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Online Appendix

A Definitions and Proofs

A.1 The Informational Environment

The set of states of nature is denoted by ⇥ = [0,1], and the state of nature, ✓ ∈ ⇥, is determined

according to the Uniform distribution on [0,1].30 Upon realization of ✓, each individual i ∈ {A,P}
receives a conditionally independent (and private) signal si ∈ {0,1} according to the following

probability mass function:

Pr[si = x�✓] =
�������������
1 − ✓ if x = 0,
✓ if x = 1.

After observing a single signal si ∈ {0,1}, i’s posterior beliefs about ✓ are characterized by the

following probability density function:

gi(t�si) =
�������������
2(1 − t) if si = 0,
2(t) if si = 1.

More generally, player i’s posterior beliefs conditional upon observing m signals {s1, . . . , sm} with

k = ∑m
j=1 sj (i.e., k occurrences of s = 1 and m − k occurrences of s = 0) is characterized by a

Beta(k + 1,m − k + 1) distribution, so that

E(✓�k,m) = k + 1
m + 2 , and

V (✓�k,m) = (k + 1)(m − k + 1)(m + 2)2(m + 3) .

30This assumption greatly simplifies the calculations and allows us to focus on the key institutional and strategic trade-
offs. In addition, note that the uniform distribution is a useful baseline, as it maximizes the ex ante informativeness of
each agent’s signal. In other words, this is the case in which information aggregation is most important to all agents
from an ex ante perspective. Accordingly, this baseline amplifies the importance of our results when they indicate that
information is not aggregated in equilibrium or that optimal institutional design limits information aggregation.
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Accordingly, the optimal policy choice for a player i ∈ N , given k and m, is

y∗i (k,m) = k + 1
m + 2 + �i.

A.2 Strategies

A (pure) strategy for P is �P = (a, zP ), where a ∈ [0,1] is a feasible assignment of authority to A

(and P ’s authority is 1− a), and zP ∶R→R maps observed policy choices by A into policy choices

by P . A pure strategy for A is �A = zi ∶ [0,1] × {0,1} → R specifies a policy choice, given A’s

authority a and signal sA ∈ {0,1}.
Our notion of equilibrium throughout is perfect Bayesian equilibrium.

A.3 Beliefs

A’s beliefs are straightforward in our setting: we require them to be consistent with the informational

structure defined above and the strategies of P . P ’s beliefs are technically more complex, in that P

has a continuum of information sets. When considering separating equilibria, we restrict attention to

those in which A assigns positive probability only to the sequentially rational policy choices when

choosing yA. We provide further justification for this refinement below, and then consider equilibria

ruled out by it.

Taking this refinement as given for the moment, it follows from Equation (2) that in a separating

equilibrium, P assigns positive probability only to the following policies:

yA ∈ { 1�3 + �A, 2�3 + �A} (14)

in the opaque case, and

yA ∈ { 1�4 + �A, 1�2 + �A, 3�4 + �A} (15)

in the top-down transparency case.
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Now consider P ’s beliefs about A’s signal, as induced by A’s policy choice. Denote this belief

as h(yA) = Pr[sA = 1�yA]. Suppose without loss of generality that �A ≥ �P .31 Given our equilibrium

refinement, these beliefs are defined as follows:

h(yA) =

���������������������������������

�������������
0 for yA < 2�3 + �A,

1 for yA ≥ 2�3 + �A.

in the opaque case.

�������������
0 for yA < sP+2

4 + �A,

1 for yA ≥ sP+2
4 + �A.

in the top-down transparent case.

(16)

A.4 The Agent’s Best Response

The following proposition justifies our focus on the choices defined in (14) and (15), above.

Proposition 4 Suppose that �A > �P , ↵A > 0, and the principal’s beliefs satisfy Equation 16. Then

the agent’s best response y∗A satisfies the restrictions in (14) in the opaque case and (15) in the

top-down transparent case.

Proof : Given the principal has beliefs that satisfy (16), A’s expected payoff from choosing policy

yA after observing sA = 0 is

UA(yA�h, sA = 0) =
�������������
−(�P − �A)2 − ↵A(yA − 1

3 − �A)2 if yA < 2�3 + �A,

−(�P + 1
4 − �A)2 − ↵A(yA − 1

3 − �A)2 if yA ≥ 2�3 + �A.

Note that, except at yA = 2�3 + �A, UA(yA�h, sA = 0) varies with yA only through the term ↵A(yA −
1
3 − �A)2. Accordingly, it follows that, if y∗A < 2�3 + �A, then y∗A = 1�3 + �A since ↵A(yA − 1

3 − �A)2
is maximized by this choice and, since ↵A(yA − 1

3 − �A)2 is decreasing in yA for yA > 1�3 + �A, if

y∗A ≥ 2�3 + �A, then y∗A = 2�3 + �A. We omit derivation of the case when sA = 1, as it is symmetric.

Turning to the top-down transparency case, given the principal has beliefs that satisfy (16), A’s
31The arguments that follow are symmetric in case �A < �P .
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expected payoff from choosing policy yA after observing sA = 0 (and leaving sP arbitrary) is

UA(yA�h, sA = 0, sP ) =
�������������
−(�P − �A)2 − ↵A(yA − 1+sP

4 − �A)2 if yA < sP+2
4 + �A,

−(�P + 1
5 − �A)2 − ↵A(yA − 1+sP

4 − �A)2 if yA ≥ sP+2
4 + �A.

The reasoning explained for the opaque case can be applied immediately to this case as well, and

leads to the analogous conclusion that if y∗A < sP+2
4 + �A, then y∗A = 1+sP

4 + �A and if y∗A ≥ sP+2
4 + �A,

then y∗A = sP+2
4 + �A.

Accordingly, the beliefs defined in (16) induce the agent’s best response (regardless of whether

the incentive compatibility conditions hold or not) to be restricted to the choices defined in (14) and

(15), as was to be shown.

A.5 The Equilibrium Set

There are three classes of equilibria in this model:

1. Pooling equilibria. In a pooling equilibrium, A’s decision is uninformative in the sense that

P ’s beliefs are independent of yA. Such a profile can be an equilibrium if and only if ↵A = 0,

as otherwise such beliefs give the agent a strict incentive to set yA “truthfully” based on his or

her signal.

2. Separating equilibria. In a separating equilibrium, P ’s beliefs (correctly) assign probability

one to the signal that was observed by the agent based on yA. Such a profile can be an equi-

librium only if there are exactly two choices of yA that are observed with positive probability

on the equilibrium path of play. Equation (16) refines this set of equilibria, a point to which

we return below (Section A.6).

3. Semi-separating equilibria. A “semi-separating” profile is one in which A uses a strategy of
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the following form:

y∗(sA) =
�������������
y0 with probability p if sA = 0 and with probability 1 − q if sA = 1,
y1 with probability 1 − p if sA = 0 and with probability q if sA = 1.

(17)

Such a strategy can be part of an equilibrium profile only if either p = 0 or q = 0.32 Fur-

thermore, given our normalization that �A > �P , such a profile can be part of an equilibrium

profile only if q = 0.

Any strategy-belief profile not falling into one of those three categories cannot be an equilibrium

in this setting: unless ↵A = 0, the agent must be assign positive probability to exactly two choices of

yA in equilibrium.

A.6 What Equilibria Are Eliminated by the Refinement in Equation (16)?

As stated above, we consider only those separating equilibria in which the principal holds beliefs

consistent with Equation (16). There are two qualitative cases to consider when asking what other

equilibria are ruled out by our refinement, corresponding to ↵A = 0 and ↵A > 0, respectively. We

treat each in turn.

• ↵A = 0. In this case, the game is equivalent to a cheap talk game. Accordingly, when the

incentive compatibility conditions are satisfied, there are uncountably infinite separating equi-

libria (including ones in which the agent might use more than two “messages”). However,

these equilibria are all payoff equivalent to both players, and accordingly, eliminating them

is irrelevant. Semi-separating and pooling equilibria—which are not payoff-equivalent to the

separating equilibrium considered in our analysis—can also exist.

However, when the incentive compatibility conditions for the separating equilibrium are sat-

isfied, it Pareto dominates (in terms of ex ante expected payoffs) any other, non-separating

equilibrium.33 The principal’s ex ante preferences are clear because, conditional on the agent’s
32Of course, if p = q = 0, then this is a separating strategy.
33This is obvious from Crawford and Sobel (1982), but for completeness we include another argument demonstrating

this here.
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signal, sA, the principal prefers a separating equilibrium regardless of the realization of the

signal. To see that the agent also prefers a separating profile from an ex ante perspective, Con-

sider any strategy profile where there is some policy z such that Pr[yA = z�sA = 0] = p0 > 0
and Pr[yA = z�sA = 1] = p1 > 0. When the principal observes z, his or sequentially rational

response is

y∗P (z, sP ) =
�������������
�P + p0+p1

4p0+2p1 if sP = 0,
�P + p0+3p1

2p0+4p1 if sP = 1.
Substituting ↵A = 0 and ↵P = 1, the agent’s state-unconditional expected payoff from playing

z in equilibrium (i.e., prior to observing sA) is

−(�A − �P )2 − 1

2 �
1

0
���P + p0 + p1

4p0 + 2p1 − ✓ − �A�
2 (1 − ✓) + ��P + p0 + 3p1

2p0 + 4p1 − ✓ − �A�
2

✓� d✓.

which reduces to

−(�A − �P )2 − 1

24
�3p20 + 2p1p0 + p21(2p0 + p1)2 + p20 + 2p1p0 + 3p21(p0 + 2p1)2 � (18)

This is maximized by p0 = p1 and achieves a value of −(�A − �P )2 − 1
18 . This is, of course, equivalent

to the pooling equilibrium. The agent’s ex ante payoff from the separating equilibrium is

−(�A − �P )2 − 1

24
.

Note, also, that (18) must equal the agent’s unconditional, ex ante payoff if the strategy is part of an

equilibrium because the agent must be indifferent between z and any other policy he or she chooses

with positive probability. Thus, in ex ante terms, the agent strictly prefers a separating equilibrium.

• ↵A > 0. In this case, there is no equilibrium in which the principal does not condition his or her policy

on the agent’s policy. If the principal ignored the agent’s decision, then ↵A > 0 implies that the agent

would have a strict best response of setting yA = sA+1
3 +�A in the opaque case and yA = sA+sP

4 +�A in

the transparent case. Of course, if the agent does that, then the principal should not ignore the agent’s

decision when making his or her own policy choice.
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Moving to non-babbling equilibria, matters become more complicated. As with the cheap-talk case of

↵A = 0, the existence of a semi-separating equilibrium for a given ↵A and � implies that an ex ante

Pareto superior separating equilibrium also exists, so we set semi-separating equilibria aside. However,

the real complication arises because there are other separating equilibria.

Specifically, with the proper specification of beliefs, it is always possible to construct a separating

equilibrium, regardless of the players’ biases. The next proposition, drawn from Patty and Penn (2014),

demonstrates that beliefs can always be properly constructed so that it is incentive compatible for the

agent to truthfully reveal his or her signal through his or her policy choice. The proposition applies

to the opaque information case, but the logic and calculations can be straightforwardly applied to the

top-down transparency case.

Proposition (Patty and Penn (2014)) For any ↵A > 0 and (�A,�P ) ∈ R2, there exists a belief

h(⋅�↵A,�A,�P ) such that a separating equilibrium exists.

Proof : Suppose that �A > �P and that there exists some ⌧ ≥ 0 such that P ’s sequentially ratio-

nal strategy as a function of his or her signal, sP , and the policy chosen by A, yA, given beliefs

h(yA�↵A,�A,�P ), is

yP (yA; ⌧) =
�������������

sP+1
4 if yA < 2

3 + ⌧ + �A,
sP+2
4 if yA ≥ 2

3 + ⌧ + �A.
(19)

Given the behavior described by (19), there are only 2 policy choices that are potentially optimal for A

and informative to P : yA ∈ {13 + �A, 23 + ⌧ + �A}. Let y0A = 1
3 + �A and y1A = 2

3 + ⌧ + �A denote these

two policies. Note that y1A − y0A = 1
3 + ⌧ . The expected payoff difference between these two choices is

UA(y0A�sA) −UA(y1A�sA) =
�������������
↵P ��A − �P + 1

4�2 + ↵A �13 + ⌧�2 − ↵P (�A − �P )2 if sA = 0,
↵P (�A − �P )2 + ↵A⌧

2 − ↵A �13�2 − ↵P ��A − �P − 1
4�2 if sA = 1,

=
�������������
↵P � 1

16 − 1
2(�A − �P )� + ↵A �13 + ⌧�2 if sA = 0,

↵A �⌧2 − 1
9� − ↵P

16 − 1
2↵P (�A − �P ) if sA = 1.

Because �A > �P , consider first the incentive compatibility condition in the case of sA = 0 (this is the

only one that can bind for sufficiently small ⌧ ). In this case, truthfulness is incentive compatible with
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these beliefs if and only if

↵P

16
+ ↵A �1

3
+ ⌧�2 ≥ ↵P

2
(�A − �P ),

2

↵P
�↵P

16
+ ↵A �1

3
+ ⌧�2� ≥ �A − �P ,

1

8
+ 2↵A

↵P
�1
3
+ ⌧�2 ≥ �A − �P , (20)

so that, as intuition suggests, for any fixed �A and �P , truthfulness is incentive compatible—under the

supposition that player 1 must choose between y0A and y1A—for “sufficiently demanding” beliefs (i.e.,

for sufficiently large values of ⌧ ).

However, as alluded to above, setting ⌧ too large can lead to a violation of incentive compatibility

when sA = 1. In particular, player 1 could choose his or her sequentially rational policy following

sA = 1 even if that leads to player 2 inferring that sA = 0. Doing so optimally (given ⌧ ≥ 0) involves

choosing yA = sA+2
3 + �A. The resulting incentive compatibility condition in this situation is based on

the following expected payoff difference calculation:

UA �sA + 2
3
+ �A�sA = 1� −UA(y1A�sA = 1) = ↵P (�A − �P )2 + ↵A⌧

2 − ↵P ��A − �P − 1

4
�2 ,

= ↵A⌧
2 − ↵P

16
− ↵P

2
(�A − �P ),

so that incentive compatibility is satisfied only if

⌧ ≤
�

↵P

↵A
� 1
16
+ 1

2
��A − �P ��, (21)

So, suppose that ⌧ =�↵P
↵A
� 116 + 1

2(�A − �P )�. Then substituting this into inequality 20,

1

8
+ 2↵A

↵P

�
�
1

3
+
�

↵P

↵A
� 1
16
+ 1

2
(�A − �P )���

2

≥ ��A − �P �,
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and letting M ≡ 1
8 + 2↵A

↵P
�13 +

�
↵P
↵A
� 116 + 1

2(�A − �P )��2,

M > 1

8
+ 2↵A

↵P
�1
9
+ ↵P

↵A
� 1
16
+ 1

2
(�A − �P )�� ≥ ��A − �P �,

1

4
+ 2↵A

9↵P
+ �A − �P ≥ �A − �P .

Accordingly, setting ⌧ = �↵P
↵A
� 116 + 1

2(�A − �P )� implies that inequalities 20 and 21 are simultane-

ously satisfied.

We now turn to the question of the principal’s preferences over the equilibria for ↵ > 0. Specifi-

cally, we show that the principal prefers the equilibrium we consider (defined by ↵∗OA in Proposition

6) to all of the other equilibria covered by Proposition A.6.

A.7 The Principal’s Preferences over Equilibria

We establish the optimality (from the principal’s perspective) of the equilibria considered in the

paper in two steps. First, we consider the separating equilibria in which the principal’s beliefs do

not satisfy Equation (16). Then, we demonstrate that any semi-separating equilibrium is dominated

by a separating equilibrium from the perspective of the principal’s ex ante equilibrium expected

payoff.

A.7.1 Equilibria that do not satisfy Equation (16)

While incentive compatibility can always be obtained, it is not necessarily the case that obtaining

incentive compatibility is in P ’s interests. That is, it is not clear that the value of the agent’s in-

formation for the principal in setting his or her own policy is sufficient to outweigh the distortion

that the agent must impose on his or her policy choice to sustain incentive compatibility of truthful-

ness. Based on the analysis above, we can establish an upper bound on the preference divergence

between the principal and agent, above which the principal receives a strictly higher payoff from set-

ting ↵A = 0 and the two players playing a babbling equilibrium of the resulting cheap talk signaling

game.
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Proposition 5 For all �, the Principal’s equilibrium expected payoff from choosing ↵∗OA (�) , given

that the equilibrium strategies and beliefs satisfy Equation (16) is strictly higher than any equilib-

rium following any other choice ↵A.

Proof : To establish this bound, note the “cheapest” pure strategy separating equilibrium in terms of

↵,� is constructed by setting ⌧ so as to satisfy inequality (20) with equality. This value is

⌧∗(↵,�) =
�������������
0 if �A − �P ≤ 1

8 + 2↵A
9↵P

,�
↵P
↵A
�12(�A − �P ) − 1

16� otherwise.
(22)

Note that player 2’s expected payoff from the pure strategy separating equilibrium supported by the

beliefs based on equation (19), with ⌧ = ⌧∗(↵,�) as defined in (22), is

UP (⌧∗(↵,�)) = − �↵P

24

+ ↵A � 1

18

+ (⌧∗(↵,�) + �A − �P )2 + (�A − �P )2
2

�� ,
= − �↵P

24

+ ↵A � 1
18

+ (�A − �P )2 + ⌧∗(↵,�)2
2

+ ⌧∗(↵,�)(�A − �P )�� (23)

Presuming without loss of generality that �A − �P > 1�8, substituting

⌧∗(↵,�) =
�

↵P

↵A

�1
2

(�A − �P ) − 1

16

�,

↵P ≡ 1 − ↵A, and B ≡ �A − �P into (23) yields

UP (⌧∗(↵,�)) = −1 − ↵A

24

− ↵A

18

− ↵AB
2 − (1 − ↵A)�1

4

B − 1

32

� −B
�
(1 − ↵A)↵A �1

2

B − 1

16

�,
= ↵A �B

4

−B2 − 13

288

� − 1

4

B − 1

96

−B
�
(1 − ↵A)↵A �1

2

B − 1

16

�,

which is decreasing in ↵A for all ↵A ∈ [0, 1�2].
The principal’s equilibrium payoff from the equilibrium constructed in our analysis for the
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opaque case (Proposition 6) is

UP (↵∗OA (�);�) = − 1

24

− � 8(�A − �P ) − 1
7�9 + 8(�A − �P )��

1

72

+ (�A − �P )2� ,

and comparing this with (24) evaluated at ↵A = 0 yields the following:34

UP (↵∗OA (�);�) ≥ UP (⌧∗(↵,�)),
− 1

24

− � 8(�A − �P ) − 1
7�9 + 8(�A − �P )��

1

72

+ (�A − �P )2� ≥ − ��A − �P �
4

− 1

96

,

⇒ 1

8

≤ ��A − �P � ≤ 3 +√15
24

≈ 0.286 > ⇢∗ ≈ 0.201.

These inequalities imply (as shown in Proposition 6) that, in the opaque case, the preference diver-

gence must be greater than the maximal amount of divergence for which the principal prefers to

delegate any authority to the agent. To verify this further, note that the principal’s expected equilib-

rium payoff in the babbling equilibrium of the cheap talk case (↵A = 0) is greater than (24) evaluated

at ↵A = 0 whenever

− 1

18

≥ − ��A − �P �
4

− 1

96

,

⇒ ��A − �P � ≥ 13

72

≈ 0.18.

Thus, the principal strictly prefers delegating ↵∗OA (�) to the agent and playing the equilibrium de-

scribed in the article to delegating any other value ↵A and playing the equilibrium with beliefs

described by supported by the beliefs based on equation (19) with ⌧ = ⌧∗(↵A,�), as defined in (22).

34Evaluating (24) at ↵A is actually inconsistent with equilibrium for ��A − �P � > 1�8, but this values equals the
supremum of the principal’s best possible equilibrium payoff using the ⌧∗ beliefs based on equation (19), which is
sufficient for our purposes here.
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A.7.2 Semi-separating Equilibria

When ↵A > 0, any equilibrium must involve the agent assigning positive probability to exactly two

distinct policy choices. Therefore, suppose that the agent plays a strategy of the following form for

some value p ∈ [0,1]:

y∗(sA) =
�������������
�A + 1�3 with probability 1 − p if and only if sA = 0,
�A + 2�3 with probability p if sA = 0 or with probability 1 if sA = 1.

(24)

Because

Pr[sA = 1�sP = 1] = ∫ 1
0 ✓2d✓

∫ 1
0 ✓2d✓ + ∫ 1

0 ✓(1 − ✓)d✓ ,
= 2�3,

the principal’s “on-the-path” beliefs regarding sA are

h(sA�yA, sP ) ≡ Pr[sA = 1�yA, sP ] =
�����������������������

0 if yA = �A + 1�3,
2

2+p if yA = �A + 2�3 and sP = 1, and

1
1+2p if yA = �A + 2�3 and sP = 0.

UP (z�yA = �A + 2�3, sP ) =
�������������
− � 2

2+p �(z − 3
4)2 + 3

80� + p
2+p �(z − 1

2)2 + 1
20�� if sP = 1, and

− � 1
1+2p �(z − 1

2)2 + 1
20� + 2p

1+2p �(z − 1
4)2 + 3

80�� if sP = 0.

@

@z
UP (z�yA = �A + 2�3, sP ) =

�������������
− � 1

1+2p2(z − 1
2) + 2p

1+2p2(z − 1
4)� if sP = 0, and

− � 2
2+p2(z − 3

4) + p
2+p2(z − 1

2)� if sP = 1.
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Solving the FOC for sP = 0:

1

1 + 2p2�z − 1

2

� + 2p

1 + 2p2�z − 1

4

� = 0,

z = 1 + p
2 (1 + 2p) ,

and solving the FOC for sP = 1:

2

2 + p2�z − 3

4

� + p

2 + p2�z − 1

2

� = 0,

z = 3 + p
2 (2 + p) .

Setting @
@zUP (z�yA = �A + 2�3, sP ) = 0 implies that y∗P (yA = �A + 2�3, sP ) is as follows:

y∗P (yA = �A + 2�3, sP ) =
�������������

1+p
2(1+2p) + �P if sP = 0, and

3+p
2(2+p) + �P if sP = 1.

Solving with an uninformed principal. If the principal receives no signal, the principal’s beliefs

after observing (on the path values of) yA are

h(sA�yA) ≡ Pr[sA = 1�yA] =
�������������
0 if yA = �A + 1�3,
1

1+p if yA = �A + 2�3.
Given these beliefs, the principal’s sequentially rational response to observing yA = �A + 2�3 is

derived as follows:

UP (z�yA = �A + 2�3) = − � 1

1 + p ��z − 2

3

− �P�2 + 1

18

� + p

1 + p ��z − 1

3

− �P�2 + 1

18

��
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@

@z
UP (z�yA = �A + 2�3) = − � 2

1 + p �z − 2

3

− �P� + 2p

1 + p �z − 1

3

− �P��

Solving the FOC:

2

1 + p �z − 2

3

− �P� + 2p

1 + p �z − 1

3

− �P� = 0,

z = �P + 2 + p
3(1 + p) ,

Thus,

y∗P (yA = �A + 2�3) = �P + 2 + p
3(1 + p) .

Solving for the Agent’s IC Conditions. Omitting the variance terms, the agent’s expected payoff

from choosing yA = �A + 2�3 when sA = 0 is

UA(�A + 2�3�sA = 0) = −
������↵P ��P + 2 + p

3(1 + p) − 1�3 − �A�
2 + ↵A

9

������
and the agent’s expected payoff from choosing yA = �A + 1�3 when sA = 0 is

UA(�A + 1�3�sA = 0) = −↵P (�P − �A)2 .

The agent must be indifferent between these two policies after sA = 0 for the semi-separating strategy

to be a best response. Thus, it must be the case that the equilibrium mixing probability, p∗, satisfy

the following:

↵P ��P + 2 + p∗
3(1 + p∗) − 1�3 − �A�

2 + ↵A

9

= ↵P (�P − �A)2 .
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Substituting ↵P = 1 − ↵A to solve for p∗ only as a function of ↵A, �A, and �P yields

p∗(↵A,�) = 3(1 − ↵A)(�A − �P ) − ↵A ±�(1 − ↵A) ((1 − ↵A) (9(�A − �P )2) − ↵A)
↵A

.

Equivalently, ↵A is uniquely identified by a choice of p∗ (given �P and �A) as follows:

↵A(p∗) = 6�A(p + 1) − 6�P (p + 1) − 1
6�A + p2 + 6�Ap − 6�P (p + 1) + 2p.

The Principal’s Expected Welfare. By choosing ↵A, the principal can effectively determine the

equilibrium mixing probability for the agent. The principal’s equilibrium ex ante expected payoff as

a function of p is

EUP (p) = −(1 − ↵A(p))� 1

0
� 2 + p
3(1 + p) − !�

2 (! + p(1 − !))d! − (1 − ↵A(p))� 1

0
��1

3
− !�2 (1 − p)(1 − !)�d!

−↵A(p)� 1

0
��A + 2

3
− �P − !�2 (! + p(1 − !))d! − ↵A(p)� 1

0
���A + 1

3
− �P − !�2 (1 − p)(1 − !)�d!,

= −�2
A − �2

P + 1

36

�
�6�A − �p2 − 2�p2

6�A + p2 + 6�Ap − 6�P (p + 1) + 2p + p2 + 6�P (12�A + p − 1) − 6�Ap − 2p − 2��
Substituting �P = 0 without loss of generality, this reduces to

EUP (p) = −�2
A + 1

36

�6�A(1 − p) − (p2 − 2)p2
6�A + p2 + 6�Ap + 2p + p2 − 2p − 2� .

Notice that

@EUP (p)
@p

= − �(3�A + 1) (18�2
A + p2 (6 (3�2

A + �A) + 1) + 6p�A(6�A + 1))
9 (6�A + p2 + 6�Ap + 2p)2 � ,

where �A > �P ≡ 0 and p ≥ 0 imply that the numerator is positive and the denominator is positive,

so that

@EUP (p)
@p

< 0.
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This implies that the principal wants to choose ↵A so that the agent uses the minimum feasible

equilibrium value of p, given �A. Of course, the principal can achieve p∗ = 0: this is simply the

separating equilibrium examined in the article. Accordingly, the principal always strictly prefers the

separating equilibrium and therefore prefers the babbling equilibrium to any mixed strategy equi-

librium whenever he or she prefers the babbling equilibrium to the separating equilibrium. On a

technical note, this is because EUP (1) does not equal the expected payoff of the babbling equilib-

rium: when p∗ = 1, ↵∗(p∗) > 0 for all ��A − �P � > 1
12 . But recall that for all ��A − �P � < 1

8 , ↵A = 0
yields a separating equilibrium.

Solving with an Informed Principal: The Opaque Case. Duplicating the analysis above with

the principal having a private signal yields the following expression for ↵A(p∗):

↵A(p∗) = 1 − 8(p∗ + 2)2
2(72�A − 72�P + 7) + p∗(120�A + 24�Ap∗ − 24�P (p∗ + 5) + 5p∗ + 20)

and, setting �P = 0, one obtains the following expression for the principal’s expected payoff in a

p-semi-separating equilibrium:

EUP (p) = − �720�3
A(p + 2)(p + 3) + 30�2

A(8p3 + 37p2 + 36p − 18) + 10�A(p3 + 12p2 + 26p + 24) + (p + 2)2(p + 9)
30 (5(p)2 + 24�A(p + 2)(p + 3) + 20p + 14) � ,

such that

@EUP (p)
@p

= − 40(7�A − 4) + 5760�3
A(p + 2)3(p + 4) + 480�2

A(p + 2)2(3p2 + 13p + 18) + 2�A(37p4 + 320p3 + 1276p2 + 1488p) + 5p4 + 40p3 + 102p2 + 4p

30 �5p2 + 24�A(p + 2)(p + 3) + 20p + 14�2 .

It can be verified that, for �A > 0.0566026,

@EUP (p)
@p

< 0.

For �A ≤ 1
8 , the principal prefers the separating equilibrium that can be achieved with ↵A, so that if

the principal can not achieve a separating equilibrium in the cheap-talk case, the principal’s payoff

is strictly decreasing in p, implying that he or she strictly prefers p = 0 to any p > 0.
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B Assorted Proofs

This appendix contains proofs of several claims made throughout the body of the paper.

B.1 Optimal Delegation

Proposition 6 Letting ⇢∗ ≈ 0.201 denote the first root of f(x) = 648x3 − 81x2 − 2, in the opaque

case in which agent A does not observe the principal’s information, sP , prior to choosing yA, the

principal will delegate discretionary authority to the agent as follows:

↵A(�) =
�����������������������

0 if (�A − �P ) < 1
8 ,

8(�A−�P )−1
7�9+8(�A−�P ) if (�A − �P ) ∈ �18 ,⇢∗� ,
0 if (�A − �P ) > ⇢∗.

Proof : Note that if ��A − �P � ≤ 1
8 , then agent A will be truthful regardless of ↵A, so that the optimal

choice for principal P is clear: ↵A = 0. Thus, presuming that ��A − �P � > 1
8 (so that eliciting truthful

communication requires delegating positive discretionary authority to the agent) and recalling that

↵∗OA (�) ≡max � 8(�A − �P ) − 1
7�9 + 8(�A − �P ) ,0�

denotes the minimal level of discretionary authority required to elicit truthful revelation from the

message sender when the principal is known to be informed but his or her information is opaque to

the message sender, the principal’s expected payoff from inducing truthful revelation as cheaply as

possible in this setting is

UP (↵∗OA (�);�) = −1 − ↵∗OA (�)
24

− ↵∗OA (�)
18

− ↵∗OA (�)(�A − �P )2,
= − 1

24

− ↵∗OA (�)� 1
72

+ (�A − �P )2� ,
= − 1

24

− � 8(�A − �P ) − 1
7�9 + 8(�A − �P )��

1

72

+ (�A − �P )2� ,
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whereas the expected payoff from delegating zero discretionary authority is

UP (↵A = 0;�) = − 1

18

,

so that the delegation of positive discretionary authority is in the principal’s interest only if

�UP ≡ UP (↵∗OA (�);�) −UP (↵A = 0;�),
= 1

18

− 1

24

− � 8(�A − �P ) − 1
7�9 + 8(�A − �P )��

1

72

+ (�A − �P )2�
= 1

72

− � 8(�A − �P ) − 1
7�9 + 8(�A − �P )��

1

72

+ (�A − �P )2�
≥ 0

which holds if and only if

��A − �P � ≤ ⇢∗ ≈ 0.201,
as was to be shown.

Proposition 7 In the top-down transparency case in which agent A observes principal P ’s infor-

mation, sP , prior to choosing yA, principal P will delegate discretionary authority to agent A as

follows:

↵A(�) =
�����������������������

0 if (�A − �P ) < 1
8 ,

1 − 1
8(�A−�P ) if (�A − �P ) ∈ �18 , 3+√41

48 � ,
0 if (�A − �P ) > 3+√41

48 .

Proof : Recalling

↵∗TA (�) =max �0,1 − 1

8(�A − �P )�
denote the minimal level of discretionary authority required to elicit truthful revelation from the

message sender, note first that principal P ’s optimal delegation is ↵A = 0 when ��A − �P � ≤ 1
8 ,

because agent j’s optimal choice is to be truthful even with no discretionary authority in those cases.

Thus, presuming that ��A−�P � > 1
8 , the principal’s expected payoff from inducing truthful revelation
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as cheaply as possible (i.e., setting j’s discretionary authority equal to ↵∗TA (�)) is

UP (↵∗TA (�);�) = − 1

24

− �1 − 1

8(�A − �P )� (�A − �P )2,

whereas the expected payoff from delegating zero discretionary authority is

UP (↵A = 0;�) = − 1

18

,

so that the delegation of positive discretionary authority is in the principal’s interest only if

UP (↵∗TA (�);�) −UP (↵A = 0;�) = 1

72

− �1 − 1

8(�A − �P )� (�A − �P )2 ≥ 0, (25)

which holds only only if

��A − �P � ≤ 1

48

�3 +√41� ≈ 0.196,
so that the principal will delegate positive discretionary authority equal to ↵∗∗(�) if and only if

��A − �P � ∈ �1
8

,
3 +√41

48

� ,

as was to be shown.
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B.2 Derivation of Equations 5 & 6 and Inequality 7

The Principal’s Decision Problem. Given his or her information, (yA, sP ), the principal’s ex-

pected payoff from a policy choice yP is

UP (yP ) = −� 1

0
�(1 − ↵A)(yP − ✓ − �P )2 + ↵A(yA − ✓ − �P )2� g(✓�yA, sP )d✓,

= −� 1

0
(1 − ↵A) �y2P + �2

P + ✓2 − 2(✓(yP − �P ) + yP�P )� g(✓�yA, sP )d✓
−� 1

0
↵A �y2A + �2

P + ✓2 − 2(✓(yA − �P ) + yA�P )� g(✓�yA, sP )d✓,
= −(1 − ↵A) �y2P + �2

P − 2yP�P � −� 1

0
(1 − ↵A) �✓2 − 2✓(yP − �P )� g(✓�yA, sP )d✓

−↵A �y2A + �2
P − 2yA�P � −� 1

0
↵A �✓2 − 2✓(yA − �P )� g(✓�yA, sP )d✓,

= −(1 − ↵A) (yP − �P )2 − (1 − ↵A) �Var[✓�yA, sP ] +E[✓�yA, sP ]2 − 2E[✓�yA, sP ](yP − �P )�
−↵A (yA − �P )2 − ↵A �Var[✓�yA, sP ] +E[✓�yA, sP ]2 − 2E[✓�yA, sP ](yA − �P )� ,

= −(1 − ↵A) �(yP − �P )2 − 2E[✓�yA, sP ](yP − �P )�
−↵A �(yA − �P )2 − 2E[✓�yA, sP ](yA − �P )� − �Var[✓�yA, sP ] +E[✓�yA, sP ]2� .

The first order necessary condition for maximization of UP (yP ;�, yA, sP ) with respect to yP is

dUP (yP ;�, yA, sP )
dyP

= −(1 − ↵A)2 (yP − �P −E[✓�yA, sP ]) = 0,

which yields

y∗P = �P +E[✓�yA, sP ]. (26)

In the separating equilibrium considered here, the principal’s beliefs, E[✓�yA, sP ], satisfy the fol-

lowing:

E[✓�yA, sP ] =

���������������������������������

1�4 if sP = 0 and yA = �A + 1�3,
1�2 if sP = 0 and yA = �A + 2�3,
1�2 if sP = 1 and yA = �A + 1�3,
3�4 if sP = 1 and yA = �A + 2�3.

(27)
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Substituting (27) into (26) yields equation (4):

y∗P (s̃A, sP ) = 1 + s̃A + sP
4

+ �P .

We now turn to the agent’s decision problem to obtain the agent’s best response to the principal’s

beliefs (and sequentially rational behavior based on those beliefs) when choosing yA based on sA.

The Agent’s Decision Problem. Let h(sP �✓) denote the conditional probability of sP , given ✓.

Then, letting y0A ≡ �A + 1�3 and y1 ≡ �A + 2�3, then the agent’s expected payoffs from y0A and y1A,

respectively, given the agent’s information, sA, are35

UA(y0A; sA) = −� 1

0
� 1�
sP =0
�(1 − ↵A)�sP + 1

4
+ �P − ✓ − �A�2 + ↵A(y0A − ✓ − �A)2�h(sP �✓)� g(✓�sA)d✓, and

UA(y1A; sA) = −� 1

0
� 1�
sP =0
�(1 − ↵A)�sP + 2

4
+ �P − ✓ − �A�2 + ↵A(y1A − ✓ − �A)2�h(sP �✓)� g(✓�sA)d✓.

Focusing on the case of sA = 0 (this is the “tempting” case for the agent when �A > �P ) and noting

that h(sP = 1�✓) = ✓, h(sP = 0�✓) = 1 − ✓, and g(✓�sA) = 2(1 − ✓),

UA(y0A; 0) = −� 1

0
��(1 − ↵A)�1

4

+ �P − ✓ − �A�2 + ↵A �1
3

− ✓�2� (1 − ✓)�2(1 − ✓)d✓
−� 1

0
��(1 − ↵A)�2

4

+ �P − ✓ − �A�2 + ↵A �1
3

− ✓�2� ✓�2(1 − ✓)d✓,
= −(1 − ↵A)(�A − �P )2 − ↵A

72

− 1

24

,

UA(y1A; 0) = −� 1

0
��(1 − ↵A)�2

4

+ �P − ✓ − �A�2 + ↵A �2
3

− ✓�2� (1 − ✓)�2(1 − ✓)d✓
−� 1

0
��(1 − ↵A)�3

4

+ �P − ✓ − �A�2 + ↵A �2
3

− ✓�2� ✓�2(1 − ✓)d✓,
= −(1 − ↵A)(�A − �P )2 + (1 − ↵A)�A − �P

2

− ↵A

16

− 5

48

,

as stated in equations (5) and (6). Following this, a few steps of algebra yields the following
35The analysis of the principal’s incentives can be applied directly to show that, given these beliefs by the principal,

either (and only) y0A or y1A are strictly best responses for the agent.
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incentive compatibility condition:

UA(y0A; 0) ≥ UA(y1A; 0),
�A − �P ≤ 2

9

↵A(1 − ↵A) +
1

8

,

as stated in inequality (7).
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