Appendix A

We can put Equation (1) in terms of wu;, giving us u; = Y; — aY;_; — fX;. Attime ¢t — 1,
this expression will be: v, 1 = Y;_1 — aY; o — 5X;_;. Substituting this into Equation (3) gives

us:

w = QY1 —adY, o — X1 + ey

This expression for u; can be substituted back into Equation (1), giving us:

Y, = (a+¢)Yi1+ (—ag)Yio+ BX, + (—B0) Xi—1 + en

Equation (4) is a restricted version of the ADL (2,1) model. Both models have the same
number of lags of Y; and X;, but the Equation (4) model introduces restrictions on the values of the
coefficients, while the ADL (2,1) model has no restrictions on coefficient values. Hendry (1995)
and De Boef and Keele (2008) recommend starting with a general model and “testing down,” so
if we were actually fitting this model to a real dataset (with an unknown data generating process),
we would want to start with the ADL (2,1) model, rather than the restricted ADL (2,1) model that
is Equation (4). Validating this modeling approach with a more general model is preferable to
validating it with a more restricted model. Therefore, the Monte Carlo results estimated for EQ4
in the paper will be estimated using the general ADL (2,1) model. Table 8 shows the results of
the Monte Carlo simulations of the percent bias and root mean square error using the restricted
parameter estimates of the EQ4 model. The percent bias of the restricted EQ4 model is around —2
percent or 42 percent, which is slightly higher than for the general ADL(2,1) model, which tended
to have biases around 1 percent or less (see Figures 1(a) and 1(c)). The RMSE in Table 8 is about
the same as the RMSE shown in Figures 1(b) and 1(d), where the EQ4 estimate is from the general

ADL(2,1) model.



Table 8: Percent Bias and RMSE in Restricted EQ4 Model (under varying levels of o and ¢)

0.0 0.1 0.2 0.3 0.4 0.5

Percent Bias in Estimates of 5 -0.87 -2.25 -1.09 -2.09 -3.66 -2.02
RMSE in Estimates of (3 0.10 0.10 0.10 0.10 0.10 0.10

¢

0.0 0.1 0.2 0.5

Percent Bias in Estimates of 5 2.27 1.76 321 247 167 252
RMSE in Estimates of (3 0.07 0.07 0.08 0.09 0.09 0.09

B=0.5,p=0.95
¢ =0.75 under varying levels of «
a = 0.75 under varying levels of ¢



Table 9: Percent of Simulations Detecting Autocorrelation with EQ4 Model

00 01 02 03 04 05 06 07 0.75

=00 570 550 6.10 640 720 6.60 6.70 6.50 7.60
=01 560 610 720 7.10 5.10 650 830 7.30 6.60
=02 460 580 470 6.00 490 6.80 540 7.10 6.20
=03 540 580 560 620 630 580 6.80 7.00 8.00
=04 510 7.30 5.00 490 7.00 570 5.70 7.60 8.30
=05 510 6.10 620 560 750 6.00 6.70 6.00 7.60
=06 500 570 580 7.00 490 550 470 590 6.80
=07 810 560 450 6.60 620 820 640 6.40 7.50
=075 570 490 620 580 620 650 7.00 7.10 7.90

B=05,p=095



Figure 5: Percent of Simulations Detecting Autocorrelation with ADL(1,1) Model, 5 = 0.5, p =
0.95
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Appendix C

The Ljung-Box test is a group test of whether there is autocorrelation present in a time series

between a lag of 1 and some lag L. The Ljung-Box test statistic is:'*

L N
i
T—1

=1

H=T(T+2)

L represents the total number of lags for the test, specified by the user. For the Ljung-Box
tests in the paper, [ set L = 12. T represents the length of the time series, and p; represents the
sample autocorrelation for the time series at lag [. Under the null hypothesis of no autocorrelation
in the time series, H ~ X%_p as T" — oo (p is the number of lags of the dependent variable in
the model used to estimate the time series).'> The null hypothesis is rejected if H > Q1_,(x7_,,).
where (), _,.(-) represents the 1 —r quantile of the distribution and r is the significance level, which
I set at .05.

The convergence of the test statistic to a chi-square distribution under the null is an asymp-
totic property, so for finite 7', the expected rate of Type I errors will not necessarily be 5% even
with a significance level of .05. The rate of Type I errors was slightly higher than 5% in the Monte

Carlo simulations considered in the paper.

1“Shumway and Stoffer (2006)
SFor ARIMA models, the number of autoregressive parameters (p) and moving average parameters (q) should be
subtracted from the number of degrees of freedom.



Appendix D

When working with time series data, it is very important to consider whether the data are
stationary, that is whether the expected value and variance of the data are independent of time ¢.
If the data are non-stationary, it must be transformed to a stationary time series before proceeding
with any time series modeling. The most common method of transforming a non-stationary time
series into a stationary time series is to take a first difference (y; — y;_1 in the case of a unit root).
Let us consider the stationarity conditions for the ADL(2, 1) model: the ADL(2, 1) is second-order
autoregressive, or AR(2), so we will want to consider what conditions are required for an AR(2)
model to be stationary.

The stationarity conditions for an AR(1) model are very straightforward, but the stationarity
conditions for an AR(2) are slightly more complicated. In the case of an AR(1) model (y; =
ayi—1 + €, where ¢, is a white noise error term), the stationarity condition is |«| < 1. Consider a
disturbance e that occurs at time ¢. The total effect of the disturbance is € + ae + ae +ae+ ... =
Z;’io ale. If |a| > 1, the time series is explosive, that is it goes to oo or —oo, because any
disturbance ¢; is magnified as ¢ increases. That is because if || > 1, then lim; ., a‘e — oco. But
if |a| < 1, thenlim; ., a’e — 0 and ) 7% ) /¢ is a convergent geometric series equal to ¢/ (1 — ).
In the case where || < 1, the long run effect of any disturbance € goes to zero as ¢ increases.

An autoregressive time series will be stationary if all of its roots lie outside of the unit circle

(Wei, 2005). Finding the roots of an AR(1) process is straightforward:

Y = QY1+ €

(I—al)yy = €

L is the lag operator (defined as Ly; = y;—1). To lie outside the unit circle, the root must
be greater than 1 or less than —1. The root for the AR(1) is 1/cv. For this root to lie outside the

unit circle, the following conditions must hold: 1/« > 1 or 1/a < —1. Putting these expressions



in terms of «, the stationarity conditions are & < 1 and & > —1 or |a| < 1. Now let us consider

the roots of an AR(2) process:

Y = 0qYi—1 + QYo + €
(1—aL —aul®)y, = ¢
(1- SIL)(l —soL)y, = €

(1 —s1L — 8oL+ 5155L%)y;, = &

Variables s; and s; represent the inverse of the roots of the AR(2) process. If the roots of
this process lie outside the unit circle, their inverses must lie in the unit circle for the AR(2) to
be stationary, that is |s;| < 1 and |sy| < 1. Together, this implies that |s;s5| < 1 and because
(ay = —8189, then || < 1. This gives us our first stationarity condition for the AR(2) process.
Note that or; = $1 + s5 and because |s; + 2| < 2 under stationarity conditions, then || < 2. This
gives us our second stationarity condition.

Using the quadratic formula, the roots of the AR(2) process are:

—Q + Oé% + 40&2

2042

The roots must be greater than 1 or less than —1 to satisfy stationarity conditions. Let
us consider the roots where the square root term is positive (the solutions are identical when the

square root term is negative) and solve for the conditions needed for the roots to lie outside the unit



circle:

—ay + /a2 + das

20&2

\/ a2 + day

o2 4 4o

2
a5 + o — Qo

a1 + Qo

a1 + 200

a% + dayog + 4a§

The third condition for stationarity is that a; + as < 1. Now let us solve for the conditions

needed for the root to be less than —1:

—ay — /a2 + day

20&2

\/a? + 4day

a2 + 4oy

Oég — (X192 — Q9

Qg —

10

20(2 — Q9

a% — 4o + 404%



This gives us the fourth condition required for stationarity. Putting these conditions to-
gether, the following must be satisfied for an AR(2) process to be stationary (the last three condi-

tions are sufficient to derive the first condition):

|O(1’ < 2
|062’ < 1
a1 +ay < 1

ay—ap < 1

Wei (2005) also provides a derivation of the stationarity conditions for an AR(2) process.

11



Appendix E

Let us consider why we can accurately estimate the coefficient of X; with the ADL(1,1)
model even though it improperly excludes Y;_5. In order for an omitted variable to result in a biased
estimate of a particular coefficient, it must be the case that the omitted variable are correlated with

the variable of interest. Consider the following regression:

y=XB8+Zv+e

Variable X and variable Z are matricies of explanatory variables for y, while variable € is
an error term that is uncorrelated with X and Z . Suppose we regress y on X, leaving Z out of the

regression. Our estimate of 3 will be:

B = (X'X)'X'y=(XX)"'X'(XB+Zv+e€)

= B+ (X'X) ' X'Zy + (X'X) 'X'e

In expectation, X'e will be zero. If there is no correlation between the explanatory variables
and the omitted explanatory variables, then the expected value of the second term will be zero and
B will be an unbiased estimator of 3. But, if there is any correlation between the explanatory
variables and the omitted explanatory variables, i.e. £(X'Z) # 0, then the second term will not be

equal to zero and the estimate of 3 will suffer from omitted variable bias equal to:

EB) -8 = XX)'E(X'Z)

If we use the ADL(1,1) model to estimate parameters with data generated from Equation
(4), then X = [Y; 1| X; 1| Xi] and Z = [Y; 5] and X'Z = [V Y, | X ,Y; 2| XY, 5]. To deter-

mine the omitted variable bias for the coefficient of X;, we can multiply the third row of matrix

12



(X'X)~! by X'Z. For simplicity, we can use the third row from the matrix of cofactors for (X'X),

which we will be noted as (X'X)“F

(X'X)5"X'Z = [(X{1Yi)(XiXim1) = (X X)) (XYi) | Vi Vi
+ (VLX) (X7 Yao) — (Y Yo ) (X X)) X( L Yis

+ (VLY ) (X X)) — (Vo X)) (X Ye)] XYoo

From Equation 2, we know that X; = pX;_; + e;. Let us make this substitution into the

first line of the above formula for (X'X); ' X'Z.

(XY ) (X X1) = (X X)) (XGYi) | Y Vi
= [(X Y ) (X Xeap + €4 Xim1) — (X[ X)) (X Yieap + e, Yion) | YV Yieo
= [(X Y ) (X1 Xema)p — (X1 X)) (X Yioa)p

HX 1Y) (€1, Xem1) — (X Xema) (€, Y)Y Yio

= [(X Y )(€1Xe-1) — (X1 Xem1) (€4, Yi1)] Y Yio
The second line of (X'X)§*X'Z will be:

(Y1 X)) (X(Yi) = (V1 Yee ) (X X0) ] XY, Yieo
= [V X ) (XY + e Yior) — (VYo ) (X Xeoap + €, X)) | Xi Vs
= [(Ytl—lXt—l)(th—lyt—l)P - (}/;:/—11@—1)(X£—1Xt—1):0} Xi 1Yo

+ (Y X)) (e, Yior) — (VYo (€, Xo1)] Xi_1Yios

13



The third line of (X'X)§*X'Z will be:

(YY) (X X)) = (Vo X )(X Vi) ] XYoo
= [(V1Ye )X Xe) = (Vo X )(X Yin) | (X Yieop + €1, Yi0)
= [(Yt,—1Yt—1)(X£—1Xt—1)P - (YZ—1Xt—1)(X£—1Yt—1)P] Xi 1Y

= + [(Y;f/—ly;f—l)(Xé—lXt—l) - (Yt/—1Xt—1)(X£—1Yt—1)} €14Yi2
Adding the second and third lines together, we get:

(V1 X)) Yimr) — (Y, Y1) (e, Xo1)] X Yo

+ (VLY ) (X X)) — (Y X)) (X Vi) € Yis

Notice that all of the terms in the first line and the sum of the second and third lines contain
e Yio1, €Yo, or €], X; 1. In expectation, e},Y;_1, €],Y;_2, and €}, X;_; are all equal to zero. But
because the determinant of X’X contains X; (which itself contains ey;), the expected value will not
be equal to zero. In practice, this bias is very tiny for fairly large values of 7', as can be seen in the
Monte Carlo simulations. As 7" gets larger, €},Y;_1, €],Y;—2, and €7, X;_1 will go to zero. Thus the
numerator of (X' X);lX’ Z will go to zero asymptotically, meaning that the omitted variable bias

in X, from leaving out Y;_» will go to zero asymptotically. We can show that +¢},Y;_1, 1.€},Y; o,

14



and %e’ltXt_l will go to zero asymptotically as follows (using %e’lth_l as an example).

T T T
1 1 1 1
E (fe’uYH) = TE ( E 61th—1> = T ;:1 E(eltYZ—l) = T E E((ilt)E(Yt—ﬂ

t=1 t=1

= Eew)E(Y;-1) =0

T
> ViewYior) + > Covl(enYio, e, Y1)

t=1 t#u

1 1 r 1
4 (Teluyt—l) = ﬁV (Z €1th_1> =

=1
1 1, 9
= gVl(enYia) = 7o E(Y,Z,)
o1
Jim ot E(YE) = 0

We can divide both the numerator and denominator of (X'X)5'X'Z by 1/T. Every term
in the numerator contains ~¢;,Y;_1, 7¢€},Y;_o, or 1.¢},X; 1 (by distributing 1/7" through the nu-
merator), all of which go to zero as 7' — oo. Therefore, the numerator itself goes to zero as

T — oo.
lim (X'X);'X'Z = lim _
T—00 3, T—00 det(X’X)
(1/T)(X'X)§FX'Z

e (1/T) det(X'X)

(X'X)$FX'Z

=0

That means the ADL(1,1) model estimate of the coefficient of X; will be almost same as
the expected value of the coefficient for the ADL(2,1) model and will converge to the ADL(2,1)
estimate as 7' — oo. Let us calculate the bias in the coefficient of X if we used the LGDV?2 model.
In this case, the matrix of regressors is X = [Y;_1|Y;_2|X;] and the matrix of omitted variables is

Z = [X;_1]. For notational simplicity, let us use the following: a = X/ X;, b = X| | Xy, c = XY},

15



d=Y/ Y, and f = Y/Y,. Matrix X'Z will be: X'Z = [c|pc + €;,Y;_»|b]T. Matrix X'X will be:

f d pe+eyYi
d f pie+ el 1Yz + €3 Yo
pc+eyYir plet pet 1Yz + €3 Yo a

As we saw earlier, the terms containing e;; will converge to zero as 7' grows to infinity.
Therefore this calculation of the bias will set aside those terms containing eq;, so we will approxi-

mate X'Z as X'Z =~ [c|pc|b]’ and approximate X'X as:

f d pc
d f ple

pc pPc a

The first, second and third terms of (X'X)§*X'Z will be:

(VY1) (X[Yis) — (Y 0Yia)(X(Yi)] (Y1 Xe1) = (pPed — pef)e = p*cPd — pc f
(VY 2)(X[Yi1) — (VYo ) (XYi0)] (Y 0 Xe1) =~ (ped — pPef)pe = p*d — p*c f

(YY) (Y oY s) = (Y Yio) (VoY )] (X{X) = (f? = d)pa = paf? — pad®

16



The terms in the determinant of X’X will be:

(V1Y) (Y Vi) (X Xy) = af?

(VoY) (X(Yio0) (Y, X5) ’

Q
S

Q[\')

=y

(XY (Y, Yio) (Y5 X0) pictd

Q

— (Y Y )XY ) (Y] 0 Xs) ~ —plcf
— (XY (Y oY) (Y Xy) = —p*df
—(5@'_25@—1)(3?'_13@2)()({)(0 = —ad2

Putting this all together, the ommitted variable bias (X'X)3 ' X'Z~ (as T approaches infinity
and noting that v = [—(3¢]) will be:

2p°d — pf — p*cPf + paf? — pad®

—B¢ af? +2p32d — prcf — P22 f — ad?

This solution is only an approximate (though a very close one) for finite 7. Now let us
calculate the omitted variable bias for the coefficient of X, if we use the REG regression. In
this case, the matrix of regressors is X = [X;| and the matrix of omitted variables is Z =
Vi 1|Yio| X;—1]. Matrix (X’X)"1is 1/(X/X;) = 1/a and matrix X'Z is [pc + €}, Y;_1|p*c +
pel s 1Yo + €,Yio|pa + €, X;1]. The omitted variable bias for the coefficient of X; (as T

approaches infinity) is:

(X’X)_1X/Z’)/ _ pc<aa+ ¢) + pQC(;a¢) + p(_6¢)

Finally, let us calculate the omitted variable bias for the coefficient of X; if we use the

LGDYV regression. In this case, the matrix of regressors is X = [X;|Y;_1] and the matrix of omitted

17



variables is Z = [X; 1|Y;_»]|. Matrix X'X will be:

a pc+ pel,Yiq

pe+ peyyYiy f

As T — o0, we can approximate X'X as:

a pc

pc f

The determinant of X'X is af — p?c?. Matrix X'Z will be:

pa+euXe1 pict pels-1Yi2 + €11
c d

As T — o0, we can approximate X'Z as:

pa pic
c d

The omitted variable bias for the estimate of the coefficient of X; in the LGDV model will

be (X'X); ' X'Zry, where v = [~ 36| — o], which is:

6. fpa — pc? fp*c — pcd

—_—
af — p*c? af — p*c?

18



Appendix F

One of the characteristics of a dynamic model is that a shift in the independent variable at
time ¢ does not just have an effect on the dependent variable at time ¢, rather a shift at time ¢ has
an effect in subsequent periods (this effect must decay to zero as T goes to infinity for the time
series to be stationary). Up to now, we have focused on how X, affects Y; at time ¢ but we have
not discussed the total effect of X, on Y;. For this discussion, let us use an ADL(2, 1) model, that
1Sy = a1 + oo + 1 Xy + B2 X1 where X; = pX;_ 1 + ;. Now let us suppose that
there is some shock ¢ in variable X at time ¢. The effect of this shock, ¢, on variable Y will be the

following in each period:

[time 1] = fje

[time 2] = fype + fae + ay [time 1]

[time 3] = Bi1p°c + Bope + oy [time 2] + ay [time 1]
[time 4] = B1p°c + Bap’e + o) [time 3] + oy [time 2]
[time 5] = Bi1p'c + Bap’e + o) [time 4] + oy [time 3]

We can write the following formula for the effect of the shock € on Y at time ¢, where

wy = [time t]:

wy = Pip' e+ Bop' e + aqwi—r + anwy s

The total effect of the shock e on Y is > ;° | w;, which can be expressed as (note that [p| < 1

19



for X, to be stationary, which also means that two of the terms will be convergent geometric series):

Swe o= Y B Tle D Bop e+ omwi + Y cowis
=1 t=1 t=2 t=2 t=3

Zwt(l —ap—ay) = ﬁlfzptfl +52€Zpt72
=1 =1 =2

- 5 5
Zwt(l_al_a2) _ b n Ba

t=1

1—p 1-—p
G - B+ B2 _
;“’f T U-pl-—a—a)

Because the model in Equation (4) is a special case of the ADL(2,1) model, we can substi-

tute 51 = 3, By = — 08¢, oy = a + ¢, and as = —a¢ into the solution for Zzo Wy

. B(1—¢) o B(1—¢) _
;“’t T (-pl-a-d+ap) = (A-pl-a)i-¢) -
_— /8 .8
(1—p)(1—a)

If we are curious about the long-run effect of X; on Y for an ADL(1,1) model where
Xy = pXy—1 + &4, we can repeat this derivation above, but setting ao = 0. It is easy to see that in

that case, the long-run effect formula would be:

B+ B2 .
(1=p)(1—a)

If we want to consider the case where X, is not a dynamic process, we can set p = 0 and
repeat the steps of the derivation. For the ADL(2,1), this would yield (5 + 32) /(1 — a; — a). For
the ADL(1,1) we would get the formula (/51 + 2)/(1 — a1), which De Boef and Keele (2008) use
to calculate the long-run effects of X; on Y for this model. Thus, unless it is actually the case that
X is not a dynamic time series, this formula would provide an inaccurate estimate of the long-run

effect.
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Appendix G

In Appendix E, I derived the asymptotic biases in the estimate of 5 under the LGDV,
LGDV2, and REG models and demonstrated that the ADL(1,1) model provides an asymptoti-
cally unbiased estimate of 3, even though it excludes Y; 5. However, given how we defined the
biases in Appendix E, we would still have to use Monte Carlo simulations to calculate the bias
because the formulas were defined in terms of X;, X;_ 1, Y;, and Y;_;. In this section, I calculate
the values of a, b, ¢, d, and f as expected values in terms of the parameters of an ADL(2,1) model
where X; is a dynamic time series, o, o, 1, B2, p, a% (the variance of ej;), and ag (the variance
of eq;). When comparing the calculated values of a, b, ¢, d, and f in this section, note that the
values of these variables in Appendix E would correspond to the values here multiplied through

o?

by T. As an example, in this section, a = E(X?), which is equal to = But in Appendix E, I

defined a as X]X;, so if we were calculating this value using the formula for « in this section, it

of
1—p2-

would actually be 7" x However, the 7' terms cancel out when we are calculating the biases,
so we can plug in the values of a, b, ¢, d, and f in this section to the bias formulas in Appendix
E. One other difference is that we use expected values in the formulas for a, b, ¢, d, and f in this

section, but not in Appendix E. But since we are considering the asymptotic bias, the formulas for

a, b, ¢, d, and f in Appendix E will converge to their expected values.
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1—p?

E(Xi1Xy) = E[PXE—l + Xi-1e14]

pa

E(X,Y;) = Elon XyYi1 + e XyYi g + i1 X} + foXi 1 Xy + Xiez]

a1 E[pXi 1Y + penYi1] + asE[p* X oY, o + per—1Yi—2 + e Yi o] + Bra+ Bab

aipc + asp’c + Bra + Pab
Bra + B2

1 —aip — agp?
E(Y;.1Y:) = E[Oélyil + @Y 1Yo+ (1Y 1 Xy + BoYi1 Xio1 + Yioieq]

a E[Y2 ] — aaEY; 1Y o] + Bi[pXi-1Yio1 + e1Yio1] + Lo E[Yio1 X 1]

a1 f — agd + Bipc + Pac

ay f + Pipe + Bac _ ayf + Bac
1— (6] 1— 9

ElY; 1Y = E[Oély;g2_1 + Y, oY1 + B3 X 1Yoy + frenYio1 + Yio1ex]

where O3 = Bi1p + [

i E[Y2 ]+ wBEY, Y] + B3E[X; 1Y, 1]

oy f 4 asd + Bsc

EY,5Y;] = E[a1Y, 1Ym0 + aoYy + B3 X 1Ym0 + BrenYia + Yiooea]
a1 BlY, 1Y o] + 062E[Y;2_2] + BsE[pXi—2Yio + €14-1Y;—o]

ard + aa f + Bspc
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w = EX,1Y]=FEaYi X+ Y oXi 1+ B3 X1 X1 + frenXim1 + eq Xi4]

w = B, X+ wEpYioXi o+ Yiser 1] + B3 E[Xi—1 Xi4]

w = agc+ agpc+ Psa

[ = E[Yf] = FlonY; 1Y + Y, oY, + B3 X1 Ys + SrenY; + Yiey]

[ = aBEY, Y]+ aEY, oY + BE[X; Y] + BiElenY:] + E[Yieq]

[ = a1g+ ash+ Bsw + Bio} + o3

[ = aif+ aiaad+ a1 fsc + arasd + as f + asBape + Bsaic + Bzanpe + Bia + Biot + o3
f = a&f+aiaed+ayfBsc+ ajoad +asf + 2

where z = asfspc + Bzaic + Bzawpe + Bia + Biot + o5

fl—a) = aff(l —ay) + aras(arf + Bsc) + a1 Bse(l — as)
+arag(arf + Bsc) + azf(l — as) + 2(1 — ay)
f—aof = olf —addf +aianf + aragfse + arfsc — arazfsc

+ajasf + aranfBsc+asf —asf + 2(1 — as)

f—oof —adf +adf —aif —afaof = ai1fsc+ arawfsc+ 2(1 — as)
f . 04163C(1 + Oég) + Z(l - Oég)
1—ay—a3+aj—a? —adlay
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Appendix H: An Aside on Panel Data Modeling

The data-generating process and modeling approaches considered in this paper involve a
single time series (N = 1) where we have a fairly large number of observations (7' = 100).
Researchers using panel data who are interested in how this paper’s findings apply to their work
should be aware that there are additional complications beyond those involved with single time
series models. A particularly vexing problem arises when we are dealing with panel data with
small 7" and a model that includes a lagged dependent variable with fixed effects.

It is common to use fixed effects when modeling panel data, so as to control for fundamental
differences between cases (such as countries) that are not captured by the independent variables.
If there are fixed effects that are correlated with the independent variables, failure to include fixed
effects in the regression model will lead to omitted variable bias, so fixed effects are widely used
in modeling for panel data. The use of fixed effects leads to something known as the “incidental
parameters” problem (Neyman and Scott, 1948). By estimating “incidental parameters” such as
fixed effects, even as N — oo, we cannot take advantage of asymptotic unbiasedness because
more incidental parameters must be estimated as NV increases (with fixed 7).

That means that in a model with lagged dependent variables and fixed effects, the bias
identified by Hurwicz (1950) will not go to zero with fixed 7', even as N — oo (Nickell, 1981).
Thus, if we had a dataset covering 5 years and 40 countries, we would not reduce the Hurwicz
bias compared to a dataset with 5 years and 20 countries. Wawro (2002) observes that the political
science literature has often been inattentive to this problem, though there is extensive literature in
econometrics and statistics about how to construct estimators that are consistent when 7' is fixed
and small, and N — oo. Wawro (2002) provides an overview of the major methods used to
obtain consistent coefficient estimates in this context, including the Anderson and Hsiao (1982)
method and also a generalized method of moments (GMM) estimator developed by Arellano and
Bond (1991) that improves on the Anderson and Hsiao (1982) estimator by using a larger set of

instrumental variables. A set of recommendations on how to approach dealing with the incidental
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parameters problem is beyond the scope of this paper, but researchers using panel data should be
aware of this issue and consult the relevant literature for how to choose appropriate models for
their data. The potential for complications does not mean that political scientists should shy away
from using lagged dependent variables; in fact, such an approach would make potential problems

worse, not better, as the Monte Carlo analysis showed.
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