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APPENDIX 

Model specification for the observed data 

The general form of the growth mixture model for the illustrative dataset was: 
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where tiBMI  is an individual's BMI at tiage , measured at time t = 1...4, for individual i = 

1...1528; c is the latent class (c = 1...C), for which  iiti racesexagecP ,,|  is the probability 

that individual i is in class c given their tiage , isex , and irace ; 
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conditioned on age, sex, age-sex interaction and race identically across all C classes; 
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2  are the class-dependent marginal mean intercept, velocity and 

acceleration respectively;  2
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ti Ne   is the class-dependent occasion-specific normal 

residual with zero mean and variance 2
)( 0ec , estimated empirically; and m  (m = 1...5) are 

class-independent conditional covariate trajectory coefficients describing the underlying 

population mean growth for intercept and velocity respectively.  Models were expanded to 

include the additional autocorrelation parameter, thereby capturing more of random effects 

structure that could not be reflected via the constrained variance-covariance structure.  With 

only four measurement occasions, we adopted a simple 1st order autoregressive structure 

(AR1).  For models with AR1 the constraint       itit eeCorr 1,  (t = 1 ... 3) applies 

identically across all C classes, else   0, qipi eeCorr  ( qp  ).  Example M-Plus code 

and associated model path diagram are given in Figures A1 & A2. 
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Figure A1: Example M-Plus code for 2-class AR1 GMM with a bootstrapped likelihood ratio test, 
for 2000 random starts and 200 fully evaluated starts. 

TITLE: Analysis of BMI 
DATA: 
    FILE IS bmi.csv; LISTWISE = OFF; 
VARIABLE: 
    NAMES ARE  sch id sex race age1 age2 age3 age4 bmi1 bmi2 bmi3 bmi4  
   cdc1 cdc2 cdc3 cdc4 wgt1 wgt2 wgt3 wgt4 hgt1 hgt2 hgt3 hgt4  
   post1 post2 post3 post4 srcesd1 srcesd2 srcesd3 srcesd4  
   sranx2 sranx3 sranx4 ses1 ses2 ses3 ses4 edu; 
    MISSING ARE ALL (-99); 
    USEVARIABLES = sex bmi1-bmi4 race agec agesex sexrace sexm racem agesexm; 
    AUXILIARY = sex (e) race (e) age1 (e) agesex (e) sexrace (e) cesd1-cesd4 (e)  
                 anx2-anx4 (e) srcesd1-srcesd4 (e) sranx2-sranx4 (e) post1 (e)  
                 ses1-ses4 (e) edu (e); 
    CLASSES = c(2); 
DEFINE: 
    agec = age1-1.440695; sexm = sex; racem = race; agesexm = agec*sex;  
    agesex = agec*sex; sexrace = sex*race;  ! generated to test only 
ANALYSIS: 
    TYPE = MIXTURE; LRTBOOTSTRAP; 
    MITERATIONS = 2000; STITERATIONS = 50; PROCESSORS = 8; 
    MODEL = NOCOVARIANCES; 
    LRTSTARTS = 2000 200 2000 200; 
    STARTS = 2000 200; 
MODEL: 
    %OVERALL% 
        Int Vel Acc | bmi1@-1.5 bmi2@-0.5 bmi3@0.5 bmi4@1.5 ; 
        Vel-Acc@0; 
        Int ON agec sexm agesexm racem; 
        Vel ON agec; 
    %c#1% 
        bmi1-bmi4 (resvar1); 
        bmi1-bmi3 PWITH bmi2-bmi4 (p11); 
        bmi1-bmi2 PWITH bmi3-bmi4 (p21); 
        bmi1 WITH bmi4 (p31); 
    %c#2% 
        bmi1-bmi4 (resvar2); 
        bmi1-bmi3 PWITH bmi2-bmi4 (p12); 
        bmi1-bmi2 PWITH bmi3-bmi4 (p22); 
        bmi1 WITH bmi4 (p32); 
    MODEL CONSTRAINT: 
        NEW (corr); 
        p11 = resvar1*corr ; p21 = resvar1*corr**2 ; p31 = resvar1*corr**3; 
        p12 = resvar2*corr ; p22 = resvar2*corr**2 ; p32 = resvar2*corr**3; 
OUTPUT: 
    STAND; TECH14; 
SAVEDATA: 
    FILE = bmi2.dat; SAVE = CPROBABILITIES; 
PLOT: 
    TYPE IS PLOT3; 
    SERIES IS bmi1-bmi4(Vel);         
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Figure A2: Model Path Diagram 

 

Model specification for the simulated data 

We simulated two BMI latent growth curves following quadratic variation in time.  

Fixed-parameter differences were in the BMI mean intercept only and random effects were 

different across classes.  One hundred replicate datasets were generated, each comprising 

1528 individuals at four time points (-1.5, -0.5, 0.5, and 1.5), with BMI mean intercepts 25.0 

kg.m-2 in class 1 and 15.0 kg.m-2 in class 2; both classes had identical mean velocity (5.0 

kg.m-2.yr-1), mean acceleration (1.0 kg.m-2.yr-2) and BMI intercept (10.0 kg2.m-4.yr-2), velocity 

(5.0 kg2.m-4.yr-2) and acceleration (1,0 kg2.m-4.yr-2) variances.  In class 1, the BMI intercept-

velocity covariance was 0.2 (correlation = 0.028) and intercept-acceleration covariance was 

0.1 (correlation = 0.032), whereas in class 2 these were -0.2 (correlation = -0.028) and -0.1 

(correlation = -0.032), respectively, and for both classes the velocity-acceleration covariance 

was 0.05 (correlation = 0.022).  The intercept, velocity and acceleration were not dependent 

on any other factors.  These hypothetical datasets do not therefore emulate the illustrative 
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study data exactly, as no attempt was made to simulate emulate ages at each time point or 

age-related effects (such as individual growth spurts).  This should not affect any inferences 

made regarding differences in model parameterization.  The simulations broadly capture the 

concept of a near linear change in BMI over time, with large heterogeneity between 

individuals and small heterogeneity within individuals between measurement occasions, as 

per the study data. 

 


