
Appendix A

We can put Equation (1) in terms of ut, giving us ut = Yt � ↵Yt�1 � �Xt. At time t � 1,

this expression will be: ut�1 = Yt�1 � ↵Yt�2 � �Xt�1. Substituting this into Equation (3) gives

us:

ut = �Yt�1 � ↵�Yt�2 � ��Xt�1 + e2t

This expression for ut can be substituted back into Equation (1), giving us:

Yt = (↵ + �)Yt�1 + (�↵�)Yt�2 + �Xt + (���)Xt�1 + e2t

Equation (4) is a restricted version of the ADL (2,1) model. Both models have the same

number of lags of Yt and Xt, but the Equation (4) model introduces restrictions on the values of the

coefficients, while the ADL (2,1) model has no restrictions on coefficient values. Hendry (1995)

and De Boef and Keele (2008) recommend starting with a general model and “testing down,” so

if we were actually fitting this model to a real dataset (with an unknown data generating process),

we would want to start with the ADL (2,1) model, rather than the restricted ADL (2,1) model that

is Equation (4). Validating this modeling approach with a more general model is preferable to

validating it with a more restricted model. Therefore, the Monte Carlo results estimated for EQ4

in the paper will be estimated using the general ADL (2,1) model. Table 8 shows the results of

the Monte Carlo simulations of the percent bias and root mean square error using the restricted

parameter estimates of the EQ4 model. The percent bias of the restricted EQ4 model is around �2

percent or +2 percent, which is slightly higher than for the general ADL(2,1) model, which tended

to have biases around 1 percent or less (see Figures 1(a) and 1(c)). The RMSE in Table 8 is about

the same as the RMSE shown in Figures 1(b) and 1(d), where the EQ4 estimate is from the general

ADL(2,1) model.
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Table 8: Percent Bias and RMSE in Restricted EQ4 Model (under varying levels of ↵ and �)

↵

0.0 0.1 0.2 0.3 0.4 0.5

Percent Bias in Estimates of � -0.87 -2.25 -1.09 -2.09 -3.66 -2.02
RMSE in Estimates of � 0.10 0.10 0.10 0.10 0.10 0.10

�

0.0 0.1 0.2 0.5

Percent Bias in Estimates of � 2.27 1.76 3.21 2.47 1.67 2.52
RMSE in Estimates of � 0.07 0.07 0.08 0.09 0.09 0.09

� = 0.5, ⇢ = 0.95
� = 0.75 under varying levels of ↵
↵ = 0.75 under varying levels of �
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Table 9: Percent of Simulations Detecting Autocorrelation with EQ4 Model

↵

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75

� = 0.0 5.70 5.50 6.10 6.40 7.20 6.60 6.70 6.50 7.60
� = 0.1 5.60 6.10 7.20 7.10 5.10 6.50 8.30 7.30 6.60
� = 0.2 4.60 5.80 4.70 6.00 4.90 6.80 5.40 7.10 6.20
� = 0.3 5.40 5.80 5.60 6.20 6.30 5.80 6.80 7.00 8.00
� = 0.4 5.10 7.30 5.00 4.90 7.00 5.70 5.70 7.60 8.30
� = 0.5 5.10 6.10 6.20 5.60 7.50 6.00 6.70 6.00 7.60
� = 0.6 5.00 5.70 5.80 7.00 4.90 5.50 4.70 5.90 6.80
� = 0.7 8.10 5.60 4.50 6.60 6.20 8.20 6.40 6.40 7.50
� = 0.75 5.70 4.90 6.20 5.80 6.20 6.50 7.00 7.10 7.90

� = 0.5, ⇢ = 0.95

3



Figure 5: Percent of Simulations Detecting Autocorrelation with ADL(1,1) Model, � = 0.5, ⇢ =
0.95
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Appendix C

The Ljung-Box test is a group test of whether there is autocorrelation present in a time series

between a lag of 1 and some lag L. The Ljung-Box test statistic is:14

H = T (T + 2)
LX

l=1

⇢̂2
l

T � l

L represents the total number of lags for the test, specified by the user. For the Ljung-Box

tests in the paper, I set L = 12. T represents the length of the time series, and ⇢̂l represents the

sample autocorrelation for the time series at lag l. Under the null hypothesis of no autocorrelation

in the time series, H ⇠ �2
L�p as T ! 1 (p is the number of lags of the dependent variable in

the model used to estimate the time series).15 The null hypothesis is rejected if H > Q1�r(�2
L�p),

where Q1�r(·) represents the 1�r quantile of the distribution and r is the significance level, which

I set at .05.

The convergence of the test statistic to a chi-square distribution under the null is an asymp-

totic property, so for finite T , the expected rate of Type I errors will not necessarily be 5% even

with a significance level of .05. The rate of Type I errors was slightly higher than 5% in the Monte

Carlo simulations considered in the paper.

14Shumway and Stoffer (2006)
15For ARIMA models, the number of autoregressive parameters (p) and moving average parameters (q) should be

subtracted from the number of degrees of freedom.
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Appendix D

When working with time series data, it is very important to consider whether the data are

stationary, that is whether the expected value and variance of the data are independent of time t.

If the data are non-stationary, it must be transformed to a stationary time series before proceeding

with any time series modeling. The most common method of transforming a non-stationary time

series into a stationary time series is to take a first difference (yt � yt�1 in the case of a unit root).

Let us consider the stationarity conditions for the ADL(2, 1) model: the ADL(2, 1) is second-order

autoregressive, or AR(2), so we will want to consider what conditions are required for an AR(2)

model to be stationary.

The stationarity conditions for an AR(1) model are very straightforward, but the stationarity

conditions for an AR(2) are slightly more complicated. In the case of an AR(1) model (yt =

↵yt�1 + ✏t, where ✏t is a white noise error term), the stationarity condition is |↵| < 1. Consider a

disturbance ✏ that occurs at time t. The total effect of the disturbance is ✏+↵✏+↵2✏+↵3✏+ . . . =
P1

j=0 ↵j✏. If |↵| > 1, the time series is explosive, that is it goes to 1 or �1, because any

disturbance ✏t is magnified as t increases. That is because if |↵| > 1, then limt!1 ↵t✏ ! 1. But

if |↵| < 1, then limt!1 ↵t✏ ! 0 and
P1

j=0 ↵j✏ is a convergent geometric series equal to ✏/(1�↵).

In the case where |↵| < 1, the long run effect of any disturbance ✏ goes to zero as t increases.

An autoregressive time series will be stationary if all of its roots lie outside of the unit circle

(Wei, 2005). Finding the roots of an AR(1) process is straightforward:

yt = ↵yt�1 + ✏t

(1 � ↵L)yt = ✏t

L is the lag operator (defined as Lyt = yt�1). To lie outside the unit circle, the root must

be greater than 1 or less than �1. The root for the AR(1) is 1/↵. For this root to lie outside the

unit circle, the following conditions must hold: 1/↵ > 1 or 1/↵ < �1. Putting these expressions

8



in terms of ↵, the stationarity conditions are ↵ < 1 and ↵ > �1 or |↵| < 1. Now let us consider

the roots of an AR(2) process:

yt = ↵1yt�1 + ↵2yt�2 + ✏t

(1� ↵1L� ↵2L
2)yt = ✏t

(1� s1L)(1� s2L)yt = ✏t

(1� s1L� s2L+ s1s2L
2)yt = ✏t

Variables s1 and s2 represent the inverse of the roots of the AR(2) process. If the roots of

this process lie outside the unit circle, their inverses must lie in the unit circle for the AR(2) to

be stationary, that is |s1| < 1 and |s2| < 1. Together, this implies that |s1s2| < 1 and because

↵2 = �s1s2, then |↵2| < 1. This gives us our first stationarity condition for the AR(2) process.

Note that ↵1 = s1+s2 and because |s1+s2| < 2 under stationarity conditions, then |↵1| < 2. This

gives us our second stationarity condition.

Using the quadratic formula, the roots of the AR(2) process are:

�↵1 ±
p

↵2
1 + 4↵2

2↵2

The roots must be greater than 1 or less than �1 to satisfy stationarity conditions. Let

us consider the roots where the square root term is positive (the solutions are identical when the

square root term is negative) and solve for the conditions needed for the roots to lie outside the unit

9



circle:

�↵1 +
p

↵2
1 + 4↵2

2↵2
> 1

q
↵2
1 + 4↵2 > ↵1 + 2↵2

↵2
1 + 4↵2 > ↵2

1 + 4↵1↵2 + 4↵2
2

↵2
2 + ↵1↵2 � ↵2 < 0

↵1 + ↵2 < 1

The third condition for stationarity is that ↵1 + ↵2 < 1. Now let us solve for the conditions

needed for the root to be less than �1:

�↵1 �
p

↵2
1 + 4↵2

2↵2
< �1

q
↵2
1 + 4↵2 > 2↵2 � ↵1

↵2
1 + 4↵2 > ↵2

1 � 4↵1↵2 + 4↵2
2

↵2
2 � ↵1↵2 � ↵2 < 0

↵2 � ↵1 < 1

10



This gives us the fourth condition required for stationarity. Putting these conditions to-

gether, the following must be satisfied for an AR(2) process to be stationary (the last three condi-

tions are sufficient to derive the first condition):

|↵1| < 2

|↵2| < 1

↵1 + ↵2 < 1

↵2 � ↵1 < 1

Wei (2005) also provides a derivation of the stationarity conditions for an AR(2) process.
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Appendix E

Let us consider why we can accurately estimate the coefficient of Xt with the ADL(1,1)

model even though it improperly excludes Yt�2. In order for an omitted variable to result in a biased

estimate of a particular coefficient, it must be the case that the omitted variable are correlated with

the variable of interest. Consider the following regression:

y = X� + Z� + ✏

Variable X and variable Z are matricies of explanatory variables for y, while variable ✏ is

an error term that is uncorrelated with X and Z . Suppose we regress y on X, leaving Z out of the

regression. Our estimate of � will be:

�̂ = (X0X)�1X0y = (X0X)�1X0(X� + Z� + ✏)

= � + (X0X)�1X0Z� + (X0X)�1X0✏

In expectation, X0✏ will be zero. If there is no correlation between the explanatory variables

and the omitted explanatory variables, then the expected value of the second term will be zero and

�̂ will be an unbiased estimator of �. But, if there is any correlation between the explanatory

variables and the omitted explanatory variables, i.e. E(X0Z) 6= 0, then the second term will not be

equal to zero and the estimate of � will suffer from omitted variable bias equal to:

E(�̂) � � = (X0X)�1E(X0Z)�

If we use the ADL(1,1) model to estimate parameters with data generated from Equation

(4), then X = [Yt�1|Xt�1|Xt] and Z = [Yt�2] and X0Z = [Y 0
t�1Yt�2|X 0

t�1Yt�2|X 0
tYt�2]. To deter-

mine the omitted variable bias for the coefficient of Xt, we can multiply the third row of matrix
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(X0X)�1 by X0Z. For simplicity, we can use the third row from the matrix of cofactors for (X0X),

which we will be noted as (X0X)CF

(X0X)CF
3, X0Z =

⇥
(X 0

t�1Yt�1)(X
0
tXt�1) � (X 0

t�1Xt�1)(X
0
tYt�1)

⇤
Y 0
t�1Yt�2

+
⇥
(Y 0

t�1Xt�1)(X
0
tYt�1) � (Y 0

t�1Yt�1)(X
0
tXt�1)

⇤
X 0

t�1Yt�2

+
⇥
(Y 0

t�1Yt�1)(X
0
t�1Xt�1) � (Y 0

t�1Xt�1)(X
0
t�1Yt�1)

⇤
X 0

tYt�2

From Equation 2, we know that Xt = ⇢Xt�1 + e1t. Let us make this substitution into the

first line of the above formula for (X0X)�1
3, X

0Z.

⇥
(X 0

t�1Yt�1)(X
0
tXt�1) � (X 0

t�1Xt�1)(X
0
tYt�1)

⇤
Y 0
t�1Yt�2

=
⇥
(X 0

t�1Yt�1)(X
0
t�1Xt�1⇢ + e01tXt�1) � (X 0

t�1Xt�1)(X
0
t�1Yt�1⇢ + e01tYt�1)

⇤
Y 0
t�1Yt�2

= [(X 0
t�1Yt�1)(X

0
t�1Xt�1)⇢ � (X 0

t�1Xt�1)(X
0
t�1Yt�1)⇢

+(X 0
t�1Yt�1)(e

0
1tXt�1) � (X 0

t�1Xt�1)(e
0
1tYt�1)]Y

0
t�1Yt�2

=
⇥
(X 0

t�1Yt�1)(e
0
1tXt�1) � (X 0

t�1Xt�1)(e
0
1tYt�1)

⇤
Y 0
t�1Yt�2

The second line of (X0X)CF
3, X0Z will be:

⇥
(Y 0

t�1Xt�1)(X
0
tYt�1) � (Y 0

t�1Yt�1)(X
0
tXt�1)

⇤
X 0

t�1Yt�2

=
⇥
(Y 0

t�1Xt�1)(X
0
t�1Yt�1⇢ + e01tYt�1) � (Y 0

t�1Yt�1)(X
0
t�1Xt�1⇢ + e01tXt�1)

⇤
X 0

t�1Yt�2

=
⇥
(Y 0

t�1Xt�1)(X
0
t�1Yt�1)⇢ � (Y 0

t�1Yt�1)(X
0
t�1Xt�1)⇢

⇤
X 0

t�1Yt�2

+
�
Y 0
t�1Xt�1)(e

0
1tYt�1) � (Y 0

t�1Yt�1)(e
0
1tXt�1)

⇤
X 0

t�1Yt�2
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The third line of (X0X)CF
3, X0Z will be:

⇥
(Y 0

t�1Yt�1)(X
0
t�1Xt�1) � (Y 0

t�1Xt�1)(X
0
t�1Yt�1)

⇤
X 0

tYt�2

=
⇥
(Y 0

t�1Yt�1)(X
0
t�1Xt�1) � (Y 0

t�1Xt�1)(X
0
t�1Yt�1)

⇤
(X 0

t�1Yt�2⇢ + e01tYt�2)

=
⇥
(Y 0

t�1Yt�1)(X
0
t�1Xt�1)⇢ � (Y 0

t�1Xt�1)(X
0
t�1Yt�1)⇢

⇤
X 0

t�1Yt�2

= +
⇥
(Y 0

t�1Yt�1)(X
0
t�1Xt�1) � (Y 0

t�1Xt�1)(X
0
t�1Yt�1)

⇤
e01tYt�2

Adding the second and third lines together, we get:

�
Y 0
t�1Xt�1)(e

0
1tYt�1) � (Y 0

t�1Yt�1)(e
0
1tXt�1)

⇤
X 0

t�1Yt�2

+
⇥
(Y 0

t�1Yt�1)(X
0
t�1Xt�1) � (Y 0

t�1Xt�1)(X
0
t�1Yt�1)

⇤
e01tYt�2

Notice that all of the terms in the first line and the sum of the second and third lines contain

e01tYt�1, e01tYt�2, or e01tXt�1. In expectation, e01tYt�1, e01tYt�2, and e01tXt�1 are all equal to zero. But

because the determinant of X0X contains Xt (which itself contains e1t), the expected value will not

be equal to zero. In practice, this bias is very tiny for fairly large values of T , as can be seen in the

Monte Carlo simulations. As T gets larger, e01tYt�1, e01tYt�2, and e01tXt�1 will go to zero. Thus the

numerator of (X0X)�1
3, X

0Z will go to zero asymptotically, meaning that the omitted variable bias

in Xt from leaving out Yt�2 will go to zero asymptotically. We can show that 1
T e01tYt�1, 1

T e01tYt�2,

14



and 1
T e01tXt�1 will go to zero asymptotically as follows (using 1

T e01tYt�1 as an example).

E

✓
1

T
e01tYt�1

◆
=

1

T
E

 
TX

t=1

e1tYt�1

!
=

1

T

TX

t=1

E(e1tYt�1) =
1

T

TX

t=1

E(e1t)E(Yt�1)

= E(e1t)E(Yt�1) = 0

V

✓
1

T
e01tYt�1

◆
=

1

T 2
V

 
TX

t=1

e1tYt�1

!
=

1

T 2

"
TX

t=1

V (e1tYt�1) +
X

t 6=u

Cov(e1tYt�1, e1uYu�1)

#

=
1

T
V (e1tYt�1) =

1

T
�2
1E(Y 2

t�1)

lim
T!1

1

T
�2
1E(Y 2

t�1) = 0

We can divide both the numerator and denominator of (X0X)�1
3, X

0Z by 1/T . Every term

in the numerator contains 1
T e01tYt�1, 1

T e01tYt�2, or 1
T e01tXt�1 (by distributing 1/T through the nu-

merator), all of which go to zero as T ! 1. Therefore, the numerator itself goes to zero as

T ! 1.

lim
T!1

(X0X)�1
3, X

0Z = lim
T!1

1

det(X0X)
(X0X)CF

3, X0Z

= lim
T!1

(1/T )(X0X)CF
3, X0Z

(1/T ) det(X0X)
= 0

That means the ADL(1,1) model estimate of the coefficient of Xt will be almost same as

the expected value of the coefficient for the ADL(2,1) model and will converge to the ADL(2,1)

estimate as T ! 1. Let us calculate the bias in the coefficient of Xt if we used the LGDV2 model.

In this case, the matrix of regressors is X = [Yt�1|Yt�2|Xt] and the matrix of omitted variables is

Z = [Xt�1]. For notational simplicity, let us use the following: a = X 0
tXt, b = X 0

t�1Xt, c = X 0
tYt,

15



d = Y 0
t�1Yt, and f = Y 0

t Yt. Matrix X0Z will be: X0Z = [c|⇢c + e01tYt�2|b]T . Matrix X0X will be:

2

66664

f d ⇢c + e01tYt�1

d f ⇢2c + ⇢e01,t�1Yt�2 + e01tYt�2

⇢c + e01tYt�1 ⇢2c + ⇢e01,t�1Yt�2 + e01tYt�2 a

3

77775

As we saw earlier, the terms containing e1t will converge to zero as T grows to infinity.

Therefore this calculation of the bias will set aside those terms containing e1t, so we will approxi-

mate X0Z as X0Z ⇡ [c|⇢c|b]T and approximate X0X as:

2

66664

f d ⇢c

d f ⇢2c

⇢c ⇢2c a

3

77775

The first, second and third terms of (X0X)CF
3, X0Z will be:

⇥
(Y 0

t�2Yt�1)(X
0
tYt�2) � (Y 0

t�2Yt�2)(X
0
tYt�1)

⇤
(Y 0

t�1Xt�1) ⇡ (⇢2cd � ⇢cf)c = ⇢2c2d � ⇢c2f

⇥
(Y 0

t�1Yt�2)(X
0
tYt�1) � (Y 0

t�1Yt�1)(X
0
tYt�2)

⇤
(Y 0

t�2Xt�1) ⇡ (⇢cd � ⇢2cf)⇢c = ⇢2c2d � ⇢3c2f

⇥
(Y 0

t�1Yt�1)(Y
0
t�2Yt�2) � (Y 0

t�1Yt�2)(Y
0
t�2Yt�1)

⇤
(X 0

tXt�1) ⇡ (f 2 � d2)⇢a = ⇢af 2 � ⇢ad2
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The terms in the determinant of X0X will be:

(Y 0
t�1Yt�1)(Y

0
t�2Yt�2)(X

0
tXt) = af 2

(Y 0
t�2Yt�1)(X

0
tYt�2)(Y

0
t�1Xt) ⇡ ⇢3c2d

(X 0
tYt�1)(Y

0
t�1Yt�2)(Y

0
t�2Xt) ⇡ ⇢3c2d

�(Y 0
t�1Yt�1)(X

0
tYt�2)(Y

0
t�2Xt) ⇡ �⇢4c2f

�(X 0
tYt�1)(Y

0
t�2Yt�2)(Y

0
t�1Xt) ⇡ �⇢2c2f

�(Y 0
t�2Yt�1)(Y

0
t�1Yt�2)(X

0
tXt) = �ad2

Putting this all together, the ommitted variable bias (X0X)�1
3, X

0Z� (as T approaches infinity

and noting that � = [���]) will be:

��� · 2⇢2c2d � ⇢c2f � ⇢3c2f + ⇢af 2 � ⇢ad2

af 2 + 2⇢3c2d � ⇢4c2f � ⇢2c2f � ad2

This solution is only an approximate (though a very close one) for finite T . Now let us

calculate the omitted variable bias for the coefficient of Xt if we use the REG regression. In

this case, the matrix of regressors is X = [Xt] and the matrix of omitted variables is Z =

[Yt�1|Yt�2|Xt�1]. Matrix (X0X)�1 is 1/(X 0
tXt) = 1/a and matrix X0Z is [⇢c + e01tYt�1|⇢2c +

⇢e01,t�1Yt�2 + e01tYt�2|⇢a + e01tXt�1]. The omitted variable bias for the coefficient of Xt (as T

approaches infinity) is:

(X0X)�1X0Z� =
⇢c(↵ + �)

a
+

⇢2c(�↵�)

a
+ ⇢(���)

Finally, let us calculate the omitted variable bias for the coefficient of Xt if we use the

LGDV regression. In this case, the matrix of regressors is X = [Xt|Yt�1] and the matrix of omitted
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variables is Z = [Xt�1|Yt�2]. Matrix X0X will be:

2

64
a ⇢c + ⇢e01tYt�1

⇢c + ⇢e01tYt�1 f

3

75

As T ! 1, we can approximate X0X as:

2

64
a ⇢c

⇢c f

3

75

The determinant of X0X is af � ⇢2c2. Matrix X0Z will be:

2

64
⇢a + e01tXt�1 ⇢2c + ⇢e01,t�1Yt�2 + e01tYt�2

c d

3

75

As T ! 1, we can approximate X0Z as:

2

64
⇢a ⇢2c

c d

3

75

The omitted variable bias for the estimate of the coefficient of Xt in the LGDV model will

be (X0X)�1
1, X

0Z�, where � = [���|� ↵�], which is:

��� · f⇢a � ⇢c2

af � ⇢2c2
� ↵�

f⇢2c � ⇢cd

af � ⇢2c2
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Appendix F

One of the characteristics of a dynamic model is that a shift in the independent variable at

time t does not just have an effect on the dependent variable at time t, rather a shift at time t has

an effect in subsequent periods (this effect must decay to zero as T goes to infinity for the time

series to be stationary). Up to now, we have focused on how Xt affects Yt at time t but we have

not discussed the total effect of Xt on Yt. For this discussion, let us use an ADL(2, 1) model, that

is yt = ↵1yt�1 + ↵2yt�2 + �1Xt + �2Xt�1 where Xt = ⇢Xt�1 + "t. Now let us suppose that

there is some shock " in variable X at time t. The effect of this shock, ", on variable Y will be the

following in each period:

[time 1] = �1"

[time 2] = �1⇢" + �2" + ↵1 [time 1]

[time 3] = �1⇢
2" + �2⇢" + ↵1 [time 2] + ↵2 [time 1]

[time 4] = �1⇢
3" + �2⇢

2" + ↵1 [time 3] + ↵2 [time 2]

[time 5] = �1⇢
4" + �2⇢

3" + ↵1 [time 4] + ↵2 [time 3]

We can write the following formula for the effect of the shock " on Y at time t, where

wt = [time t]:

wt = �1⇢
t�1" + �2⇢

t�2" + ↵1wt�1 + ↵2wt�2

The total effect of the shock " on Y is
P1

t=1 wt, which can be expressed as (note that |⇢| < 1
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for Xt to be stationary, which also means that two of the terms will be convergent geometric series):

1X

t=1

wt =
1X

t=1

�1⇢
t�1" +

1X

t=2

�2⇢
t�2" +

1X

t=2

↵1wt�1 +
1X

t=3

↵2wt�2

1X

t=1

wt(1 � ↵1 � ↵2) = �1"
1X

t=1

⇢t�1 + �2"
1X

t=2

⇢t�2

1X

t=1

wt(1 � ↵1 � ↵2) =
�1"

1 � ⇢
+

�2"

1 � ⇢

1X

t=1

wt =
�1 + �2

(1 � ⇢)(1 � ↵1 � ↵2)
· "

Because the model in Equation (4) is a special case of the ADL(2,1) model, we can substi-

tute �1 = �, �2 = ���, ↵1 = ↵ + �, and ↵2 = �↵� into the solution for
P1

t=0 wt:

1X

t=1

wt =
�(1 � �)

(1 � ⇢)(1 � ↵ � � + ↵�)
· " =

�(1 � �)

(1 � ⇢)(1 � ↵)(1 � �)
· "

=
�

(1 � ⇢)(1 � ↵)
· "

If we are curious about the long-run effect of Xt on Y for an ADL(1,1) model where

Xt = ⇢Xt�1 + "t, we can repeat this derivation above, but setting ↵2 = 0. It is easy to see that in

that case, the long-run effect formula would be:

�1 + �2

(1 � ⇢)(1 � ↵1)
· "

If we want to consider the case where Xt is not a dynamic process, we can set ⇢ = 0 and

repeat the steps of the derivation. For the ADL(2,1), this would yield (�1 +�2)/(1�↵1�↵2). For

the ADL(1,1) we would get the formula (�1 + �2)/(1� ↵1), which De Boef and Keele (2008) use

to calculate the long-run effects of Xt on Y for this model. Thus, unless it is actually the case that

Xt is not a dynamic time series, this formula would provide an inaccurate estimate of the long-run

effect.
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Appendix G

In Appendix E, I derived the asymptotic biases in the estimate of � under the LGDV,

LGDV2, and REG models and demonstrated that the ADL(1,1) model provides an asymptoti-

cally unbiased estimate of �, even though it excludes Yt�2. However, given how we defined the

biases in Appendix E, we would still have to use Monte Carlo simulations to calculate the bias

because the formulas were defined in terms of Xt, Xt�1, Yt, and Yt�1. In this section, I calculate

the values of a, b, c, d, and f as expected values in terms of the parameters of an ADL(2,1) model

where Xt is a dynamic time series, ↵1, ↵2, �1, �2, ⇢, �2
1 (the variance of e1t), and �2

2 (the variance

of e2t). When comparing the calculated values of a, b, c, d, and f in this section, note that the

values of these variables in Appendix E would correspond to the values here multiplied through

by T . As an example, in this section, a = E(X2
t ), which is equal to �2

1
1�⇢2 . But in Appendix E, I

defined a as X 0
tXt, so if we were calculating this value using the formula for a in this section, it

would actually be T ⇥ �2
1

1�⇢2 . However, the T terms cancel out when we are calculating the biases,

so we can plug in the values of a, b, c, d, and f in this section to the bias formulas in Appendix

E. One other difference is that we use expected values in the formulas for a, b, c, d, and f in this

section, but not in Appendix E. But since we are considering the asymptotic bias, the formulas for

a, b, c, d, and f in Appendix E will converge to their expected values.
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Yt = ↵1Yt�1 + ↵2Yt�2 + �1Xt + �2Xt�1 + e2t

Xt = ⇢Xt�1 + e1t

a = E(X2
t ) = E[⇢2X2

t�1 + 2⇢Xt�1e1t + e21t]

a = ⇢2a + �2
1

a =
�2
1

1 � ⇢2

b = E(Xt�1Xt) = E[⇢X2
t�1 + Xt�1e1t]

b = ⇢a

c = E(XtYt) = E[↵1XtYt�1 + ↵2XtYt�2 + �1X
2
t + �2Xt�1Xt + Xte2t]

c = ↵1E[⇢Xt�1Yt�1 + ⇢e1tYt�1] + ↵2E[⇢2Xt�2Yt�2 + ⇢e1,t�1Yt�2 + e1tYt�2] + �1a + �2b

c = ↵1⇢c + ↵2⇢
2c + �1a + �2b

c =
�1a + �2b

1 � ↵1⇢ � ↵2⇢2

d = E(Yt�1Yt) = E[↵1Y
2
t�1 + ↵2Yt�1Yt�2 + �1Yt�1Xt + �2Yt�1Xt�1 + Yt�1e2t]

d = ↵1E[Y 2
t�1] � ↵2E[Yt�1Yt�2] + �1[⇢Xt�1Yt�1 + e1tYt�1] + �2E[Yt�1Xt�1]

d = ↵1f � ↵2d + �1⇢c + �2c

d =
↵1f + �1⇢c + �2c

1 � ↵2
=

↵1f + �3c

1 � ↵2
where �3 = �1⇢ + �2

g = E[Yt�1Yt] = E[↵1Y
2
t�1 + ↵2Yt�2Yt�1 + �3Xt�1Yt�1 + �1e1tYt�1 + Yt�1e2t]

g = ↵1E[Y 2
t�1] + ↵2E[Yt�2Yt�1] + �3E[Xt�1Yt�1]

g = ↵1f + ↵2d + �3c

h = E[Yt�2Yt] = E[↵1Yt�1Yt�2 + ↵2Y
2
t�2 + �3Xt�1Yt�2 + �1e1tYt�2 + Yt�2e2t]

h = ↵1E[Yt�1Yt�2] + ↵2E[Y 2
t�2] + �3E[⇢Xt�2Yt�2 + e1,t�1Yt�2]

h = ↵1d + ↵2f + �3⇢c
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w = E[Xt�1Yt] = E[↵1Yt�1Xt�1 + ↵2Yt�2Xt�1 + �3Xt�1Xt�1 + �1e1tXt�1 + e2tXt�1]

w = ↵1E[Yt�1Xt�1] + ↵2E[⇢Yt�2Xt�2 + Yt�2e1,t�1] + �3E[Xt�1Xt�1]

w = ↵1c + ↵2⇢c + �3a

f = E[Y 2
t ] = E[↵1Yt�1Yt + ↵2Yt�2Yt + �3Xt�1Yt + �1e1tYt + Yte2t]

f = ↵1E[Yt�1Yt] + ↵2E[Yt�2Yt] + �3E[Xt�1Yt] + �1E[e1tYt] + E[Yte2t]

f = ↵1g + ↵2h + �3w + �2
1�

2
1 + �2

2

f = ↵2
1f + ↵1↵2d + ↵1�3c + ↵1↵2d + ↵2

2f + ↵2�3⇢c + �3↵1c + �3↵2⇢c + �2
3a + �2

1�
2
1 + �2

2

f = ↵2
1f + ↵1↵2d + ↵1�3c + ↵1↵2d + ↵2

2f + z

where z = ↵2�3⇢c + �3↵1c + �3↵2⇢c + �2
3a + �2

1�
2
1 + �2

2

f(1 � ↵2) = ↵2
1f(1 � ↵2) + ↵1↵2(↵1f + �3c) + ↵1�3c(1 � ↵2)

+↵1↵2(↵1f + �3c) + ↵2
2f(1 � ↵2) + z(1 � ↵2)

f � ↵2f = ↵2
1f � ↵2↵

2
1f + ↵2

1↵2f + ↵1↵2�3c + ↵1�3c � ↵1↵2�3c

+↵2
1↵2f + ↵1↵2�3c + ↵2

2f � ↵3
2f + z(1 � ↵2)

f � ↵2f � ↵2
2f + ↵3

2f � ↵2
1f � ↵2

1↵2f = ↵1�3c + ↵1↵2�3c + z(1 � ↵2)

f =
↵1�3c(1 + ↵2) + z(1 � ↵2)

1 � ↵2 � ↵2
2 + ↵3

2 � ↵2
1 � ↵2

1↵2
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Appendix H: An Aside on Panel Data Modeling

The data-generating process and modeling approaches considered in this paper involve a

single time series (N = 1) where we have a fairly large number of observations (T = 100).

Researchers using panel data who are interested in how this paper’s findings apply to their work

should be aware that there are additional complications beyond those involved with single time

series models. A particularly vexing problem arises when we are dealing with panel data with

small T and a model that includes a lagged dependent variable with fixed effects.

It is common to use fixed effects when modeling panel data, so as to control for fundamental

differences between cases (such as countries) that are not captured by the independent variables.

If there are fixed effects that are correlated with the independent variables, failure to include fixed

effects in the regression model will lead to omitted variable bias, so fixed effects are widely used

in modeling for panel data. The use of fixed effects leads to something known as the “incidental

parameters” problem (Neyman and Scott, 1948). By estimating “incidental parameters” such as

fixed effects, even as N ! 1, we cannot take advantage of asymptotic unbiasedness because

more incidental parameters must be estimated as N increases (with fixed T ).

That means that in a model with lagged dependent variables and fixed effects, the bias

identified by Hurwicz (1950) will not go to zero with fixed T , even as N ! 1 (Nickell, 1981).

Thus, if we had a dataset covering 5 years and 40 countries, we would not reduce the Hurwicz

bias compared to a dataset with 5 years and 20 countries. Wawro (2002) observes that the political

science literature has often been inattentive to this problem, though there is extensive literature in

econometrics and statistics about how to construct estimators that are consistent when T is fixed

and small, and N ! 1. Wawro (2002) provides an overview of the major methods used to

obtain consistent coefficient estimates in this context, including the Anderson and Hsiao (1982)

method and also a generalized method of moments (GMM) estimator developed by Arellano and

Bond (1991) that improves on the Anderson and Hsiao (1982) estimator by using a larger set of

instrumental variables. A set of recommendations on how to approach dealing with the incidental
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parameters problem is beyond the scope of this paper, but researchers using panel data should be

aware of this issue and consult the relevant literature for how to choose appropriate models for

their data. The potential for complications does not mean that political scientists should shy away

from using lagged dependent variables; in fact, such an approach would make potential problems

worse, not better, as the Monte Carlo analysis showed.
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