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Investigation of rock magnetic properties for AMS interpretation 

Measurement of AMS produces a second-rank tensor, of which the orientation and magnitude of its 

principal axes (K1 ≥ K2 ≥ K3) are dependent on the degree of alignment of individual minerals in a sub-

specimen and the inherent magnetic susceptibility of different mineral phases (Nagata 1961; Khan 1962). 

The size, shape, intensity and axes orientations can be typically linked to an observed petrofabric (e.g., 

Knight & Walker 1988; Archanjo et al.  1995; Launeau & Cruden 1998), although some caveats exist 

such as inverse magnetic fabrics (Potter & Stephenson 1988; Rochette 1988), textural anisotropy and 

magnetic interaction (Wolff et al. 1989; Gaillot et al. 2006), and mineralogical control over AMS 

(Rochette & Vialon 1984; Borradaile et al. 1987; Jackson 1991).  These caveats are well documented and 

can be accounted for (Tarling & Hrouda 1993; Borradaile & Jackson 2010).  

We used AMS to investigate the structural relationship between subtle fabrics associated with the 

emplacement of the Omey pluton and the obvious, but localised, NNW–SSE shear zones. We undertook a 

standardised suite of rock magnetic experiments to determine magnetic mineralogy, coercivity spectra 

and grain size (Lowrie & Fuller 1971; Bailey & Dunlop 1983; Dunlop 1986; Argyle & Dunlop 1990; 

Heider et al. 1992; Argyle et al. 1994; Xu & Dunlop 1995; Dunlop & Özdemir 1997). These data were 

used in conjunction with our field and petrographic observations and the statistical treatment of each 

AMS tensor (Owens 1974, 2000; Jelinek 1977, 1981) to determine the significance of each averaged 

AMS site. Our results are presented in Figure 1 and summarised in Table 1. 

 

Table 1 Summary of compiled rock magnetic properties 

Sample 
Facie

s 

Coercivity Demagnetization Characteristics Susceptibility Curie Temp. (°C) 
Inferred grain size & 

domain state H CR  (A/m) M S  (A/m) 
MDF AR

M 
MDF IR

M MDF ARM /IRM MDF Remanence Field K mean  x 10-3 
Heatin

g 
Coolin

g 
OM42 G1 -0.031 0.4–0.3 5 8.5 0.59 Low Field 7.83 576 578 MD (~130µm) 
OM70 G2 -0.055 0.4–0.5 13.5 17.5 0.77 Low Field 12.77 579 579 MD (~13µm) 
OM73 G3 -0.068 0.5–0.7 17 20.5 0.83 Low Field 3.11 580 580 MD - PSD (~3µm) 
OM95 G1 -0.048 0.4 9.5 21 0.45 Low Field 6.05 579 576 MD (~110µm) 

OM106 G3 -0.063 0.4–0.5 14 23 0.61 Low Field 5.08 577 578 MD - PSD (~5µm) 
OM108 G3 -0.046 0.4 9.5 18 0.53 Low Field 10.16 579 577 MD (110µm) 

 

 
Figure 1 (A) Results of high temperature low field magnetic susceptibility experiments indicate magnetite is the most prominent 
ferromagnetic phase in all specimens. (B) Results of cryogenic low field magnetic susceptibility experiments show a negligible 
influence of paramagnetic phases at room temperature. (C & D) Results of IRM acquisition and back-field IRM demagnetisation 
show low coercivity behaviour characteristic of multi-domain–pseudo-single magnetite. (E) Response of select samples to 
demagnetisation of NRM, ARM and IRM show the median destructive field is always <21 mT, again indicating multi-domain 
magnetite is the principal contributor to remanence. 
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Temperature curves 

The heating–cooling curves show that all samples behaved similarly and are essentially irreversible: 

susceptibility increased rapidly between minus 195°C and minus 174°C, followed by a moderate decline 

between minus 174°C and minus 125°C; whereas between minus 125°C and 12°C, no significant change 

occurred (Fig. 1a, b). These data are consistent with the presence of a ferromagnetic phase as the principal 

magnetic mineral in all sub-specimens, in this case biotite and minor amphibole, which caused the minor 

negative temperature dependence between minus 174°C and minus 125°C. Critically, the relative 

magnitude of susceptibility at room temperature, compared to that under cryogenic conditions, shows that 

the ferromagnetic component is the overwhelmingly dominant contributor to susceptibility, and therefore 

AMS, at room temperature. 

A net increase in susceptibility is always observed after heating, and irreversible thermomagnetic 

curves such as these reflect the presence of either ferromagnetic iron sulphide phases, such as pyrrhotite, 

or the presence of coarse-grained maghemite; the latter is due to a low-temperature oxidisation process 

(initiated at <250°C) which converts Fe2O3 to Fe3O4 to form maghemite, which is metastable and inverts 

to magnetite above 300°C (Dunlop & Özdemir 1997). The subtle bumps on our heating curves are 

considered to be a product of this process rather than to significant volumes of sulphide minerals, as 

petrographic analysis (Feely et al. 2007) does not support the latter scenario. 

Curie Point (TC) estimates for selected sub-specimens were determined by continuous 

measurement of low field susceptibility during step-wise heating and cooling of powdered samples 

between 30°C and 700°C (Fig. 1a). Using either the Hopkinson Peak or the inflection point methods 

(Hopkinson 1890; Tauxe 1998), eight samples return an inferred TC of between 575°C and 580°C; 

whereas the 9th (sample OM89) yields a TC of 590°C. The majority exhibit broad Hopkinson Peaks and 

only minor increases in susceptibility immediately prior to TC; we interpret this as being consistent with a 

multi- (MD) to pseudo-single (PSD) domain magnetite grain size (Dunlop & Özdemir 1997). Our results 

are also consistent with MD to PSD low Ti titanomagnetite as the dominant ferromagnetic phase (e.g.,  

Akimoto 1962; Readman & O’Reilly 1972; Orlický 1990; Liss et al. 2004; Lattard et al. 2006). For these, 

TC can be used to determine average Ti (Akimoto 1962); hence all our samples have calculated Ti content 

of ≤0.1 %. 

 

Demagnetisation behaviour 

Natural remanent magnetisation (NRM) demagnetisation curves for all samples exhibit an initial rapid 

decrease in median destructive field (MDF) remanence (MDF ≤10 mT), with minor subsequent 

undulations (Fig. 1e). Anhysteretic remanent magnetisation (ARM) and saturation isothermal remanent 
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magnetisation (SIRM) also demagnetise in an exponential fashion. A narrow spectrum of L-type 

demagnetisation behaviour (Xu & Dunlop 1995) exists in the current data set (Table 1). MDFARM and 

MDFSIRM ratios fall between 0.4 and 0.9, and exponential demagnetisation of ARM occurs in relatively 

low fields (MDF ≤25 mT). Together, these data indicate that a PSD to MD magnetic grain size is the 

dominant ferromagnetic phase in all sub-specimens (Argyle & Dunlop 1990; Xu & Dunlop 1995). 

 

IRM and BIRM acquisition 

Acquisition of saturation isothermal remanent magnetisation (IRM) and back-field isothermal remanent 

magnetisation (BIRM) was used to determine hysteresis, coercivity parameters and magnetic mineralogy 

and grain size. IRM acquisition curves (Fig. 1d) show that all samples reach 95 % saturation between 0.12 

T and 0.3 T, with complete saturation between 0.3 T and 0.7 T (Table 1). Above 0.7 T and up to 2.5 T, no 

significant increase in magnetic remanence is observed. These observations are supported by BIRM data, 

which show a rapid decline in magnetic remanence between 0.01 T and 0.03 T (Fig. 1c). Coercivity of 

remanence (HCR) is achieved in fields between 0.03 mT and 0.68 mT (Table 1). Facies G3 sub-specimens 

exhibit higher HCR, between -0.068 mT and -0.046 mT, compared to Facies G2/G1 samples of 0.055–0.03 

T (Table 1). These results complement IRM acquisition curves which show that Facies G3 samples 

require greater inducing fields (0.4–0.68 T) in order to reach full saturation; in comparison to sub-

specimens from facies G1 and G2 (0.3–0.5 T).  

Rapid acquisition of saturation (95 %) IRM in fields of ≤ 0.3 T, and HCR values of < 0.07 T are 

consistent with the above observations and imply that PSD–MD titanomagnetite is the primary 

ferromagnetic mineral in all sub-specimens. Continued acquisition of remanence (< 5 %) in fields above 

0.3 T shows that small amounts of higher coercivity minerals are present, such as maghemite or hematite, 

particularly in Facies G3. This observation is consistent with petrographic observations (Townend 1966; 

Feely et al. 2007) which identify a higher abundance of haematite and hydrothermal molybdenite 

disseminated in facies G2 and G3. 

 

Characterisation of magnetic mineralogy 

High-temperature, low field magnetic susceptibility experiments consistently return a TC of between 

575°C and 580°C, and show that low Ti titanomagnetite is the most abundant ferromagnetic mineral in 

the studied samples. Exponential demagnetisation of magnetic remanence, and the characteristically low 

coercivity values detected during IRM experiments, indicate that PSD to MD titanomagnetite grains 

dominate (Dunlop & Özdemir 1997). Therefore, the AMS fabric is expected to be "normal" (Rochette et 

al. 1999; Ferré 2002). Titanomagnetite is several orders of magnitude more susceptible than paramagnetic 
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minerals at room temperature in low fields, and thus the AMS tensor is expected to reflect the 

crystallographic orientation of this mineral where <5 % paramagnetic minerals are present (Pierre & 

Rochette 1987; Archanjo et al. 1995). Some G3 samples return very low Kmean values; in these cases a 

more substantial contribution by paramagnetic phases to the AMS tensor is expected. However, cryogenic  

experiments show that the paramagnetic contribution to bulk susceptibility in weakly magnetic samples 

(Kmean ~10-6) remains negligible at room temperature. The petrographic observation that elongate 

titanomagnetite occurs along cleavage planes of paramagnetic minerals, combined with rock magnetic 

data which show magnetic susceptibility to be titanomagnetite-dependant, demonstrates that the 

titanomagnetite petrofabric can itself be dictated by the orientation of silicate minerals (Archanjo et al. 

1995; Launeau & Cruden 1998). 
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