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Previous Work The study of migration modeling can be traced to 1885 with Raven-6

stein’s seminal work on the "Laws of Migration."1 From there, models such as the Gravity7

Model emerged, which derived migration from distances and populations of neighboring8

areas.2–4 Afterwards, quantitative models assessing the risk factors (and later develop-9

ing early warning systems) for migration were created.5–10. Later, models for explicitly10

forecasting migration were developed.11–17
11

Within the literature of migration forecasting, approaches can be roughly divided12

into two categories: simulation modeling and statistical modeling. Simulation modeling13

includes techniques such as agent based modeling and dynamical systems. It works by14

simulating agents collectively interacting inside an environment with predetermined or15

derived rules and parameters.18 Statistical modeling in the context of forecasting refers to16

predicting the future based on previous sample data, using techniques such as generalized17

linear models or machine learning models.19
18

Naturally, the two approaches have their contextual advantages and disadvantages.19

Simulation modeling requires users to predefine or estimate parameters and rules into a20

system, which may introduce bias. However, simulation modeling for migration works21
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well in data-scarce scenarios, making it potentially helpful for new or emerging migration22

crises. Statistical modeling encodes fewer assumptions about the context from the user,23

instead fitting predictions strictly based on past data. Complex statistical models are use-24

ful for situations in which large, heterogeneous datasets are available, as they are able to25

find patterns that a human user may not be able to discover easily.26

For our work, we used a statistical model approach (a variety of machine learning27

models) due to the long-lasting and ongoing nature of the crises in Syria and Yemen.28

Because these crises have been ongoing for nearly a decade, large datasets based on his-29

torical events are available for use, making statistical modeling possible.30

Background Since 2011, populations in both Syria and Yemen have experienced severe31

levels of displacement; there are over 7 million IDPs in Syria (with a total population32

of 18 million) and 2.5 million in Yemen (total population of 28 million).20 Despite their33

similarities in terms of geography and timeframe, each country has its own unique factors34

that contribute to displacement beyond armed conflict. Syria has had extreme levels of35

massacres and airstrikes against civilians, as well as frequently shifting territorial control.36

Yemen faces a famine largely due to a blockade, a massive cholera outbreak, and the37

threat of tropical cyclones.38

Data There exist two kinds of missing data in the IDP migration data: missing observa-39

tions due to zero counts and missing observations due to some areas being inaccessible40

to surveyors. Despite the missing data, we opted for a complete case analysis instead of41

imputing the migration data. Our rationale is that if an area is inaccessible to surveyors,42

then it is also most likely inaccessible to humanitarian aid, so forecasting movements to43
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those areas is not useful for assisting aid groups. Furthermore, it is unclear which miss-44

ing observations represent zero migrations and which ones represent unrecorded data, so45

imputation is not sensible.46

We observed that the distribution of IDP migration could be modeled as log-normal47

for the sake of forecasting large, rare displacement events (Figure 4). Because our focus48

is on predictive performance and not statistical inference, the loss of effect size inter-49

pretability from log-transforming the response variable is not relevant. Furthermore, we50

empirically find that despite the bias introduced by transforming and untransforming the51

response variable, doing so provided better predictions than directly modeling IDP migra-52

tion (Table 3). Thus, all evaluation metrics for statistical models are reported from models53

trained on log-migration, where predictions are untransformed back into migration. We54

ran our baseline persistence models both on log-migration and migration separately, so as55

not to introduce bias from transforming and untransforming.56

Methods For our linear mixed effects model, we used a three-level structure with ran-57

dom slopes and intercepts.21 For notation, we defined i = 1, ..., N origin provinces,58

j = 1, ..., ni origin-destination pairs, and k = 1, ..., nij monthly observations for each59

origin-destination pair. Our formulation of the model was as follows:60

yi = Xiβ + Zivi + εi

Xi was the known design matrix for the fixed effects, β was the unknown vector of re-61

gression coefficients, Zi was the known design matrix for the random effects, vi was the62

unknown vector of random effects with vij ∼ N(0,Σv), and εi was the error term vector63

with eijk ∼ N(0, σ2).64
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We trained a support vector regression model22, a machine learning algorithm that65

seeks to find a function f(x) that approximates y by minimizing a loss function that ig-66

nores errors within a given distance ε of the true values. We specified it with a polynomial67

kernel K(x, y) = (xTy + c)d. Hyperparameters c and d were selected through five-fold68

cross-validation on a training set.69

We trained a random forest23, an algorithm that trains a large number of individual70

decision trees and takes the mean output as the prediction. We tuned the optimal number71

of variables randomly sampled at each split through five-fold cross-validation. We also72

trained a mixed-effects random forest24, with a similar specification to our linear mixed73

effects model: yi = f(X) + Zivi + εi, where f(X) was a standard random forest model.74

We also used a tree boosting method, XGBoost25, which forms an ensemble of re-75

gression trees and builds a model in stages during training. The hyperparameters tuned76

through five-fold cross-validation were maximum tree depth, step size shrinkage, subsam-77

ple ratio of columns (by tree), and subsample ratio of the training instance.78

We trained a multi-layer perceptron (MLP), which is a class of feedforward deep79

neural networks.26 Briefly, MLPs consists of layers of nodes, where each node is a neuron80

with a nonlinear activation function; the resulting network is thus a nonlinear function81

approximator. We specified our MLP with two hidden layers and rectifiers as activation82

functions. We selected the number of nodes through five-fold cross-validation.83

Results The data from both Syria and Yemen revealed large province-to-province and84

month-to-month variations in IDP migration, as well as in key covariates we studied for85

prediction: food prices, fuel prices, and wages. The relative standard deviations of IDP86
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migration were extremely large for both Syria and Yemen (389% and 517% respectively),87

suggesting high variability in migration across provinces and months (Figure 1, Table 2).88

The price data also yielded large relative standard deviations: 34%, 52%, and 27%, for89

food prices, fuel prices, and wages in Syria; 55% and 142% for food and fuel prices in90

Yemen.91

Interpretation of the random forest model yielded sensible results, suggesting our92

models are finding patterns within the data and not just fitting to noise. The minimal depth93

levels, a measurement of how much impact a given variable had on the final prediction,94

appeared plausible for both datasets (Figure 3). The autoregressive term is unsurprisingly95

the strongest predictor - we expected last month’s migrations to be a good estimate of this96

month’s migrations. Distance was the second strongest predictor - most IDPs become97

displaced within their home province (Figure 4), so we expect shorter distances between98

the origin and destination provinces to be associated with larger migration numbers. Food99

prices and conflict intensity are also strong predictors, likely due to famine and severe civil100

conflict in both countries.101

Ethics We recognize there are ethical concerns involved with developing public forecasts102

within conflict zones. The primary concern is that malicious actors could use our model-103

ing to more effectively target civilians and/or combatants. Because all of the data we use104

are publicly available, and since our methods do not require any special tools or access to105

be replicated, we believe it would be irresponsible to avoid disseminating our research -106

malicious actors could develop similar work without publishing it.107

We hope that by publishing an open-source, public use case, our work will facilitate108
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discussions on proper access and use of the available data. In particular, it is important109

to discuss whether or not malicious actors are sufficiently equipped to perform machine110

learning with data on internal displacement migration, and whether or not such learning111

tools are more likely to be used by more organized humanitarian aid agencies. Addi-112

tionally, as data collection is improved and disaggregated, care should be taken to avoid113

personally identifiable information within migration datasets.114
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Figures and Tables115

Figure 1: Measurement variability over time for Syria and Yemen. a,b: Provinces of

each country color coded by standard deviation of IDP migrations aggregated over time.

Darker shades indicate larger variability in IDP migrations for a given province. c,d:

Country level statistics on IDP migrations, food prices, fuel prices, and wages over time

for Syria and Yemen. Values are presented as percentages of their historical averages.

Wage data are unavailable for Yemen.
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Table 1: Predictive performance of forecasting methods for Syria (a) and Yemen (b) on

both migration and log-migration. HM denotes historical mean, LOCF denotes last obser-

vation carried forward, LMM denotes linear mixed effects model, SVM denotes support

vector machine, RF denotes random forest, MERF denotes mixed-effects random forest,

XGB denotes gradient boosting, and MLP denotes multi-layer perceptron. RMSE is root

mean squared error, MAE is mean absolute error, and R2 is the coefficient of determina-

tion.

(a) Syria predictive performance.

Model RMSE MAE R2 RMSE (log) MAE (log) R2 (log) Sign Acc.

HM 10587.07 3066.02 0.24 2.15 1.66 0.38 0.63

LOCF 10660.7 2577.37 0.34 2.01 1.44 0.46 0.59

LMM 10074.47 2370.81 0.31 1.55 1.19 0.56 0.70

SVM 10292.38 2383.21 0.26 1.53 1.16 0.57 0.70

RF 9576.61 2237.73 0.45 1.49 1.14 0.59 0.70

MERF 9627.89 2304.97 0.34 1.53 1.18 0.57 0.70

XGB 9760.46 2351.41 0.35 1.59 1.23 0.53 0.68

MLP 10283.04 2378.43 0.35 1.59 1.23 0.53 0.68

(b) Yemen predictive performance.

Model RMSE MAE R2 RMSE (log) MAE (log) R2 (log) Sign Acc.

HM 1332.29 287.78 0.08 2.10 1.75 0.30 0.67

LOCF 1413.30 325.92 0.17 1.48 1.13 0.33 0.60

LMM 1175.50 276.59 0.17 1.31 1.02 0.37 0.73

SVM 1149.05 254.37 0.22 1.37 1.06 0.33 0.74

RF 1140.01 247.05 0.21 1.23 0.98 0.39 0.74

MERF 1161.15 250.41 0.19 1.25 0.98 0.38 0.75

XGB 1236.94 258.51 0.12 1.27 0.98 0.37 0.76

MLP 1588.56 329.39 0.10 1.44 1.09 0.26 0.72
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Table 2: Descriptive statistics on IDP arrivals, food prices, wages, fuel prices, and conflict

intensity for Syria and Yemen. N denotes the number of observations and SD denotes

standard deviation. Wage data are unavailable for Yemen. Units for food/wage/fuel data

are in Syrian and Yemeni currency, respectively.

Country N Flow Mean Flow SD Food Mean Food SD Wage Mean Wage SD Fuel Mean Fuel SD Conflict Mean Conflict SD

Syria 1505 3098.59 12066.28 474.93 163.42 1383.18 373.97 2054.13 1077.89 0.36 1.33

Yemen 3589 563.54 2912.12 280.04 155.13 977.83 1387.37 0.40 1.17

Table 3: Predictive performance differences between models trained directly on IDP mi-

gration and models trained on log-migration (and then transformed back to migrations).

Positive values for RMSE and MAE and negative values forR2 and sign accuracy indicate

the model trained directly on migrations performed worse by the given amount.

(a) Syria

Model RMSE MAE R2 Sign Acc

LMM 2136.71 573.64 -0.18 -0.13

SVM -325.86 962.05 0.03 -0.10

RF 20.32 1119.93 -0.10 -0.11

MERF 375.20 1112.60 0.01 -0.11

XGB 533.16 1310.00 0.03 -0.09

MLP 1555.76 1516.87 -0.17 -0.06

(b) Yemen

Model RMSE MAE R2 Sign Acc.

LMM 127.53 12.08 -0.10 -0.16

SVM 785.60 651.41 -0.12 -0.11

RF -26.89 139.77 0.11 -0.09

MERF 272.47 202.70 0.06 -0.11

XGB 187.72 237.65 -0.01 -0.12

MLP 1464.27 259.35 0.00 -0.06
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Figure 2: Observed vs predicted values for IDP migration (d-f, j-l) and log-migration (a-c,

g-i) aggregated across all available months and provinces. Left column (a,d,g,j) depicts

plots from a random forest model (RF), middle column (b,e,h,k) depicts historical mean

values (HM), and right column (c,f,i,l) depicts last observations carried forward (LOCF).
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Figure 3: a,b: Random forest minimal depth variables in ranked order for Syria (a) and

Yemen (b), with the most important variables at the top. Smaller values of minimal depth

indicate a stronger impact on the forest prediction. c,d: Minimal depth variable inter-

actions for Syria (c) and Yemen (d). Red cross indicates the reference variable for each

panel. Higher levels of interactivity are indicated by lower levels of minimal depth.
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Figure 4: a,b: IDP migration from province to province aggregated over all time periods

for Syria (a) and Yemen (b). Each node represents a province. The widths of the bands

represent the number of migrations. c-f: Distribution of IDP migration across all time

points and provinces for Syria (c,d) and Yemen (e,f). Both log-transformed (d,f) and

untransformed IDP migration values (c,e) are shown.
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