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Supplementary Materials and Methods 

DNA methylation–based age prediction models 

Each DNA methylation-based age prediction models used in the current study are described 

below and in Supplementary Table S2. 

Horvath and Hannum 

The DNA methylation–based age prediction model by Horvath was developed by elastic-net 

regression of chronological age over 21,369 CpG sites for 7844 samples across multiple 

tissues (Horvath, 2013). This resulted in a prediction model for chronological age based on 

353 CpG sites. The DNA methylation–based age prediction model by Hannum was 

developed by elastic-net regression of chronological age over 473,034 CpG sites, age 

adjusted body mass index, sex, diabetes status, ethnicity and batch for 656 individuals blood 

samples (Hannum et al., 2013). This resulted in a prediction model for chronological age 

based on 71 CpG sites.  

Horvath IEAA and Hannum IEAA 

The Horvath IEAA (intrinsic epigenetic age acceleration) and the Hannum IEAA models are 

DNA methylation–based age prediction models based on the initial Horvath and Hannum 

models. The initially predicted DNA methylation–based ages are regressed over the 

chronological ages while correcting for blood cell counts (B. H. Chen et al., 2016). Blood cell 

counts were also estimated from DNA methylation using the Houseman method (Houseman 

et al., 2012). The residuals of these regressions resulted in the Horvath IEAA or the Hannum 

IEAA DNAmAA estimates. The goal for this approach was to have the DNAmAA estimate 

independent of the blood cell count (B. H. Chen et al., 2016).  
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Hannum EEAA 

The Hannum EEAA (extrinsic epigenetic age acceleration) model is based on the Hannum 

model and estimated blood cell counts associated with aging (B. H. Chen et al., 2016). These 

blood cell counts up-weight the original Hannum model to describe aging-related 

haematological changes.  

PhenoAge 

While the Hannum and the Horvath models use an approach that directly predicts 

chronological age by a set of CpG sites, PhenoAge predicts a biological age surrogate based 

on further biomarkers (Levine et al., 2018). The PhenoAge model was developed by 

performing Cox-penalised regression on 42 aging-related biomarkers and chronological age 

over the hazard of mortality for 9.926 individuals. Then, nine best performing biomarkers, 

and chronological age were used to build the final PhenoAge model. Using elastic-net 

regression, such biological age biomarkers were regressed over 20,169 individual CpG sites 

to build the DNA methylation–based age prediction model. This resulted in a 513 CpG site -

prediction model for phenotype-based biological age (‘PhenoAge’). 

By incorporating blood-derived biomarkers, the PhenoAge model approaches biological 

aging by a combination of biological factors rather than chronological age alone.  

GrimAge 

Besides the PhenoAge model, the GrimAge model was also developed to predict a surrogate 

for biological age rather than directly predicting chronological age. Here, biomarkers and 

time-to-death data was used (Lu et al., 2019). Elastic-net regression for 88 individual plasma-

protein levels and self-reported smoking pack-years were fitted over chronological age, sex 

and more than 485,000 CpG sites, for 6.935 individual blood samples. The 12 best-correlated 

plasma-protein DNA-methylation surrogates, DNA methylation–based smoking pack-years, 



DNAm-based aging in cancer-discordant twins
  4 

chronological age and sex were further used to build a model that predicts individuals’ time 

to death by penalised Cox regression. The resulting prediction model includes 7 of the 12 

plasma protein–describing DNA-methylation surrogates, DNA methylation–based smoking 

pack-years, chronological age, and sex. In total, the model includes 1030 unique CpG sites 

summed across all variables. 

By fitting the DNA methylation data, chronological age, and sex on this model, time-to-death 

estimates are calculated, which are subsequently scaled to fit estimates for chronological age 

distribution resulting in the GrimAge age estimates.  

 

Supplementary tables 
 

Supplementary table S1: Frequencies of the diagnostic groups 

Diagnostic group Frequency in the dataset (total n = 95) 

Breast cancer 24 

Cancer of the female reproductive tract 18 

Haematological malignancy 8 

Non-melanoma skin cancer 7 

Stomach and upper gastrointestinal tract cancer  7 

Colorectal cancer 6 

Melanoma 5 

Bladder cancer 4 

Kidney cancer 3 

Lung cancer 3 

Prostate cancer 3 

Thyroid cancer 3 

Others 4 
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Supplementary figures 
 

 

 

 

Figure S1:  
Within-pair differences in DNAmAA for the twin pairs (n=95) discordant for any cancer (pan-cancer group). Each twin in a pair (blue) is 
linked to the co-twin, with the mean values presented in red. Within-pair differences in DNAmAA are shown separately for pairs 
sampled before and after the diagnosis, and for each DNAmAA model. (A) Horvath, (B) Horvath IEAA, (C) Hannum, (D) Hannum IEAA, 
(E) Hannum EEAA, (F) PhenoAge, (G) GrimAge. Paired t-test p-values are given for mean within-pair differences in DNAmAA different 
from zero. 

Pan-cancer, paired t-test 

A B 

C 

E 

G 

D 

F 
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Figure S2:  
The within-pair difference in DNAmAA (dDNAmAA) over time to cancer diagnosis for the twin pairs (n=95) discordant for any cancer 
(pan-cancer group). The individual data points (blue) each represent the differences in DNAmAA within one pair. Negative values for 
time to diagnosis mean that a pair was sampled before diagnosis, positive values that the pair was sampled after diagnosis. Each 
DNAmAA model is presented in separate graphs with the regression line (red) and F-statistic’s p-value. 

Pan-cancer, linear regression 
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Figure S3:  
Within-pair differences in DNAmAA for the twin pairs (n=24) discordant for breast cancer. Each twin in a pair (blue) is linked to the co-
twin, with the mean values presented in red. Within-pair differences in DNAmAA are shown separately for pairs sampled before and 
after the diagnosis, and for each DNAmAA model. (A) Horvath, (B) Horvath IEAA, (C) Hannum, (D) Hannum IEAA, (E) Hannum EEAA, (F) 
PhenoAge, (G) GrimAge. Paired t-test p-values are given for mean within-pair differences in DNAmAA different from zero. 

Breast cancer, paired t-test 

A B 

C 

E 

G 

D 

F 
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Figure S4:  
The within-pair difference in DNAmAA (dDNAmAA) over time to cancer diagnosis for the twin pairs (n=24) discordant for breast cancer. 
The individual data points (blue) each represent the differences in DNAmAA within one pair. Negative values for time to diagnosis 
mean that a pair was sampled before diagnosis, positive values that the pair was sampled after diagnosis. Each DNAmAA model is 
presented in separate graphs with the regression line (red) and F-statistic’s p-value. 

Breast cancer, linear regression 
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Figure S5:  
Within-pair differences in DNAmAA for the twin pairs (n=71) discordant for non-breast cancer. Each twin in a pair (blue) is linked to 
the co-twin, with the mean values presented in red. Within-pair differences in DNAmAA are shown separately for pairs sampled 
before and after the diagnosis, and for each DNAmAA model. (A) Horvath, (B) Horvath IEAA, (C) Hannum, (D) Hannum IEAA, (E) 
Hannum EEAA, (F) PhenoAge, (G) GrimAge. Paired t-test p-values are given for mean within-pair differences in DNAmAA different 
from zero. 

Non-breast cancer, paired t-test 

A B 
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E 
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D 

F 
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Figure S6:  
The within-pair difference in DNAmAA (dDNAmAA) over time to cancer diagnosis for the twin pairs (n=71) discordant for non-breast 
cancer (other than breast cancer). The individual data points (blue) each represent the differences in DNAmAA within one pair. 
Negative values for time to diagnosis mean that a pair was sampled before diagnosis, positive values that the pair was sampled after 
diagnosis. Each DNAmAA model is presented in separate graphs with the regression line (red) and F-statistic’s p-value. 

Non-breast cancer, linear regression 


