesian bivariate model
// based on code by Bob Carpenter
// http://tinyurl.com/horbxuu

functions {
int sum(int[,] a) {

int s;
s <- 0;
for (i in 1:size(a))

for (j in 1:size(a[i]))
s <- s + a[i,j];

return s;
}

}
data {

int<lower=1> K;
int<lower=1> D;
int<lower=0> N;
int<lower=0,upper=1> y[N,D];
vector[K] x[N];
real instr[N]; //instrument
real SD; //prior SD

}
transformed data {

matrix[N,D] y2; //copy of y
int<lower=0> N_pos;
int<lower=1,upper=N> n_pos[sum(y)];
int<lower=1,upper=D> d_pos[size(n_pos)];
int<lower=0> N_neg;
int<lower=1,upper=N> n_neg[(N * D) - size(n_pos)];
int<lower=1,upper=D> d_neg[size(n_neg)];

N_pos <- size(n_pos);
N_neg <- size(n_neg);
{

int i;
int j;
i <- 1;
j <- 1;
for (n in 1:N) {

for (d in 1:D) {
if (y[n,d] == 1) {

n_pos[i] <- n;
d_pos[i] <- d;
i <- i + 1;

} else {
n_neg[j] <- n;
d_neg[j] <- d;
j <- j + 1;

}
}

}
}
y2 <- to_matrix(y);

}
parameters {

matrix[D,K] beta;
real beta2;
real pi;
cholesky_factor_corr[D] L_Omega;
vector<lower=0>[N_pos] z_pos;
vector<upper=0>[N_neg] z_neg;

}
transformed parameters {

vector[D] z[N];
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for (n in 1:N_pos)
z[n_pos[n], d_pos[n]] <- z_pos[n];

for (n in 1:N_neg)
z[n_neg[n], d_neg[n]] <- z_neg[n];

}
model {

vector[N] treatment;
treatment <- col(y2,1);
to_vector(beta) ˜ normal(0, SD);
beta2 ˜ normal(0, SD);
pi ˜ normal(0,SD);
L_Omega ˜ lkj_corr_cholesky(D);
{

vector[D] beta_x[N];
for(d in 1:D){

for (n in 1:N){
beta_x[n,1] <- row(beta,1) * x[n] + pi*instr[n];

beta_x[n,2] <- row(beta,2) * x[n] + treatment[n]*beta2;
}

}
z ˜ multi_normal_cholesky(beta_x, L_Omega);

}
}
generated quantities {

corr_matrix[D] Omega;
Omega <- multiply_lower_tri_self_transpose(L_Omega);

}
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B. A BAYESIAN FRAMEWORK FOR BIVARIATE PROBIT MODELS

Since both the treatment and outcome are binary, the likelihood function is not directly

tractable. We therefore use data augmentation, as proposed by Chib and Greenberg (1998),

which to reformulates the model in terms of a latent, continuous variable for treatment

and outcome y∗ = (y∗, T ∗). In addition, let Xi =

x′i Ti 0′ 0

0′ 0 x′i zi

 . For convenience, we

also define B = [γ ′1, π,γ
′
2, β, ]. This allows us to write the conditional distribution of the

augmented data as

f(yi
∗|X,B,Ω) ∝ exp[((yi

∗ −XiB)′Ω−1(yi
∗ −XiB)]., (1)

The marginal posterior distributions for the augmented treatment data is:

T ∗i |X, B,Ω ∝

 φ(x′iγ1 + ziπ + ρ(y∗i − x′iγ2), 1− ρ2); I(−∞, 0) if Ti = 0

φ(x′iγ1 + ziπ + ρ(y∗i − x′iγ2 − β), 1− ρ2); I(0,∞) if Ti = 1
, (2)

where I(·) indicates the allowable support of the truncated distributions. Likewise the

marginal posterior distributions for the outcome is is:

y∗i |X, B,Ω ∝

φ(x′iγ2 + Tiβ + ρ(T ∗i − x′iγ1 − ziπ), 1− ρ2); I(−∞, 0) if yi = 0

φ(x′iγ1 + Tiβ + ρ(T ∗i − x′iγ1 − ziπ), 1− ρ2); I(0,∞) if yi = 1
(3)

Further, placing a conjugate prior of the structural parameters, π(B) = φ(B0,ΣB0),

we get the usual multivariate Bayesian regression result, B ∼ N(B̂, Σ̂B), where Σ̂B =

(Σ−1B0
+
∑

X′iΩ
−1Xi)

−1 and B̂ = Σ̂B(Σ−1B0
B0 +

∑
X′iΩ

−1y∗i ).

To complete the model, it is necessary to specify priors for and calculate the covari-

ance matrix Ω, which must be positive definite. In this case, no closed-form conditional

distribution is available. Chib and Greenberg (1998) and Chib (2003) recommend using a

Metropolis-Hastings step with a tailored non-central t-distribution as the proposal density
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for a transformation of the parameter ρ. However, we found the mixing in this model to

be somewhat slow. Instead, we redefine the parameters in the model such that Ω = LLT ,

where L is a lower triangular matrix that results from the Cholensky decomposition of Ω.

We then place a Lewandowski, Kurowicka and Joe (2009) prior over this triangular matrix,

which ensures a positive definite correlation matrix.
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C. LOCAL AVERAGE TREATMENT EFFECTS

The local average treatment effect is defined as

∆(LATE) =
E[y|z = 1]− E[y|z = 0]

E[T |z = 1]− E[T |z = 0]

For each individual, this is equivalent to

[Pr(yi = 1, Ti = 1|zi = 1) + Pr(yi = 1, Ti = 0|zi = 1)]− [[Pr(yi = 1, Ti = 1|zi = 0) + Pr(yi = 1, Ti = 0|zi = 0)]]

Pr(Ti = 1|z = 1)− Pr(Ti = 1|z = 0)
.

Let −Ω be equivalent to Ω except that the off-diagonal elements are multiplied by −1. We

can define the interim quantity

∆
(LATE)
i =

M −O
Φ(x′iγ1 + π)− Φ(x′iγ1)

where

M = Φ(2)

xiγ1 + π

xiγ2 + β

 ,Ω

 + Φ(2)

−(xiγ1 + π)

xiγ2

 ,−Ω


O = Φ(2)

 xiγ1

xiγ2 + β

 ,Ω

 + Φ(2)

−xiγ1
xiγ2

 ,−Ω



This is again calculated for each observation at th observed values of xi. Thus, ∆(LATE) =∑n
i=1 ∆

(LATE)
i /n
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D. ADDITIONAL DETAILS FOR SIMULATION STUDY

In the simulations in the main text, coefficients have Gaussian priors with mean zero

and standard deviation 2.5, which we found provided generally more accurate estimates

while not overly ‘‘shrinking’’ the data towards zero in a probit setting. We estimated each

Stan model using 3,500 iterations on three chains with 500 iterations as warm up and

thinning of 3. We sporadically checked convergence using Gelman-Rubin statistics, but

discovered no issues. Note that we keep Stan’s default settings, except for when N=50,

we set the delta parameter to 0.95, which is suggested for small samples with this model.

Adjusting this rate should allow researchers to achieve even better results than presented

in the main text. In addition to the simulations in the main text, we also estimated all

Bayesian models with Gaussian priors with standard deviations of 1.5 and 3.5, and an

improper noninformative uniform prior (viz. no prior specified in Stan at all). We show a

comparison for the models with different priors in the next section.

The Bayesian model estimated in Stan provides results for all 120,000 simulated data

sets, while the ML estimator does not provide results for a small number of the simulated

data sets. Due to the random creation of the data in the first and second stage, some of the

estimations suffer from separation. This occurs relatively rarely and mostly when N = 50.

Since Stata throws an error when either the first or second stage suffers from separation,

it does not provide any results. Additionally in some instances the Stata ML algorithm

does not converge. Thus, there were a number of data sets for which Stata does not

provide any estimation results or for which no bootstrap of confidence intervals for the

ATE or LATE are possible. The results for these 2, 033 simulated data sets, i.e. less than 2%

of the total, were not analyzed for the Stata ML estimate. In addition, in rare cases Stata

converges to widely inaccurate estimates. When evaluating the ML procedure, therefore,

we drop any simulated data sets where the resulting covariance matrix is not proper.This

occurs for an additional 1466 cases in the Stata ML estimation.

In total, we dropped 2,033 + 1466 = 3499 of the 120,000 simulated data sets when
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evaluating the ML estimator. We did not have to drop any additional simulations for the

Bayesian models. However, dropping these estimations for the Stata estimator biases our

results in favor of the ML estimator in comparison to the correctly specified Bayesian model,

especially considering that we leave out cases where the ML estimate is very inaccurate.1

E. ADDITIONAL RESULTS FROM SIMULATION STUDY

We begin by noting that the results in the main text also hold when considering mean

absolute error rather than mean squared error. This result is shown in Figure E.1.

Further, we also compared these methods in terms of 95% coverage probabilities for the

average treatment effect.2 In particular, we are interested in comparing how each approach

accurately recovers the ATE as defined in the main text. When comparing the accuracy of

point estimates, this is relatively straightforward. However, to compare the coverage rates

of the two estimation methods we need to derive confidence intervals of the ATE for the

ML model, which is not directly available from the Stata output. To calculate standard

errors for the derived causal quantities of interest, we rely on a parametric bootstrapping

method. (We are grateful to an anonymous reviewer for suggesting this approach.)

Broadly speaking our strategy is to simulate draws from the assumed asymptotic

distribution of the parameters of the model and to base our calculations on these draws.

Specifically, assume that Σ is the estimated variance covariance matrix provided by

Stata. Further, let ρ̃ represent the arc-hyperbolic tangent of ρ from the main text, and

τ = (γ1, π, γ2, β, ρ̃)′ be the complete vector of parameters from the model. We assume

that the parameters in model are distributed according to following multivariate normal,

MVN(τ ,Σ).

Our general approach is to take a draw from this multivariate normal distribution and

1For the Stata 2SLS estimation we drop those simulations for which the absolute error

with respect to the late is greater than 2, resulting in 887 dropped simulations.
2Note that these general results hold when analyzing only the β parameter from

Equation (3) using the usual asymptotic standard errors (results not shown).
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transform ρ̃ to ρ using the tangent function. We then calculate the ATE as specified in the

main text. We then repeat this process 1,000 times. We use calculate the 95% bootstrapped

confidence interval using the the 97.5 and 2.5 percentile estimates.3

Figure E.2 shows the coverage probabilities for the 95% confidence or credible intervals

on the ATE. Specifically, it shows the share of data sets at each parameter combination

for which the 95% confidence or credible intervals include the true parameter value.

Ideally, we would expect this to happen 95% of the time. Figure E.2 again shows the

Bayesian approach to be preferable, and the differences between the methods are espe-

cially pronounced for weak instruments and small samples. Bayesian CIs are somewhat

conservative, with the maximum and minimum coverage probabilities being 0.98 and

0.95 respectively. More broadly, the coverage rates fall between 94% and 97% for 8 of the

16 different parameter combinations shown in the figure. In contrast, the ML coverage

probabilities are too small. The smallest coverage rate is 0.69 (π = 0.5, N = 50) while the

maximum is 0.93 (π = 2, N = 500). Indeed, the coverage rate for the ML exceeds 90% for

only 6 of the 16 parameter combinations in Figure E.2.

3For the LATE calculations we use only 500 draws due to the computational demands

of these calculations.
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Figure E.1. This Figure shows the mean absolute error (MAE) for the ATE for the Bayesian estimate of the
treatment effect in comparison to the MAE of the maximum likelihood estimate. As in Figure 1 in the main
text, the top-left plot shows the MAEs for data sets with 50 observations. Going from the top left to the
bottom right the sample size increases for each plot. Gray vertical plots show the difference between the two
MAEs at each parameter value. It is immediately obvious that, again, across all parameter combinations
displayed, the Bayesian estimator outperforms the ML estimate in terms of the MAE. With increasing sample
size and stronger instruments, the difference decreases. Still, even at large sample sizes and with strong
instruments the Bayesian estimate remains superior.
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Figure E.2. This Figure compares the 95% coverage probabilities on the ATE for both the Bayesian and
ML estimators. The Bayesian estimator is much closer to this value for nearly all parameter combinations,
although it is somewhat conservative. The coverage probabilities for the ML model are too small, especially
with weak instruments or small sample sizes.
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F. COMPARISON TO TWO-STAGE LEAST SQUARES

In this section we compare the estimates of the local average treatment effect (LATE)

for the each simulated data set for the Bayesian model (prior SD 2.5), the STATA MLE

estimator, and the STATA 2SLS estimator. Figure F.1 shows the mean squared error for

each of the three estimators for varying instrument strength and sample sizes. As one can

easily see, the 2SLS estimator performs by far the worst on these simulated data sets.

Again, we can compare coverage for the Bayesian, Stata MLE, and 2SLS estimator.

Figure F.2 shows the coverage rates for all three estimators. As one can clearly see, the

MLE estimator is widely off the mark with weak instruments and small N, under-covering

significantly. Surprisingly, the coverage of the 2SLS estimators actually becomes worse

with larger samples and stronger instruments. We believe this to be the case because the

standard errors decrease even though the estimate is often false.

To further compare these methods, in Table F.1 we show the estimates for our applica-

tion (Sondheimer and Green 2010) in the main text, when applying standard IV methods

where the outcome is assumed to be continuous. Note that many of these estimates are

prima facia implausible. For instance, in the STAR experiment, 2SLS estimates the effect of

education as leading to a 90% increase in the predicted probability of voting in a federal

election. Note also, that the implied confidence interval falls well outside of the possible

[−1, 1] interval for both the STAR and IHAD experiments.
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Figure F.1. This Figure compares the mean squared error (MSE) for the Bayesian (prior SD = 2.5), ML
estimates, and the 2SLS estimates for subsets of the simulated data sets. The MSE is calculated based on
the estimated and true LATE. The top-left plot shows the MSEs for data sets including 50 observations
and different strength-levels of the instrument. Going from the top left to the bottom right the sample size
increases for each plot. Both the Bayesian and ML specifications outperform the 2SLS estimate in terms of
the MSE across all parameter settings.
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Figure F.2. This Figure compares the 95% coverage probabilities for the Bayesian, Stata MLE, and 2SLS
estimators for the LATE estimate, which should be about 0.95 for a well-calibrated model. The Bayesian
estimator is much closer to this value for nearly all parameter combinations, although it is somewhat
conservative. The coverage probabilities for the MLE and 2SLS model are generally too small. For the 2SLS
estimate this is especially the case with strong instruments or large sample sizes.
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Table F.1. Estimating treatment effects for schooling experiments using 2SLS and LIML instrumental
variables models

Perry IHAD STAR
2SLS Fuller LIML 2SLS Fuller LIML 2SLS Fuller LIML

HS Graduation Level
Intercept 0.44 0.44 0.62 0.62 0.85 0.85

(0.06) (0.06) (0.08) (0.08) (0.01) (0.01)
Treatment 0.21 0.21 0.17 0.17 0.05 0.05

(0.09) (0.09) (0.13) (0.13) (0.03) (0.03)
Voter Turnout Level

Intercept 0.01 0.02 0.02 0.15 -0.35 -0.23
(0.18) (0.16) (0.59) (0.44) (0.70) (0.60)

HS Graduation 0.27 0.25 0.50 0.31 0.90 0.76
(0.32) (0.29) (0.86) (0.65) (0.80) (0.69)

N 123 123 58 58 811 811

Coefficients are 2SLS/Fuller-corrected LIML estimates with standard errors in parentheses. Note that the
estimates of the effect of graduation on turnout are implausibly large for the STAR and IHAD experiments.
In the Fuller-corrected LIML models, we set a = 1.
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G. COMPARISON OF DIFFERENT PRIORS

In this section we provide comparison of the different prior specifications for the

Bayesian model and the Stata ML estimate. As one can see in Figure G.1, all Bayesian

specifications clearly outperform the ML estimates in terms of the MSE for the ATE. The

Bayesian model with the uniform prior performs very similar to the Stata ML model, but

slightly better. In general, the model with the Gaussian prior with standard deviation 2.5

performs best, except for very large sample sizes.

Figure G.2 provides the evaluation of the credible (confidence) intervals across the

different prior specifications of the Bayesian models and the ML estimates. As one can

see, when the prior on the coefficient is too tight, the Bayesian estimates may provide

too much shrinkage and the credible intervals are too tight (especially for small samples).

Essentially, the estimates of the Bayesian model with a prior standard deviation of 1.5

provide coefficient estimates that are very conservative (closer to zero). This is especially

visible in Figure G.3, which provides a comparison of the different MSEs for different

‘‘true’’ treatment effects. Based on our experience and the simulation results, we would

therefore recommend researchers to use prior standard deviations of around 2.5 unless

sample sizes are extremely large. On the other hand, tight priors do give conservative

estimates and may therefore be used by researchers. As to be expected, the Bayesian

model with completely uninformative priors does not perform very well, which indicates

the importance and benefit of specifying reasonable priors. Indeed, without a prior, the

Bayesian method must function entirely off of the likelihood and behaves relatively poorly

for the reasons discussed in the main text.
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Figure G.1. This Figure compares the mean squared error (MSE) on the ATE for the Bayesian (all prior
specifications) and ML estimates for subsets of the simulated datasets. The top-left plot shows the MSEs for
data sets including 50 observations and different strength-levels of the instrument. Going from the top left
to the bottom right the sample size increases for each plot. All Bayesian specifications outperform the ML
estimate in terms of the MSE across all parameter settings and this pattern is particularly clear with small
samples and weak instruments. However, in terms of MSE, the prior specification with medium standard
deviation (2.5) generally performs the best, except for very large sample sizes. The Bayesian specification
with the noninformative uniform prior performs more similar to the Stata estimate.
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Figure G.2. This Figure compares the 95% coverage probabilities for the Bayesian and ML estimators
(including all prior specifications), which should be about 0.95 for a well-calibrated model. The Bayesian
estimator is much closer to this value for nearly all parameter combinations and most prior specifications,
although it is somewhat conservative. The coverage probabilities for the ML model are too small, especially
with weak instruments or small sample sizes. Similarly, if the standard deviation on the Gaussian prior is
too tight, the shrinkage in the Bayesian model becomes too strong.
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Figure G.3. This Figure compares the mean squared error (MSE) on the ATE for the Bayesian (all prior
specifications) and ML estimates for subsets of the simulated data sets. The top-left plot shows the MSEs
for data sets with the true IV coefficient equal to 0.5 and different treatment strength. Going from the
top left to the bottom right the strength of the instrument increases for each plot. Again, in general the
Bayesian specifications with informative priors outperform the ML estimate in terms of the MSE. This pattern
is particularly clear with weak instruments and treatments. However, as one can clearly see, when the
treatment is particularly strong, the Bayesian specification with a tight prior variance shrinks the estimate
too far towards zero and thus suffers in terms of the MSE.
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