
DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

The most current version of this document shall be made available at: https://docs.lamp.digital/ and https://digitalpsych.org/ [2020-01-01]

The LAMP Platform Reference
Architectural design & Infrastructure implementation.

Raw Sensor & Touch InputIntervention Deployment Anomaly DetectionLikelihood Prediction Harmonization & Distillation

Visualizations

14 3 25

6

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 2

TABLE OF CONTENTS

TABLE OF CONTENTS ...2

PROJECT SCOPE ... 4

STAKEHOLDERS ...4
DESIGN OBJECTIVES ...4
ENGINEERING PRINCIPLES ..5

PLATFORM OVERVIEW ... 6

PLATFORM OVERVIEW ..6
STEP 1: SENSOR EVENTS ARE RECORDED IN REAL-TIME. ..7
STEP 2: COLLECTED EVENTS ARE CACHED, AWAITING SERVER REACHABILITY. ..7
STEP 3: SERVER RECEIVES AND PROCESSES REQUESTS FROM THE APP. ..7
STEP 4: SERVER COORDINATES INTERNAL COMPONENTS FOR PROCESSING. ..8
STEP 5: DATABASE RECORDS THE INCOMING DATA. ...8
STEP 6: THE SCHEDULER COORDINATES AND RUNS AUTOMATIONS. ...8
STEP 7: APPLETS ARE LAUNCHED INTO A SAFE ENVIRONMENT AND RUN. ...9
STEP 8: APPLET RESULTS ARE SAVED AFTER BEING RUN. ...9
STEP 9: APPLET RESULTS ARE PERSISTED FOR LATER ACCESS. ...9
STEP 10: SCHEDULER UPDATES INVOCATION AND AUDIT LOG. ... 10
STEP 11: REQUEST COMPLETES WITH ANY RESPONSE DATA. .. 10

LOW POWER & CONNECTIVITY SUPPORT ... 11

LIMITATIONS & STRATEGIES .. 13

CONTINUOUS MONITORING & INTERVENTION DELIVERY .. 14

COMPONENTS ... 15

LAMP PROTOCOL .. 15
BOUNDARIES ... 19
LAMP SERVER .. 21
MINDLAMP APP ... 23
MINDLAMP WATCH COMPLICATION ... 24
MINDLAMP DASHBOARD ... 25
ACTIVITIES ... 37
SENSORS ... 39

CLOUD DEPLOYMENT & INFRASTRUCTURE ... 40

PROVISIONING CLOUD RESOURCES .. 40

THE AUTOMATIONS FRAMEWORK .. 42

TAGS AS ARBITRARY DATA ON RESOURCES ... 43
DATA-URI STRINGS IN TAGS .. 43
ATOMIC INDEXED ACCESS AND MODIFICATION .. 43

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 3

AUTOMATIONS AS MULTIDIMENSIONAL PLANES OF DATA WITHIN TAGS ... 44
FEDERATED SYSTEMS USING THE AUTOMATION FRAMEWORK .. 45

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

PROJECT SCOPE

As we aim to build a robust platform able to serve the needs of many individuals, we identify the following as key
stakeholders whose perspectives and requirements are specifically considered within this document. Furthermore, we
recognize a core set of goals that guide the process of design and development of this platform for use in research and in
real world clinical settings.

Stakeholders

• Patients: individuals seeking increased quality of care under the guidance of a Clinician in a clinical healthcare setting
and through the use of the platform.

• Participants: individuals seeking to advance scientific research in partnership with Researchers through enrollment in
studies augmented by the of the platform.

• Clinicians: individuals seeking to directly provide care for Patients augmented by the use of the platform.

• Researchers: individuals seeking to advance scientific research through the use of the platform, in partnership with
Participants.

• Data Scientists: individuals seeking to advance scientific research by architecting solutions and analyzing data
collected by the platform, in partnership with Patients, Participants, Clinicians, or Researchers.

• Developers: individuals seeking to design and develop tools and applications for the platform to further the goals
and meet the needs of Patients, Participants, Clinicians, Researchers, and Data Scientists.

Design Objectives

• Global Impact: we aim to design the platform for the Stakeholders of a global age, who come from different
cultures, locations, and contexts. Both researchers and clinicians around the world should be able to understand, use,
apply, and conduct research alongside the Platform. Patients and participants should be able to access and benefit
from the Platform regardless of their environment.

• Open Source: we aim to develop a welcoming community around the platform that encourages interdisciplinary
collaboration on a global scale, and offers the platform free of charge to those seeking to use it.

• Simplicity: we aim to design a platform whose components and total aggregate are inherently simple to understand,
use, and apply to various engineering, research, or clinical contexts without excessive effort or technical support.

• Efficiency: we aim to design a platform whose facilities are built with efficiency and reliability in mind, such that low
maintenance or computing overheads are incurred.

• Ethical Design: we aim to design a platform with ethically sound principles surrounding the use and collection of
data, and allowing those who contribute data to maintain ownership of such data.

• Security: we aim to design systems using modern encryption methods that secure and maintain the integrity of any
and all data both during transmission from one point to another and its storage, requiring consent and permission
before one party is allowed to access another party’s data, irrespective of the physical ownership of the hardware
upon which the platform is operated.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 5

• Privacy: we aim to design systems whose data storage inherently avoids and discourages personally identifiable
information, though able to empower the originator of any piece of data with the right of ownership and consent,
with HIPAA-compliant permanent non-recoverable deletion of data upon request.

Engineering Principles

Clinical needs and goals are first surveyed and understood, before they are translated into an engineering
context for the features or technologies that need to be defined. Three core areas of needs and goals are modeled:
(1) Data, (2) Network, and (3) Clinical, for the definition of core features and engineering strategies, as indicated in the
figure below.

Terminologies in this document, such as the names of components, tools, frameworks, or otherwise, when
initially introduced in text will be bolded and referred to as such in all later text.

We aim to both describe an abstract implementation-agnostic platform suitable for adaptation to any development
requirement as well as to provide a reference implementation abiding by the guidelines set forth in this document.

As you read this documentation, you will see engineering suggestions or limitations presented in blocks
such as this one highlighting current limitations and possible future development venues that underlie the
design and architecture of the LAMP platform.

We aim to provide the same features and tools to clinicians, researchers, patients, and participants regardless of
environment. Whether they have constant high-speed internet connectivity, or sparse and inconsistent internet
connectivity, the LAMP platform will look, feel, and operate the same way, abstracting, to its best ability, the
inconsistencies one may face in its day-to-day use.

As you read this documentation, you'll see clinical insight presented in blocks such as this one highlighting
the real-world cases that inspire the design and architecture of the LAMP platform.

Data Modeling

Network
Modeling

Clinical
Modeling

Resource Schema
Interchange Format

Documentation & Discovery
Transmission Format

Tags
Query Language

Automations

Visualizations

Interventions
Feedback Response
Realtime Alerts

Interventions

Extension & Integration

Simplicity & E&ciency

Security & Privacy

Compatibility

Standardization

Interoperability

Data Interpretability

Actionability

Decision Support

Reproducibility

Clinical Interpretability

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

PLATFORM OVERVIEW

Platform Overview

The LAMP Platform consists of two broad domains: (1) local: the components that users will see and interact
with through smartphone or wearable devices, and (2) remote: the components located off-device that process data,
coordinate applets, and handle synchronization. The app serves to both capture diverse streams of sensor and activity
measurements ranging from heart rate to mood and to prompt suggested user interactions. It informs the LAMP
Platform with a micro-temporal slice of the user’s physical and mental health. The server components supporting the
LAMP Platform play an equally important role in securely encrypting and processing the data, establishing the user’s
“digital fingerprint” and predicting changes that could potentially result in relapse. app-based interventions can be
deployed to improve the user’s health and relevant health data can automatically be shared with authorized care team
members.

The figures below detail one operation typically performed by the LAMP Platform. Shown on the left-hand
side is the app, and on the right-hand side is the server. Note that both pieces consist of numerous components that
work together as a modular distributed system to transfer and process data in a clinically relevant context. A full
specification of all components and their interactivity is documented in later sections. Please note that an important
distinction in naming is made between the local and remote domains: the components of the former are prefixed with
“mindLAMP” where the components of the latter are prefixed only with “LAMP” as this distinction clarifies the scope
and requirements of the components themselves.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

Step 1: Sensor events are recorded
in real-time.
High-frequency sensors on the mobile or
wearable device record measurements based
on the user’s current configuration settings
defined by an administrator. This data is
stored in a buffer on the device's hardware
managed by the operating system (either iOS
or Android) and provided to the app
periodically while it is in the background.

Step 2: Collected events are
cached, awaiting server
reachability.
The device’s buffer and operating system
make no guarantees to save data from the
current moment for the next time the app is
run in the background. Because of this and
the likelihood that the remote server may not
be reachable due to poor signal, the
measurements are immediately cached by the
app whenever it is notified in the background.
When battery levels are sufficient, and
network connectivity to the remote server
available, and enough data is cached, the app
begins synchronization.

Step 3: Server receives and
processes requests from the app.
The app submits a request to the server for
synchronizing and uploading its cached data.
Once uploaded successfully, it is unpacked
and examined by the server for further
automated processing.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 8

Step 4: Server coordinates internal
components for processing.
The server prepares instructions for internal
components based on the data uploaded by
the app. These instructions are pushed
through the internal data bus (a message
queue) that connects all internal controllers in
the platform. The extensibility of the internal
components and the data bus interconnecting
them means components can be swapped out
or replaced depending on context. In
deployments or regions where some features
should be disabled, their relevant components
are "unplugged" from this data bus.

Step 5: Database records the
incoming data.
Depending on the server’s system
configuration and the content of the data
uploaded, the database then records all event
data and schedules an automated backup. The
database considers the origin of the events as
it saves them, harmonizing data from various
sensors through a unified schema.

Step 6: The scheduler coordinates
and runs automations.
Once the database completes saving data and
any backup processes, the scheduler
component is engaged to determine if any
data processing “applets” or other internal
maintenance tasks need to run. After assessing
cost and priority, the scheduler creates an
execution plan consisting of the above and
notifies these components. The scheduler
relies on heuristics gathered from audit logs to
determine the plan.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 9

Step 7: Applets are launched into a
safe environment and run.
Assuming no internal maintenance tasks need
to run, the scheduler may create an execution
plan with only a single applet. Once started, a
new virtual environment is prepared and
securely isolated from other data. For
example, an R environment would analyze the
script to run and install the correct versions of
all required packages, replicating the
environment used by the applet's author.

Step 8: Applet results are saved
after being run.
As the applet executes, its input and output
are spliced from the automation controller
and saved as tags. For example, an applet
called "com.test.some_script" may create a
new tag “com.test.some_script” attached to
some resource in the database, or append to
an existing tag with the same name. Any
runtime logs are extracted separately from this
result.

Step 9: Applet results are persisted
for later access.
If an applet is configured to persist its output,
the data are persisted to the database as a tag
and may be accessed by a client app directly at
a later time. For example, an applet may
compute a dynamic visualization to be cached,
or it could lookup login credentials from a
predefined tag to access and convert data
from a third-party system such as Fitbit into
native resource objects which are then
persisted by the database.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 10

Step 10: Scheduler updates
invocation and audit log.
Once an execution plan completes, the
scheduler records statistics about it for its
next engagement.

Step 11: Request completes with
any response data.
If any controller responds to their currently
executing instruction with a response payload
(such as the execution output of an applet), it
is bundled and returned to the API client
synchronously. If a controller needs more
time to process an instruction, it can return a
pointer to an operation resource that can be
used in a later asynchronous request to the
server to locate the response once completed.
If a controller chooses to respond to an
instruction but is unable to complete it, the
response returns immediately to the client app
as an error.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

LOW POWER & CONNECTIVITY SUPPORT

The LAMP server encompasses two main purposes:
1. communicate via the LAMP protocol as an API to any participating clients, and
2. store data in the LAMP protocol data format.

As the client of the LAMP server need not worry about the data storage, the semantics of how the data is stored as well
as where, or for how long, are transparent and are subject to change in real-time. As long as the client uses the API, all
storage access is transparently cached, proxied, or retrieved from a prespecified medium.

We'll use in context the examples of Patient A, in metro Boston with an LTE-connected (high speed cellular data) Apple
iPhone 6S+ and an Apple Watch, and Patient B, in rural India with a Xiaomi Redmi GO Android phone and limited
spotty cellular data. While both are patients with mental health needs, the differences in their environments and in their
devices could impact the quality and availability of the features LAMP is able to provide.

While Patient A sometimes may not be able to charge their devices or access the Internet, Patient B, as well as his or her
clinicians, face significantly larger barriers. Patient A is able to access a number of WiFi hotspots and subsidized cellular
data, where Patient B may not have access to WiFi at all, with only limited cellular data coverage to rely on.

Suppose a hypothetical situation in which both Patient A and Patient B begin to report increased psychotic symptoms,
depressive mood, decreased physical activity, and increased suicidality. A typical app requiring both constant network
connection and high frequency sensor data collection to deliver an intervention could respond to Patient A's changes
adequately. There is a tremendous chance that it might not, however, respond to Patient B and deliver the correct
intervention on time, due to Patient B's environment; even the slight likelihood of such an occurrence would not be
considered acceptable if using the LAMP platform.

The proxy mode feature developed core to the LAMP platform allows us to achieve an isolation between factors
external to the app, WiFi or cellular data for example, and operating requirements internal to the app. This means that
the app will work the same way and deliver the correct interventions on time for both Patient A and Patient B.

In proxy mode, an instance of the LAMP server can continue to vend the API without being attached to
permanent/long-term storage. This process requires:

1. a data cache,
2. a connection to another instance of the LAMP server, and
3. periodic synchronization between (1) and (2) determined by an availability factor.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 12

The proxy mode use-case of the LAMP server enables chaining instances together for accumulative data transfer. This
serves useful for several reasons:

1. network availability no longer impacts the API client as long as sufficient storage space is available for caching.
2. ActivitySpec updates (that is, when the code underlying a cognitive test or intervention, for example, is

updated) are automatically propogated to all instances downstream of the first non-proxy instance when
synchronization occurs.

a. thus, an "application update" not involving the native code of the API client occurs transparently.
3. connectivity method is not specifically defined; though it becomes the concern of the specific instance, it allows

for flexibility of transfer between WiFi, bluetooth, LTE, etc. as needed or as capable by the hardware.

As battery and storage size are concerns that impact the overall cost of a smartphone as well as how often it must be
charged, Patient B as well as patients with lower economic ability, for example, may not be able to sustain high frequency
sensor collection while simultaneously lacking consistent network connectivity.

By both lowering the collection frequency of sensors and running an app-local instance of the LAMP server configured
in proxy mode, Patient B will be able to use the same app, automations, and interventions, at a lower but still acceptable
fidelity while incurring less battery and storage penalty.

In contrast, even in capable devices and well-equipped environments, recording high frequency sensor data from
multiple devices still require coordination. Patient A would be able to configure the smartwatch instance in proxy mode
to connect to the smartphone instance, which itself would be configured in proxy mode to connect to an instance of the
LAMP server in the cloud. This daisy-chaining of instances allows the smartphone instance of the LAMP server to
effectively "see" the data from the smartwatch instance and be able to perform actions in response to it.

The network-visible model of customizable patient interactions in the LAMP Platform is as follows.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 13

Limitations & Strategies

While a server instance in proxy mode appears transparent to any clients, there are a few concerns followed by
mitigations thereof:

1. origination: data cached and transferred through several instances in proxy mode would lose meaningful
tagging of origin (i.e. from a wearable with high accuracy sensors or a smartphone with low accuracy sensors).

a. the use of an API key carries origination information encoded as a JWT (JSON Web Token) for all
clients irrespective of which server instance they choose to communicate with.

b. LAMP server instances must only brand their origination upon data if none exists already.
2. timestamp invalidity: though the root instance of a LAMP server may be geolocated in the EST (U.S. East)

time zone, it may be synchronizing with instances configured in proxy mode geolocated in the IST (Indian)
time zone.

a. LAMP server instances convert timestamps into the GMT (+0) time zone upon receipt from the
client.

b. upon client data access, the LAMP server re-converts timestamps into the local time zone (as
specified by an IP address, for example) or the time zone requested by the client.

3. automation support: intensive automations such as those written in Python or R cannot be invoked without
network availability at the root instance.

a. some automations, when marked as "lightweight" and written in a supported language, such as
Javascript, may be locally cached and invoked on-schedule to facilitate critical and vital functions (i.e.
intervention deployment dependent on reported suicidal ideation).

4. synchronization of non-timestamp-marked data: update or creation actions on non-event data cannot be
synchronized or merged.

a. such actions can be considered completed by the proxy mode instance but will be queued for
synchronization with a timestamp; if the root instance rejects the action, the local proxy mode
instance will be reconciled with the most recent data.

5. Activity deployment-notification and scheduling: a push notification to deploy an Activity to a patient at
the current instance (that is, not a scheduled one) may not succeed if the root instance does not synchronize
with the proxy mode instance, and specifically targeting one instance may not be possible (such as the proxy
mode instance running on a smartphone instead of on a wearable device, which is unsuitable for interaction).

a. the API key (that is, the origination as explained above) of a suitable client can optionally be specified
when pushing a notification; such notifications will remain queued at the root instance until
downstream synchronization reaches the correct proxy mode instance.

b. if no origination is required, the first available proxy mode instance with the applicable ActivitySpec
will consume the notification and dequeue it (preventing downstream instances from knowing it was
ever present).

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

CONTINUOUS MONITORING & INTERVENTION
DELIVERY

The primary goal of the LAMP Platform remains the integration of continuous monitoring and rapid
intervention delivery. Using the various components of the Platform with the mindLAMP app as an interface could
suffice in most situations — processing power and battery life unconstrained, as well as constant access to network
resources and the results of the processing from a Cloud server. As a Participant actively enrolled in a study uses the app,
including interacting with Activities available therein, sensor instruments periodically collect measurements in the
background. These data are submitted to the Cloud server which notifies and activates the correct set of Automations in
the right order. These could include Visualizations, Predictive Models, or Clinical Decision Support systems that were
installed by the Researcher supervising that Participant’s study.

Taking the example of a Big Data-powered Clinical Decision Support (CDS) system, it may ingest a vast amount of passive as well as active

data to apply heuristics and derive extracted meta-information, upon which machine learning analysis may detect a critical anomaly requiring clinical
intervention and support. After notifying the clinician, this system may notify the Participant with an intervention Activity. As the Participant interacts
with the newly suggested intervention, newly recorded measurements from the aforementioned sensor instruments will be synchronized to the Cloud
server, and this same CDS system will be invoked again to verify that how successful the feedback was.

Supposing a Participant were not able to remain connected to the network frequently, the mindLAMP app may not be able to
communicate with the Cloud server responsible for managing the execution of these Automations. Instead, however, a “low-connectivity” mode is
entered, and of all the Automations installed by the Researcher, those specifically designated as capable of low-power processing (and written only in
JavaScript, accessing no network or disk resources) will be downloaded and version-synchronized whenever possible. It is this lightweight version of
the CDS system that will instead be executed, but the same intervention Activity will be presented to the Participant in the same timely manner. This
version of the CDS system might instead rely only on simple heuristic such as the value of a single question related to suicidal ideation, as the
processing scale of the Big data-powered variant CDS system would be dramatically greater and unsupportable on smartphone devices.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

COMPONENTS

LAMP Protocol

The LAMP Protocol, or Application Programming Interface (API), is the formalized inter-component
language used by any app or tool connecting to the LAMP Platform. It consists of major “surfaces” that describe types
of data, actions that may be performed on these types of data, and access and manipulation control of these data. These
“surfaces” are designed to be compatible with the Health Level 7 (HL7) organization’s Fast Healthcare Interoperability
Resources (FHIR) standard resources as well as compliant with the Health Insurance Portability and Accountability Act
(HIPAA).
 A schema, or data blueprint, is visually and textually presented below for each type of data in relation to other
types, along with a description of the properties and actions available. The use of JSON Schema at build-time codifies
these schema using sets of validation rules and declared links between types and properties. Furthermore, the Spec
resource types use JSON Schema at run-time to constrain data from different device sensors or activity interfaces
dynamically.

1. Resource

a. Summary: an identifier-scoped packet of hierarchically-organized data.
b. Properties

i. id: the globally-unique identifier for this packet of data.
c. Actions

i. create: save a new packet of data as a Resource.
ii. read: retrieve the packet of data within the Resource.
iii. update: modify the packet of data within the Resource.
iv. delete: delete an existing Resource.
v. list: retrieve the index of all Resources for a given sub-type below.

2. Event
a. Summary: a timestamp-scoped packet of data, part of a time-series data stream (“event stream”).
b. Properties

i. timestamp: the millisecond-precision timestamp when this packet of data was recorded.

Temporal
Slices

Measure
Context

object ownership

Activity
Event

Sensor
Event

Study

Activity

Participant

Sensor

Activity
Spec

Sensor
Spec

Researcher

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 16

c. Actions
i. append: save a new packet of data as an Event.
ii. remove: delete an existing Event.
iii. search: retrieve the timestamp-ordered set of Events for a given query.

3. Researcher
a. Summary: a container of Studies managed by an administrator.
b. Properties

i. name: the name of the owner of the Researcher resource.
ii. email: the email address of the owner of the Researcher resource.
iii. studies: the set of Studies linked to the Researcher.

c. Actions: see Resource.
4. Study

a. Summary: a container assigning sets of Activities and Sensors to a set of Participants.
b. Properties

i. name: the name of the Study.
ii. activities: the set of Activities linked to the Study.
iii. sensors: the set of Sensors linked to the Study.
iv. participants: the set of Participants linked to the Study.

c. Actions: see Resource.
5. Participant

a. Summary: a container of streams of ActivityEvents and SensorEvents managed by a user.
b. Properties

i. settings: a group of arbitrary clinical records, including preferred language, set by the Participant.
ii. activity_events: an event stream consisting of active data.
iii. sensor_events: an event stream consisting of passive data.

c. Actions: see Resource.
6. ActivitySpec

a. Summary: a specification of a type of interactive activity, such as a game, survey, or intervention tool.
b. Properties

i. name: the user-friendly name of the interactive activity, such as “Jewels.”
ii. executable: the bundled HTML/JS code containing the interface to be shown by the app.
iii. help: additional text or media detailing use of the interface.
iv. schema: the data schema of Activity or ActivityEvent objects, in JSONSchema format.

1. static_data: the non-temporal packet of data contained within an ActivityEvent.
2. temporal_slices: slices of interaction contained within a single Event.
3. settings: the collection of possible configuration options for the interface.

c. Actions: see Resource.
7. Activity

a. Summary: describing the settings and schedule of an ActivitySpec available to Participants.
b. Notes

i. Even if a particular ActivitySpec is available, without an Activity resource, a Participant cannot
interact with that activity.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 17

ii. Multiple Activities under a single Study may be configured against the same ActivitySpec, such as
“Jewels” or “Survey,” since each Activity may have different schedules or settings.

1. In the case of “Jewels,” an Activity named “Morning Brain Stretch” could be scheduled
for MTWTF at 8:00am with moderate or light difficulty; an Activity named “Monday
Marathon” could be scheduled for Monday only at 6:00pm with extreme difficulty.

2. In the case of “Survey,” an Activity named “Anxiety” would contain questions from the
GAD-7 survey instrument; an Activity named “Depression” would contain questions
from the PHQ-9 survey instrument.

3. If no schedule is provided, the user will not be notified to interact with the Activity, but
it will remain available for the user to willingly use; if no settings are provided, the
Activity launches with default values only.

iii. While the ActivitySpec should be considered “static,” an Activity is designed to dynamically
change if required and manipulated by an administrator.

c. Properties
i. name: the user-friendly name of the activity, defaulting to the name of the ActivitySpec.
ii. spec: the ActivitySpec that constrains this Activity and its ActivityEvents.
iii. active: whether this Activity is available or not for the Participants listed.
iv. schedule: the user notification schedule, in cron-compatible syntax.
v. settings: configuration options for this particular Activity.

d. Actions: see Resource.

Below: event stream visual representation.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 18

8. ActivityEvent
a. Summary: event data stream derived from a Participant interacting with an Activity.
b. Properties

i. activity: the Activity that produced and constrains this ActivityEvent.
ii. duration: the duration of user interaction between recording start and stop.
iii. static_data: the non-temporal packet of keyed data.
iv. temporal_slices: ordered slices of interaction data.

1. item: the item that was interacted with; for example, in a Jewels game, the
corresponding alphabet, or in a survey, the question index.

2. value: the value of the item that was interacted with; in a Survey for example, this field
would be the question choice index.

3. type: the type of interaction that for this detail; in a Jewels game for example, ‘none’ if
the tapped jewel was incorrect, or ‘correct’ if it was correct.

4. level: the level; for example, in games with multiple levels, this field might be ‘2’ or ‘4’,
but this field is not applicable to surveys.

5. duration: the difference in time from the previous slice.
c. Actions: see Event.

9. SensorSpec
a. Summary: a specification of a device sensor available.
b. Notes

i. It is not possible to bundle dynamically executed code for hardware device sensors.
c. Properties

i. name: the user-friendly name of a device sensor, such as “Accelerometer.”
ii. schema: the data schema of Sensor or SensorEvent objects, in JSONSchema format.

1. data: the packet of data contained within a SensorEvent.
2. settings: the collection of possible configuration options for the sensor.

d. Actions: see Resource.
10. Sensor

a. Summary: describing the collection frequency and parameters of a device sensor.
b. Notes

i. Even if a particular SensorSpec is available, without a Sensor resource, a Participant cannot
record measurements from that sensor device.

ii. Multiple Sensors under a single Study may be configured against the same SensorSpec, such as
“Location,” since each Sensor may have different parameters.

1. In the case of “Location,” an Activity named “Mobility” could collect fuzzed (i.e.
anonymized) measurements every second as a facet of physical mobility; an Activity
named “SocialGPS” could collect raw measurements hourly as a facet of establishments
visited or local weather.

iii. While the ActivitySpec should be considered “static,” an Activity is designed to dynamically
change if required and manipulated by an administrator.

c. Properties
i. name: the user-friendly name of the sensor, defaulting to the name of the SensorSpec.
ii. spec: the SensorSpec that constrains this Sensor and its SensorEvents.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 19

iii. active: whether this Sensor is available or not for the Participants listed.
iv. settings: configuration options for this particular Sensor.

d. Actions: see Resource.
11. SensorEvent

a. Summary: event data stream derived from a Participant’s device sensors passively.
b. Properties

i. sensor: the Sensor that produced and constrains this SensorEvent.
ii. data: the packet of keyed data containing a measurement and associated context.

c. Actions: see Event.
12. Tag

a. Summary: a piece of arbitrary data attached to a Researcher, Study, Participant, or Activity.
b. Properties: none.
c. Actions: see Resource.

13. Automation
a. Summary: an automatically managed applet that is run in response to event streams or data changes.
b. Notes

i. The reserved identifier “me” can be used as both the source and destination below.
1. As the source, the context can be inferred, for example, from the currently

authenticated Researcher or Participant.
2. As the destination, the applet is run upon matching events or changes from only the

currently authenticated Researcher or Participant.
ii. If the destination is not an identifier, but a type of Resource, such as “Participant,” changes are

monitored across all resources of that type, provided those resources exist within the context of
the provided source.

c. Properties
i. source: the owner of the Automation, preserved as the security and execution context.
ii. destination: the recipient object(s) of the Automation, upon which changes are monitored.
iii. events: the Event stream or Resource change notifications that cause applet execution.
iv. executable: the applet code, dependency list, and runtime type: R, Python, JS.

d. Actions: see Resource.
14. Credential

a. Summary: access control for a Researcher, Study, or Participant.
b. Properties

i. origin: the resource that defines the scope and ownership of this Credential.
ii. description: a user-friendly description of the credential, such as “API Key” or “Mother.”
iii. access_key: either an email address or generated API key.
iv. secret_key: either a salted and hashed password or generated API secret.

c. Actions: see Resource.

Boundaries

When requesting buckets of events (using ActivityEvent::all_by_participant() or SensorEvent::all_by_participant(), for
example), you may specify a start and end boundary within which events with matching timestamps are captured. If you
specify both start and end such that start == end, you'll restrict the boundary to return only a single event, and if you

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 20

don't specify both, you'll un-restrict the boundary and request every event. You can also specify an origin that limits the
bucket of events or subscription to its stream to a single type of activity or a single type of sensor. For Activity events
(ActivityEvent), you can specify an origin that matches your configured activity or to all activities of a given type. You
can request buckets of events from a stream or subscribe to the stream directly and be notified when new events appear
or old ones are deleted. This follows a typical WebSocket PubSub pattern.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

LAMP Server

The platform server manages internal components and inter-component message-passing. Not all components are
intended to be developed in-house, but wherever possible, open source and platform-agnostic projects should be
preferred. If a component should be developed in-house, it must be open source. Unless specific requirements preclude
its usage, components are to be developed and maintained in the Typescript programming language atop 64-bit Linux.
Components should and must be embeddable within Docker containers for both staging and production. No
specification or requirement is set forth for orchestration, but Docker Compose and Kubernetes are preferred.

1. API Server

a. Summary: the gatekeeper between the internal and external domains.
b. Notes

i. This component is implemented in Node.js.
ii. All API requests are stateless (i.e. there is no session management) and map to a single response.

iii. All requests irrespective of authentication requirement must be accompanied by a client API key.
1. This pre-registered API key is recorded in the audit log with each request and serves as

origination reference for resources and events.
iv. Using the Credential API, requests that require authentication and authorization are validated.
v. Client app authentication requests are serviced through the integrated OAuth2 protocol.

vi. Data transport must be encrypted and decrypted as per security & privacy policy.
2. Message Queue

a. Summary: handles the synchronization of communication between all the above actors in the server layer.
b. Notes

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 22

i. This component is implemented by the Redis high performance key-value store, with an
alternate implementation for low-power usage in Node.js.

ii. Each component upon startup must register itself with the message queue for service discovery.
iii. Any component may create any number of topics for which other components may publish

messages to or subscribe to.
iv. Implementation of database manipulation operations, automation events, and the audit log relies

solely on subscription to the global topic; the API Server publishes requests here with a unique
identifier awaiting response.

3. Database
a. Summary: the persistent data storage device supporting transient caching and complex querying.
b. Notes

i. This component is implemented by CouchDB, with an alternate implementation for low-power
usage in Node.js using the PouchDB framework.

1. A legacy adapter component shall exist to continually await changes (via polling) on
the legacy Microsoft SQL Server database component and migrate documents to this
active database component.

2. As the LAMP Protocol is finalized to support audit log and revisions control, this
component shall instead by implemented by Redis, Amazon S3, or for low-power
usage, a naïve Dictionary/Map object in Node.js.

ii. A key-value or document database (noSQL) is most ideal for storage needs of the LAMP
Protocol, due to its hierarchical object data and high throughput access and low latency
manipulation requirements.

1. A relational database (SQL) such as Postgres or SQLite should serve as an alternate
implementation consideration, only as necessary.

iii. To support real-time intervention deployment and management, an intermediate in-memory
cache is used to ease the load on main long-term storage databases.

1. This portion of the component shall be implemented using PouchDB in Node.js.
2. Future implementations should either be Redis or Memcached.
3. Data from the cache shall be committed to persistent storage as constraints require.

4. Intelligent Automations
a. Components: Docker Environment, Attachment Container, Automation Scripts, Scheduler
b. Summary: text
c. Notes

i. A compute platform such as a Docker-enabled system or AWS Lambda is used to handle actual
execution of code once bundled.

ii. A dependency bundler such as Webpack, PIP, or Packrat is used to bundle each automation’s
code to avoid dependency versioning conflicts that could crash or halt execution.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

mindLAMP App

The mobile smartphone app is the primary apparatus for the input of Participants’ Sensor or Activity events, through
interacting with Activities. It consists of several surfaces that work in tandem to convey temporal snapshots of the user
to the server. An example of the expected user interface is produced below.

1. Native Core Surface

a. Sensor Facility: passive data from sensor instruments is recorded and collected using sensor modules
provided by the open source AWARE Framework. Data from Apple HealthKit and Google Fit will be
integrated into these data and recorded in tandem.

b. Activity View Facility: source code for Activities as saved in their ActivitySpec definition is downloaded
as non-native code and displayed in a Web View.

2. LAMP API Surface
a. Onboard Server Facility: to support caching requirements under low power or connectivity modes, an

API-compatible but simplified copy of the Platform Server can be deployed alongside the native code.
(See the “Proxy Mode” section for further details.)

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

mindLAMP Watch Complication

The wearable complication (app) is the primary apparatus for the input of Participants’ Sensor events only, as it remains
difficult to design intuitive interfaces for a 1.5” screen.
1. Native Core Surface

a. Sensor Facility: we currently plan to record and collect passive data from sensor instruments using the
open source AWARE Framework. Data from Apple HealthKit and Google Fit will be integrated into
these data and recorded in tandem.

2. LAMP API Surface
a. Onboard Server Facility: to support caching requirements under low power or connectivity modes, an

API-compatible but simplified copy of the Platform Server can be deployed alongside the native code.
(See the “Proxy Mode” section for further details.)

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

mindLAMP Dashboard

The web app serves as a dashboard interface for visualizing, organizing, and controlling all LAMP resources and settings.
Visual interface snapshots are produced below, but the most current version of the software is made available at
https://dashboard.lamp.digital/ and within the mindLAMP apps, as described above.

1. Authentication Surface

a. Login/Logout Facility

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 26

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 27

b. Credential Management Facility

2. System Administration Surface

a. API Control Facility

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 28

b. API Documentation View Facility

c. Researcher Directory Facility

3. Researcher/Study View Surface

a. Summary View Facility
[Undocumented]

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 29

b. Participant Directory Facility

c. Activity Configuration Facility

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 30

d. Automation/Tag Configuration Facility

[Undocumented]
4. Participant View Surface

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 31

a. Visualizations Facility

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 32

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 33

b. Activity/Survey Usage

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 34

c. Patient Journal/Notes & Clinician Messaging Facility

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 35

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 36

d. Breathe exercise sample (Activity UI)

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

Activities

Active events are produced on a rolling basis via interactions by a Participant. They are transferred to the Platform
Server automatically by using the Activity API written in JavaScript. By “beginning” and “ending” a recording of these
interactions, as well as “emitting” temporal data during the interaction, an ActivityEvent can be captured and sent to the
Platform Server. Screenshots of currently available Activities are provided below. A live server must be consulted for
further information (see GET /activity_spec) and visual or interactive samples are provided in the source GitHub
repository.

lamp.survey lamp.spatial_span lamp.simple_memory

lamp.serial_7s lamp.cats_and_dogs lamp.visual_association

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 38

lamp.3d_figure_copy lamp.digit_span lamp.temporal_order

lamp.nback lamp.jewels_a (+ _b variant)

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

Sensors

Active sensor events are produced on a rolling basis via interactions by a Participant. They are transferred to the
Platform Server automatically by using the Activity API written in JavaScript. By “beginning” and “ending” a recording
of these interactions, as well as “emitting” temporal data during the interaction, an ActivityEvent can be captured and
sent to the Platform Server. A list of existing Sensors is provided below with name and description; a live server
instance must be consulted for data schema information (see GET /sensor_spec). Implementations for these hardware
sensors are provided in the GitHub repository.

1. lamp.accelerometer: records unprocessed triaxial accelerometer data.
2. lamp.accelerometer.motion: records processed triaxial motion, triaxial rotation, triaxial gravity, and triaxial

magnetic field data.
3. lamp.analytics: records events such as page opens, notification receipt, or login sessions.
4. lamp.blood_pressure: records blood pressure from an external connected monitor.
5. lamp.calls: records calls after encrypting the phone number.
6. lamp.distance: records total distance moved.
7. lamp.bluetooth: records bluetooth devices within range as well as signal strength.
8. lamp.flights: records stairs of flights climbed.
9. lamp.gps.contextual: records two dimensional GPS location along with user-reported context.
10. lamp.gps: records three dimensional GPS location.
11. lamp.height: records self-reported height.
12. lamp.magnetometer: records triaxial magnetic field changes.
13. lamp.respiratory_rate: records calls after encrypting the phone number.
14. lamp.heart_rate: records heart rate from an external connected monitor.
15. lamp.screen_state: records device usage changes such as lock state and screen visibility.
16. lamp.segment: records workout segment duration and length.
17. lamp.gyroscope: records unprocessed triaxial gyroscope data.
18. lamp.sms: records text messages after encrypting the phone number.
19. lamp.sleep: records sleep duration with start and stop times.
20. lamp.weight: records self-reported weight, or weight from an external connected monitor.
21. lamp.steps: records number of steps taken since last such event, or the start of the day.
22. lamp.wifi: records encrypted wireless hotspots as well as signal strength.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

CLOUD DEPLOYMENT & INFRASTRUCTURE

Provisioning Cloud Resources

Though AWS Route 53 is listed in the diagram above detailing a sample architectural plan to host the LAMP Platform,
there is no requirement in place for a particular provider. Suggestions made in the diagram above include AWS Elastic
Beanstalk, AWS RDS, AWS S3, and AWS EC2; these managed services provide robust and maintenance-free bring-up
for the LAMP Platform. The equivalent products in the Microsoft Azure or Google Cloud suite would also be
acceptable. Provided with the LAMP Platform is a set of Docker Stack files meant to be used with Docker Swarm (for
cloud testing, integration, and production usage) or Docker Compose (for local testing). These files are easily adapted to
Kubernetes as well, and all services hosted within the Stack files provided are of an open source nature, with the
exception of the Microsoft SQL Server for legacy usage. Please ensure that when deploying the LAMP Platform, all
proprietary software is licensed for your use case before deployment.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 41

Segmenting Compute Resources
The diagram above describes the GitHub workflow in one possible pathway using AWS CodePipeline to quickly
perform continuous testing, integration, and deployment. AWS CloudFront is suggested as a caching content delivery
service though others such as CloudFlare exist which work well with the LAMP Platform. Instructions for setting up the
Platform on 3rd party cloud resources are not available, as the use of Docker Swarm with the Traefik router software is
recommended. When used in the supported configuration, regions of compute resources are segregated into Production
or Staging, and tagged with the appropriate CPU, RAM, Disk I/O, and Network I/O parameters such that Docker
Swarm may automatically distribute Stacks to the correct sub-clusters which are configured and maintained internally.
The Traefik router software interfaces with Docker Swarm and the configured DNS service to provide external and
internal access to services according to the configuration files in the GitHub repository. For staging and development
purposes (primarily data analysis), JupyterLab and RStudio are provided in Stack files for quick localized deployment
such that data access incurs the lowest possible bandwidth and latency cost.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 42

THE AUTOMATIONS FRAMEWORK

Automations are a flexible framework for the LAMP platform that allow you to run complex analytics and decision
support tools either in reaction to new events in an event stream, or on a periodic schedule. Without having to configure
a processing pipeline for system requirements such as CPU, I/O, or RAM, automations abstract the functional logic
from data resources and system requirements. Automations support simple, flexible, and portable code that can run on
low-power devices such as smartwatches or older smartphones all the way up to large servers and computing clusters in
the cloud.

These “applets,” called Automations, can be written in typical data science programming languages such as
JavaScript, Python, and R, with any packages or dependencies automatically bundled within. When installed onto a
Resource (that is, a Researcher, Study, Participant, or even an Activity), it is capable of listening to events generated by
that Resource. For example, if installed for Participants, one such applet could listen to any SensorEvents or
ActivityEvents, or when installed for Activities, it could listen only to anonymized ActivityEvents generated by any
Participant. When the Cloud server receives new events, it prepares all Automations that fit the specified event mask and
allows them to execute with preallocated hardware limits.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 43

Tags as Arbitrary Data on Resources

Tags are an arbitrary unit of extensibility available to all Resource sub-types. Through string-indexed/keyed subscripting,
out-of-line data may be attached to objects in the LAMP Platform as an ad-hoc micro-database. For a flow chart on the
usage of Tags, see the figure below. Tags are a powerful tool that may be leveraged by clients of the LAMP Platform to
build applets for the Platform as well as smaller apps within such client apps themselves.

Data-URI strings in Tags

Tags may consist of JSON object, array, or primitive types, as well as encoded data-uri strings. Data-uri strings are
normal string primitives but prefixed with “data:<mime_type>[;base64],” where “<mime_type>” refers to the binary
application file type of the data that follows, such as “application/json”, “text/plain; charset=utf8”, or
“image/svg+xml”. If the “base64” optional parameter is provided, the contents of the string following the comma are to
be base64-decoded when interpreted by the LAMP Platform or clients of the LAMP Protocol. Specifying an optional
“Accept” header type may optionally allow the LAMP server component or other LAMP Protocol vendors to
automatically convert such data-uri strings into a binary type.

Atomic Indexed Access and Modification

Furthermore, to support atomic operations on Tags, an indexed modifier version of get & set methods shall exist such
that for a Tag whose content is an object, the method “GET | POST
/type/<id>/my.tag.name.here[/someKeyedIndex]” shall return or replace only the sub-content of the object but not
the whole object represented by the Tag. For JSON arrays, keyed indices shall take the form of continuous numbered
indices found in the array itself, including the special index “length” which shall only return but not replace the length of
the underlying array. Through these rudimentary atomic mutation facilities, vendors and clients of the LAMP Protocol
may perform basic synchronization without poll-waiting or SSE (Server Sent Events) reconciliation.

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 44

Automations as Multidimensional Planes of Data within Tags

Automations shall be represented by their specific LAMP Protocol object schema, but encoded as a plaintext JSON
data-uri string with the mime type “application/vnd+lamp.automation”. When registering or unregistering an
Automation’s availability with a LAMP server or other component, the component itself shall maintain a running record
of compute images, trigger-points, and code for each Automation. When the Tag containing the Automation data is
removed, the Automation itself shall be unregistered and made no longer functional in that instance of the LAMP
Platform. The figure below describes the relationship between the static data plan (Tags) and the dynamic data plane
(Automations) which leverage the functionality described in prior chapters to perform Just-In-Time intervention,
prediction, analysis, visualization, or some other set of relevant functions.

Object Header

Out-of-line
Attachments

In-line
Data

org.lamp.key1

org.lamp.key2

org.beiwe.study_id

com.test.viz1

com.test.viz2

1010100010100111101110110101010101010101110
1010101010110101010101001011010101001010100
0101010001010011110111011010101010101010111
0101010101011010101010100101101010100101010
0010101000101001111011101101010101010101011
10101010101011010101

{
 "data": 123,
 "some_dat": [
 "my name",
 "some other name"
]
}

dh3948jf

10101000101001111011101101010101010101011101010
10101011010101010100101101010100101010001010100
01010011110111011010101010101010111010101010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101

{}

Static Data Plane

org.lamp.key2

org.beiwe.study_id

com.test.viz2

 time_table[i,3*(j-1)+1]= mean(temp$answer)
 time_table[i,3*(j-1)+2]= mean(temp$time)/1000
 time_table[i,3*(j-1)+3]= nrow(temp)
 }
 }
 time_table=data.frame(time_table)
 column = c()
 for (i in 1:length(cat)){
 column = c(column,c(paste0(cat[i],'_score'), ...
 }
 colnames(time_table)=column
 time_table$date = unique_t

import zip
for data_stream in stream_zip:

…

Dynamic Data Plane

{
 "data": 123,
 "some_dat": [
 "my name",
 "some other name"
]
}

survey_reform=function(survey) {
 survey$answer=as.numeric(as.character(survey$answer))
 cat = c('sleep','medication','social','psychosis','depression','anxiety')
 unique_t = unique(survey$start)
 time_table = matrix(0,nrow = length(unique_t), ncol=length(cat)*3)
 for(i in 1:length(unique_t)){
 for(j in 1:length(cat)){
 temp = subset(survey,start==unique_t[i] & name==cat[j])
 time_table[i,3*(j-1)+1]= mean(temp$answer)
 time_table[i,3*(j-1)+2]= mean(temp$time)/1000
 time_table[i,3*(j-1)+3]= nrow(temp)
 }
 }
 time_table=data.frame(time_table)
 column = c()
 for (i in 1:length(cat)){
 column=c(column,c(paste0(cat[i],'_score'),paste0(cat[i],'_time'),paste0(cat[i],'_row')))
 }
 colnames(time_table)=column
 time_table$date = unique_t
 row.names(time_table)=NULL
 time_table
}

input parameter

static: org.lamp.key2

dynamic: org.lamp.key2

DIVISION OF DIGITAL PSYCHIATRY @ BIDMC

 45

Federated Systems Using the Automation Framework

 Supposing multiple existing systems provided clinically useful sources of data, such as longitudinal imaging
repositories or existing Fitbit devices synchronized to the cloud. While data retrieval and ad-hoc storage of “out-of-line”
(that is, unrecognized by the Platform, but retaining meaning to its owner) data from within the Platform is simple using
the API, it would be simply infeasible to manually verify modified data against multiple specific conditions and run
several scripts in the Researcher’s local computer before sending out notifications or awaiting further processing from
elsewhere. Instead, the Platform supports, through the Automations framework, a method of dynamically running such
scripts as “applets” atop extremely powerful unconstrained hardware not managed by the Researcher or their IT
department.

In the example above, a combination of two applets and an external Amazon S3 database (unknown to the
LAMP Platform) provide the equivalent three step upload-process-analyze functionality of apps such as AWARE, Fitbit,
Beiwe, Google Fit, and more. The “lamp.anomaly_detection” applet is not considered a part of this group as it was
written to use only the standard API provided by the LAMP Platform; it contains no knowledge of the other two applets
and the external database. The “org.aware.upload” applet requests preallocation of storage, perhaps on the order of
~5GB, but entirely variable depending on the Participant’s device or historical data uploads. It then returns a response
immediately to the requesting smartphone device or internet service with a URL to which it can upload the data. The
second applet, “org.aware.processing” is instead run by the Cloud server every 5 minutes to check if any processing
needs to be done in the database, and if so, executes the processing, but otherwise does nothing. This applet converts
the uploaded data to LAMP Resources (ActivityEvents or SensorEvents, specifically) and submits them to the Cloud
server in bulk. Just as with any other events received by the Cloud server, it will then execute a set of Automation applets
— in this case, “lamp.anomaly_detection.” In summary, with this multi-applet workflow, data is automatically uploaded
and stored in an external database wholly maintained by a third-party, subsequently converted to actionable reactive
LAMP Sensor or ActivityEvents, and finally analyzed through the same methods as all other data.

