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Supplementary Table S1. Main vegetation sub-associations on the BMGR West and their attributes. The first digit of the three-digit vegetation sub-association code distinguishes vegetation alliances. The second digit distinguishes vegetation associations, and the third digit, vegetation sub-associations. 
†: Used without modification in the analysis
	Vegetation Sub-association Code
	Vegetation Sub-association Name
	Area (hectares)
	Totoal Number of Relevés
	Number of Releves with Brassica tournefortii Present
	Comments

	100
	Creosote monotype
	39028
	41
	26
	†

	110
	Creosote-white bursage
	56943
	53
	20
	†

	113
	Creosote-fagonia-white bursage on hills
	1350
	5
	4
	Not used

	115
	Creosote-white bursage-ocotillo on ridges
	1664
	10
	0
	†

	116
	Creosote-ocotillo-white bursage on plains
	5748
	9
	2
	†

	117
	Creosote-Spanish needles-white bursage on sands
	10848
	9
	6
	†

	120
	Creosote-triangle leaf bursage
	5767
	13
	4
	†

	130
	Creosote-white bursage-triangle leaf bursage
	4102
	13
	0
	†

	132
	Creosote-white bursage-triangle leaf bursage, burned
	193
	1
	1
	Not used

	141
	Creosote-white bursage-teddy bear cholla
	3990
	21
	1
	†

	150
	Creosote-mesquite-triangle leaf bursage floodplain
	835
	16
	9
	Combined with 151 and 152

	151
	Creosote-white bursage-blue palo verde floodplain
	1446
	10
	7
	Combined with 150 and 152

	152
	Creosote-white bursage playa/floodplain
	250
	4
	2
	Combined with 150 and 151

	160
	Creosote-white bursage-big galleta grass
	5508
	26
	13
	†

	170
	Creosote-triangle leaf bursage-yellow paloverde/ironwood
	1178
	3
	0
	Not used

	171
	Creosote-white bursage/paloverde-ironwood pavements
	16228
	20
	8
	Combined with 177

	175
	Creosote-white bursage/yellow paloverde-ironwood bar/swale
	3549
	32
	3
	†

	176
	Creosote-white bursage/ironwood-blue paloverde
	3263
	13
	7
	†

	177
	Creosote-white bursage/ironwood-yellow paloverde
	14956
	20
	7
	Combined with 171

	178
	Creosote-white bursage/ironwood-blue paloverde-club cholla
	288
	4
	4
	Not used

	191
	Creosote-fagonia-white bursage on steep slopes
	4865
	45
	6
	†

	241
	White bursage-creosote-teddy bear cholla
	767
	10
	0
	Combined with 242

	242
	White bursage-creosote-ironwood-teddy bear cholla
	828
	4
	0
	Combined with 241

	260
	White bursage-big galleta grass on dunes
	10353
	32
	14
	†

	261
	White bursage-big galleta grass on fans
	991
	10
	10
	†

	275
	White bursage/elephant tree on alluvium/pediment
	217
	7
	0
	Combined with 276

	276
	White bursage-elephant tree-brittlebush on mountains
	19651
	51
	1
	Combined with 275

	280
	White bursage-creosote-ocotillo
	10685
	25
	13
	†

	291
	White bursage-creosote-yellow paloverde
	1033
	7
	5
	†

	292
	White bursage-creosote-brittlebush/ironwood
	1270
	8
	2
	†

	400
	Mormon tea-agave/white bursage
	1165
	13
	0
	†

	410
	Arrowleaf/sumac-beargreass/mormon tea-lavender
	784
	11
	0
	†

	631
	Brittlebush-creosote-white bursage/yellow paloverde
	4079
	28
	2
	†

	670
	Brittlebush-creosote on dark rocks
	1649
	7
	3
	†

	681
	Brittlebush-white bursage-creosote on fans
	777
	6
	2
	Combined with 691

	691
	Brittlebush/ironwood-blue paloverde on fans
	1058
	9
	2
	Combined with 681

	710
	Desert holly-white bursage-wandholdback
	60
	3
	0
	Not used

	800
	Mesquite bosque
	7
	1
	1
	Not used

	810
	Mesquite/wolfberry-catclaw-cheesebush
	818
	7
	5
	†

	811
	Ironwood/brittlebush-wolfberry-cheesebush
	2727
	16
	7
	Combined with 812

	812
	Ironwood/brittlebush-wolfberry-white bursage
	2274
	18
	8
	Combined with 811

	830
	Lavender/hollyleaf bursage-brittlebush
	158
	12
	0
	†

	900
	Blue paloverde/hollyleaf bursage on mountains
	108
	3
	0
	Not used




Supplementary Appendix S1. Analyzing binary data with the problem of spatial autocorrelation and separation
Logistic regressions that account for spatial autocorrelation of the data.
The uneven distribution of relevé locations led to spatial clustering or overdispersion of our data. The resulted spatial autocorrelation may affect the conclusion of logistic regression models with regard to the significance of each explanatory variable and model prediction of invasibility. To evaluate the potential influence of spatial autocorrelation, we used the corrHLfit function in the spaMM package in R (version 2.3.0, Rousset 2018) to perform additional logistic regressions, and compared the results with those inferred by the basic logistic regression models. The spaMM package provides a solution for applying generalized linear mixed models to spatially autocorrelated data. Its use of Laplace or penalized quasi-likelihood (PQL) approximations of likelihood allows for likelihood ratio tests on fixed effects, and introduces less bias in hypothesis testing than the glmmPQL procedure in R, which is often recommended for fitting logistic regression models to autocorrelated data (Rousset and Ferdy 2014).
[bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK5][bookmark: OLE_LINK1]We treated all data in each regression as one group and modeled the spatial autocorrelation as the Matérn covariance function. We allowed corrHLfit function to estimate two key parameters of the Matérn function: the spatial scale parameter ρ and the smoothness parameter υ. In this way, the Matérn function can represent a general form of spatial correlation, including the commonly used exponential and squared exponential correlation functions (for υ=0.5 and υ, respectively) (Rousset and Ferdy 2014). A PQL/L method was used for model fit, in which the coefficients of the fixed effects were estimated by PQL, and all dispersion and correlation parameters were estimated based on maximum likelihood (Rousset and Ferdy 2014). To determine the significance of each explanatory variable, we used a likelihood ratio test to compare the full model with an alternative model, in which either of the two explanatory variables was dropped. The maximum likelihood iteration failed to converge on an optimum because of separation in the binary data (six sub-associations had no Brassica tournefortii present and one had the species present in all relevés). As a solution, we removed data associated with these sub-associations in the regressions (83 of the 636 original data points). 
The corrHLfit function effectively reduced autocorrelation of model residuals (Fig. A1). Likelihood ratio tests based on these logistic regression models gave the same conclusion as that inferred by the basic logistic regression models. Vegetation sub-associations was the only significant factor explaining B. tournefortii invasibility (Table A1). Moreover, probability of B. tournefortii presence (i.e. invasibility) in each sub-association predicted by this most parsimonious model did not differ from that predicted by the correspondent basic logistic regression model.
Table A1. Likelihood ratio tests of logistic regression models (using corrHLfit function in the spaMM package) determine that spatial environments represented by vegetation sub-associations, but not proximity to roads, is significantly associated with the presence/absence of B. tournefortii. Each likelihood ratio test compares the full model, in which both explanatory variables were included, with an alternative model, in which one of them was dropped.
	Models1 in comparison
	Deviance
	Degrees of freedom
	Probability (> χ2)

	Full model vs. model where proximity to road was dropped
	0.177
	1
	0.674

	Full model vs. model where sub-association was dropped
	59.464
	21
	1.54×10-5


1. All models share the same parameters of the Matérn function of spatial autocorrelation: υ=2.95, ρ =0.00039.
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Fig. A1.  A logistic regression model fitted by the corrHLfit function in spaMM package in R effectively reduced residual autocorrelation (B) in comparison to a standard regression where autocorrelation is not modeled (A). Both models are based on a data subset where data points causing separation of binary data were removed. Presence/absence of B. tournefortii is the response variable. Vegetation sub-association and proximity to roads are the explanatory variables. (A) Residual correlation is evident within the first 10 km in a standard logistic model fitted by the glm function in R. (B) Residual autocorrelation is effectively reduced in a model fitted by the corrHLfit function in the spaMM package in R.
Since we removed some of the data to resolve the problem of binary data separation, we performed additional two analyses to confirm that the data subtraction did not alter the conclusion of our inference. In both analyses, we used the full dataset and chose a method that could either handle or avoid the problem of separation of binary data, but were less suited to test our hypothesis. Both analyses gave the conclusion that sub-association, or its surrogate variable, is the only factor significantly associated with B. tournefortii presence, supporting the conclusion from the main analysis based on the subtracted dataset. The method and results of these two analyses are described in the following two subsections.
Applying bias-reduction logistic models
We fitted the full dataset by logistic models based on a bias-reduced estimator (Kosmidis and Firth 2009) instead of the maximum likelihood estimator used by standard logistic regressions. The fit was achieved by using the brglm function in the brglm package (version 0.6.1) in R (Kosmidis 2017). When there is separation in binomial/binary data, model estimates based on the bias-reduced estimator are always finite while those based on the maximum likelihood estimator can be infinite (Kosmidis and Firth 2009). Nevertheless, regressions based on this method cannot model the spatial autocorrelation that existed in the data. We used likelihood ratio tests to compare the full model with alternative models where one of the two explanatory variables was dropped. The tests suggested that sub-association is the only factor significantly associated with B. tournefortii presence (Table A2).
Table A2. Likelihood ratio tests of bias-reduction logistic regression models determine that spatial environments reflected by vegetation sub-association, but not proximity to roads, significantly explaings the presence/absence of B. tournefortii. Each likelihood ratio test compares the full model, in which both explanatory variables were included, with an alternative model, in which one of them was dropped.
	Models in comparison
	Deviance
	Degrees of freedom
	Probability (> χ2)

	Full model vs. model where proximity to road was dropped
	0.70
	1
	0.402

	Full model vs. model where sub-association was dropped
	190.43
	28
	< 10-10



Using relevé slope as a surrogate variable of spatial environment
We used relevé slope as a surrogate variable of spatial environment, avoiding the problem of separation of binary data that can arise when using categorical explanatory variables (e.g. sub-association). Environmental factors such as soil type and vegetation are strongly influenced by the terrains over the BMGR West. Rocky, mountainous environments are usually on steep slopes whereas sandy, valley environments are usually on gentle slopes. Therefore, differences in relevé slopes can approximate habitat differences. Nevertheless, it cannot fully represent spatial environments since locations of similar slopes can differ in other biotic and abiotic factors.
	We fitted the original dataset with logistic models using the corrHLfit function. Spatial autocorrelation was models as the Matérn function and the PQL/L method was used for model fit. Relevé slope was measured as the percent slope (the ratio of the rise to the run expressed as a percentage), and was natural log transformed to be used in the regression. 5% was added to all data to handle 0% slopes and to avoid introducing outliers among the log transformed data. Proximity to roads (in meters) was also natural log transformed and used as the other explanatory variable in the regression.
Likelihood ratio tests (performed by the fixedLRT function in the spaMM package) confirm that relevé slope was the only significant factor explaining B. tournefortii presence (Table A3). Moreover, the relationship between relevé slope and presence of B. tournefortii is negative (β = -0.914±0.171), suggesting areas with steeper slopes are less habitable to B. tournefortii.
Table A3. Likelihood ratio tests of logistic regression models (spatial autocorrelation modeled by the Matérn function) determine that relevé slope, but not proximity to roads, significantly explains B. tournefortii presence. Each likelihood ratio test compares the full model with an alternative model, in which one of the explanatory variables was dropped.
	Models1 in comparison
	Deviance
	Degrees of freedom
	Probability (> χ2)

	Full model vs. model where proximity to road was dropped
	1.56
	1
	0.211

	Full model vs. model where relevé slope was dropped2
	27.96
	1
	1.24×10-7


1. All models share the same parameters of the Matérn function of spatial autocorrelation: υ=1.43, ρ =0.00025.
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