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SUPPLEMENTARY MATERIALS




Supplementary Material S1. Terminology on net nutrient fluxes


Afferent flux: Flux of nutrient supplied to the liver via the portal vein and the hepatic artery
= (nutrient concentration in portal venous blood/plasma x portal venous blood/plasma flow) + (arterial nutrient concentration x hepatic arterial blood/plasma flow)

Efferent flux: Flux of nutrient released by the liver via the hepatic vein
= nutrient concentration in hepatic venous blood/plasma x hepatic venous blood/plasma flow

Net hepatic flux = efferent hepatic flux – afferent hepatic flux

The terminology ‘net hepatic uptake’ refers to a positive net hepatic flux, ie. afferent flux > efferent flux.

The terminology ‘net hepatic release’ refers to a negative net hepatic flux, ie. afferent flux < efferent flux.
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Supplementary Table S1. Calculation of endogenous metabolites mobilised when ruminants are in negative energy balance

	Calculation of energy balance§1

	ME requirements for maintenance (MEm, kJ/kg BW 0.75 per day)
= 481.5 for dairy cattle and beef cattle
= 439.6 for dry and gestating cattle and for sheep 
When ME intake < MEm :
Energy Balance (EB, kJ /kg BW 0.75 per day) = (ME intake – MEm) × km
When ME intake > MEm :
Expected NE for production (NEP, kJ /kg BW 0.75 per day) = (ME intake - MEm) × k
Energy Balance (EB)
= expected NEP, for growing animals
= expected NEP – observed NEP, for lactating or gestating animals
Mobilized energy (kJ/kg BW 0.75 per day) = EB, when EB < 0

	Calculation of mobilized alanine§2

	Mobilized proteins (g/kg BW 0.75 per day) = (mobilized energy x 0.293) / 5.6
Mobilized alanine  (moles of carbon/kg BW 0.75 per day) = (mobilized proteins / 89.1) x 4

	Calculation of mobilized glycerol§3

	Mobilized fat (g/kg BW 0.75 per day) = (mobilized energy x 3.89) / 9.2
Mobilized glycerol (moles of carbon/kg BW 0.75 per day) = [ (mobilized fat x 0.105) / 92] x 3


Table modified from Loncke C, Nozière P, Bahloul L, Vernet J, Lapierre H, Sauvant D and Ortigues-Marty I. 2015. Empirical prediction of net splanchnic release of ketogenic nutrients, acetate, butyrate and β-hydroxybutyrate in ruminants: A meta-analysis. Animal 9, 449-463. (reprinted with permission)

§1 ME= metabolisable energy; NE = net energy; GE = gross energy; km  = 0.287 × ME/GE + 2.32 ; k = kl  = 0.249 × ME/GE + 1.94 for lactation and moderate growth or k = kg  = 0.13 for gestation ; observed NEP	 for lactation = 3.094 MJ/L milk per day, assuming a milk fat content at 4% (except in the 5 publications which reported milk fat content ranging from 3.6% to 4.5%), and NEP for gestation = 17.15 MJ/day for Holstein cows, 6.70 MJ/day for Dorset sheep and 10.7 MJ/day for Lacaune sheep.  All values are based on INRA (2007)
§2 with 0.07 being the proportion of proteins in mobilized energy, 5.6 the energy density of proteins (MJ/g), 89.1 the molar mass of alanine (g/mol) and 4 the number of carbons in one mole of alanine (mole/mole) 
§3 with 0.93 being the proportion of fat in mobilized energy, 9.2 the energy density of fat (MJ/g), 0.105 the proportion of glycerol in mobilized fat assuming that body fat is composed of 100% triglycerides and that one mole of triglyceride comprises 1 mole of glycerol and 3 moles of fatty acids (of 887 g/mole of average molar mass), 92 the molar mass of glycerol (g/mol), and 3 the number of carbons in one mole of glycerol (mole/mole) 

Supplementary Material S3. Influence of analytical methods on models

Attention was paid to the methods used to determine net hepatic fluxes to ensure that all results could be combined in the meta-analysis. Methodological aspects considered were the selection of the matrix, blood or plasma, and of the analytical method for the analysis of metabolites, as well as the presence vs. absence of a deacetylation step in the analysis of para-aminohippuric acid used to determine blood or plasma flows.

Measurement of metabolites on blood vs plasma. In the eligible dataset, concentrations were mainly determined on blood (n = 49 and 4 for propionate, n = 76 and 25 for α-amino-N, n = 60 and 30 for L-lactate and n = 58 and 60 for glucose, in blood and plasma respectively). No results on total or individual amino acid fluxes were available. For propionate (data not shown) and α-amino-N (Martineau et al., 2009), no difference had been observed whether fluxes were measured in plasma or blood. For L-lactate, differences between blood and plasma fluxes depend on the nutritional status of the animals (Aufrère, 1979). For glucose, net portal appearance of glucose tended to be overestimated by plasma measurements when it was low, but underestimated up to 25 % with high intakes in ewes (Nozière et al., 1998). But no systematic correction factor exists for L-lactate and glucose. Hence all plasma and blood results were pooled. The lack of gross bias between plasma and blood results was only checked by graphical examination. 

Analytical methods to determine metabolite concentrations. Analytical methods used to measure glucose (oxi-peroxydase), α-amino-N (ninhydrine) and L-lactate (L-lactate dehydrogenase) were similar among publications. Similarly, all but one (solvent extraction) selected publications indicated that propionate was analysed after an extraction by ion exchange resins. Consequently, no correction was applied to account for differences in analytical methods. It was checked that all blood or plasma concentrations of nutrients were superior to the analytical limits of quantification (Ortigues et al., 2003) determined in our laboratory (limit of quantification = 1.13 mM for glucose, 0.19 mM for propionate and 0.32 mM for α-amino-N, not defined for L-lactate). All data met this analytical reliability criterion.

Impact of para-aminohippuric acid determination method. Hepatic blood flows were measured using the para-aminohippuric acid (pAH) down-stream dilution method. 86 % of all publications did not correct for the incomplete recovery of pAH across the liver, demonstrated in sheep by Katz and Bergman (1969) and in cows by Kristensen et al. (2009) and Rodriguez-Lopez et al. (2014). To evaluate the potential impact of this methodological error, it was tested whether correction of net hepatic fluxes for incomplete marker recovery modified the prediction equations. Net fluxes were recalculated assuming that the hepatic arterial blood/plasma flow represented 10% of hepatic venous blood/plasma flow as measured when pAH is deacetylated before analysis (Rodriguez-Lopez et al., 2014). This correction could only be applied when publications reported blood flow and nutrient arterial concentration data in addition to net fluxes. It was the case in 77, 68, 67 and 88 % of the publications used in the models of glucose, propionate, lactate and α-amino-N, respectively.
Correcting net flux values for incomplete recovery of pAH could only be done for a limited number of publications. This limited dataset did not span over the whole meta-design and reduced the proportion of data on lactation and gestation, explaining why some uncorrected response equations established on this partial dataset (Supplementary Table S2) were significantly different from those reported in Tables 4 and 5. Correcting net flux values for pAH acetylation did not modify net hepatic uptake of propionate, increased net uptakes of L-lactate and reduced that of α-amino-N and glucose. Values averaged 0.679±0.053 vs. 0.680±0.053, 0.276±0.031 vs. 0.294±0.030, 0.393±0.033 vs. 0.353±0.025, and 0.712±0.037 vs. 0.695±0.038 mmol/ kg BW per hour, for uncorrected and corrected fluxes, in the same respective order of nutrient. The marginal rates of nutrient uptake by the liver were significantly reduced for L-lactate and α-amino-N only, as well as the marginal rate of glucose release from available precursors. Intercept values remained not significantly different from zero, changes in their numerical values reflected changes in net fluxes reported above. 


Aufrère  J 1979.  Relations inter-organes et capitation hépatique des principaux substrats de la néoglucogenèse et de la cétogenèse chez le rat. Influence des facteurs nutritionnels et du jeûne. PhD thesis, Université de Clermont II, Clermont Ferrand, France.
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Supplementary Table S2 Response models of net hepatic fluxes (NHF, mmol/kg BW per hour) of propionate (C3), L-lactate, α-amino-N (αN) and glucose (mmol C/kg BW per hour) after correction of hepatic blood flows for incomplete para-aminohippuric (pAH) recovery in ruminants. Since corrections could not be applied to the full dataset, uncorrected and corrected values are shown for the sub-datasets used
	
	
	pAH acid uncorrected values
	pAH corrected values

	Models
	nexp
	Equations
	RMSE
	R2adj
	
	RMSE
	R2adj

	NHF-C3
	21
	0.0646NSa±0.0345 - 0.9896**b±0.0443 x NPA-C3
	0.0275
	0.99
	0.0541NSc±0.0291 - 0.9812***c±0.0374 x NPA-C3
	0.0232
	0.99

	NHF-L-lactate
	12
	-0.2235NSa±0.1067 + 0.2322**a±0.1313 x NPA-C3
- 1.0677***a±0.1244 x NPA-L-lactate
	0.0613
	0.91
	-0.1873NSc±0.0817 + 0.1379**d±0.1006 x NPA-C3
- 0.9904***d±0.0954 x NPA-L-lactate
	0.0469
	0.94

	NHF-αN
	23
	-0.0431NSb±0.0482 - 0.5819**b±0.0879 x NPA-αN
	0.0805
	0.90
	-0.0891NSd±0.0483 - 0.4615*d±0.088 x NPA- αN
	0.0808
	0.83

	NHF-glucose
	30
	-0.7407NSa±0.8820 + 0.7971**a±0.1233 x NPA-prec 
	0.4352
	0.90
	0.495NSc±1.496 + 0.6824**c±0.2092 x NPA-prec 
	0.738
	0.81


nexp = number of experimental groups in the model; RMSE = Residual means square error; R2adj = adjusted R2; NS: non significantly different from zero; * P<0.05; ** P<0.01; *** P<0.001; NPA = net portal appearance; prec = glucose precursors
a No significant difference with the same parameter calculated from the whole dataset
b Significant difference with the same parameter calculated from the whole dataset
c No significant difference with the same parameter calculated from the pAH-uncorrected sub-dataset (P>0.05)
d Significant difference with the same parameter calculated from the pAH-uncorrected sub-dataset (P<0.05)

Supplementary Material S4. Influence of animal profile

Influence of physiological status
Non-productive adults (56% of the data) were characterised by DM intake ranging from fasting to 41 g/kg BW. Growing animals (21% of the data) and lactating cows were fed diets rich in concentrate (47-48%, P<0.03 compared to other physiological statuses). All lactating animals (15% of the data) were dairy cows between 11 and 240 days in milk (13 treatments for the first 80 days in milk, and 10 for 120 to 240 days in milk). They were fed the highest levels of DM intake (P=0.049) compared to animals in other physiological status. Data on gestating animals (8% of the data; all in late gestation,  2 months before calving) were limited, but sufficient to be included in some analyses.

Influence of animal species
For each nutrient, the distribution of treatments was similar between cattle and sheep and between females and males (data not shown). Among available data, cattle and sheep had similar average DM intake per kg BW (P=0.47) but diets fed to sheep had different composition with lower proportions of concentrate (P<0.001) and lower digestibility (P<0.001) compared with cattle. Consequently, dietary intakes differed between cattle and sheep for all constituents except for dietary rumen fermentable organic matter intake (P=0.60) (data not shown).
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Supplementary Table S3.a Description of diets used for the meta-analyses1 of net hepatic fluxes of propionate, L-lactate, α-amino-nitrogen and glucose according to species (cattle and sheep)
	
	Cattle
	
	Sheep
	
	Species effect

	
	nt
	mean
	SD
	Min
	Max
	
	nt
	mean
	SD
	Min
	Max
	
	P value

	Dietary composition2 (g/kg DM)

	Crude fiber
	62
	171
	71.7
	74.6
	371
	
	95
	273
	83.7
	39.5
	404
	
	< 0.001

	NDF
	62
	352
	122
	170
	710
	
	95
	522
	137
	133
	712
	
	< 0.001

	ADF
	62
	188
	75.9
	87.7
	403
	
	95
	296
	86.7
	43.8
	393
	
	< 0.001

	Starch
	62
	52.6
	36.3
	0.0
	110
	
	95
	21.3
	30.0
	0.0
	106
	
	< 0.001

	CP
	62
	152
	29.9
	85.0
	247
	
	95
	122
	33.2
	44.7
	181
	
	< 0.001

	Digestible OM
	62
	710
	65.7
	478
	793
	
	95
	604
	85.3
	458
	852
	
	< 0.001

	Digestible NDF
	62
	216
	83.2
	97.3
	403
	
	95
	297
	92.1
	94.9
	474
	
	< 0.001

	Digestible CP
	62
	102
	27.0
	39.0
	166
	
	95
	72.9
	30.8
	4.90
	135
	
	< 0.001

	Rumen fermentable OM
	62
	508
	41.4
	436
	631
	
	95
	500
	43.7
	413
	586
	
	0.238

	Rumen digestible NDF
	62
	195
	74.8
	87.7
	363
	
	95
	268
	82.9
	85.4
	427
	
	< 0.001

	Rumen fermentable CP
	62
	92.1
	26.8
	45.9
	167
	
	95
	72.5
	25.1
	27.6
	128
	
	< 0.001

	PDI
	62
	95.6
	14.9
	54.3
	126
	
	95
	77.5
	19.8
	26.9
	111.5
	
	< 0.001

	ME (MJ/kg DM)
	62
	11.1
	1.15
	7.03
	12.5
	
	95
	9.20
	1.42
	6.75
	13.1
	
	< 0.001

	Proportion of concentrate 
(g/100 g DM)
	62
	54.1
	30.4
	0.0
	100
	
	95
	25.0
	33.6
	0.0
	100
	
	< 0.001

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Intake (g/kg BW per day)
	
	
	
	
	
	
	
	
	
	
	
	
	

	DM
	62
	21.0
	5.90
	0.0
	36.9
	
	95
	22.1
	8.92
	0.0
	47.5
	
	0.378

	Digestible OM
	62
	14.9
	4.51
	0.0
	28.6
	
	95
	13.4
	5.47
	0.0
	30.0
	
	< 0.001

	Rumen fermentable OM
	62
	10.7
	3.26
	0.0
	17.4
	
	95
	11.1
	4.61
	0.0
	25.4
	
	0.540

	Rumen digestible NDF
	62
	4.07
	1.74
	0.0
	7.53
	
	95
	6.03
	3.23
	0.0
	14.3
	
	< 0.001

	Starch
	62
	5.60
	3.68
	0.0
	16.1
	
	95
	2.70
	3.90
	0.0
	15.2
	
	< 0.001

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Energy balance 
(kJ/kg BW per day)
	62
	29.9
	43.0
	-70.9
	88.9
	
	95
	11.2
	61.0
	-173
	109.4
	
	< 0.001


Min = minimum value; Max = maximum value; nt = number of treatments
1 see Supplementary Material S1
2 Dietary composition and intake calculated by additivity according to INRA Feed Tables (INRA, 2007); DM = dry matter; OM = organic matter; ME = metabolizable energy; PDI = protein digestible in the intestine; BW = body weight.
Supplementary Table S3.b Description of arterial concentrations, net portal appearance, net hepatic fluxesa and estimated potential contribution to neoglucognenesis of propionate, L-lactate, α-amino-N (α-N) and glucose used for the meta analysisb of net hepatic fluxes of propionate, L-lactate, α-amino-N and glucose according to species (cattle and sheep)
	
	Cattle
	
	Sheep
	
	Species Effect

	
	nt
	mean
	SD
	Min
	Max
	
	nt
	mean
	SD
	Min
	Max
	
	P-value

	Arterial concentration (mM)

	Propionate
	26
	0.0608
	0.0186
	0.031
	0.096
	
	24
	0.0334
	0.0348
	0.012
	0.160
	
	0.001

	α-amino-N
	24
	3.29
	1.07
	2.27
	7.19
	
	51
	4.017
	1.017
	0.0
	6.10
	
	0.006

	L-lactate
	40
	0.493
	0.145
	0.200
	0.756
	
	29
	0.842
	0.344
	0.340
	1.42
	
	< 0.001

	Glucose
	43
	4.035
	0.645
	2.73
	5.49
	
	49
	3.29
	0.546
	1.89
	4.56
	
	< 0.001

	Insulin (μUI/L)
	12
	21.5
	13.7
	6.31
	51.47
	
	7
	38.9
	23.0
	18.4
	71.9
	
	0.520

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Net portal appearance (mmol/kg BW per hour)

	Propionate
	40
	0.904
	0.285
	0.447
	1.78
	
	35
	0.589
	0.40
	0.085
	2.11
	
	< 0.001

	α-amino-N
	28
	0.358
	0.174
	0.091
	0.711
	
	67
	0.577
	0.405
	0.0
	2.71
	
	0.007

	L-lactate
	44
	0.250
	0.091
	0.074
	0.403
	
	42
	0.250
	0.167
	0.084
	0.767
	
	0.41

	Glucose
	52
	-0.022
	0.118
	-0.234
	0.352
	
	62
	-0.084
	0.107
	-0.373
	0.168
	
	0.004

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Net hepatic flux (mmol/kg BW per hour)

	Propionate
	34
	-0.827
	0.269
	-1.69
	-0.409
	
	33
	-0.494
	0.256
	-1.10
	-0.085
	
	< 0.001

	α-amino-N
	22
	-0.215
	0.105
	-0.513
	-0.033
	
	69
	-0.461
	0.263
	-1.30
	0.436
	
	< 0.001

	L-lactate
	46
	-0.236
	0.292
	-1.94
	-0.107
	
	44
	-0.314
	0.237
	-0.870
	0.029
	
	0.168

	Glucose
	52
	0.763
	0.327
	0.317
	1.40
	
	72
	0.639
	0.312
	0.0
	1.74
	
	0.034

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Estimated potential contribution to neoglucogenesis (%)

	Propionate
	34
	61.5
	11.8
	44.5
	94.7
	
	35
	44.8
	22.4
	12.3
	99.7
	
	< 0.001

	α-amino-N
	28
	27.4
	9.55
	14.2
	43.6
	
	39
	48.1
	26.7
	0.0
	179
	
	0.004

	L-lactate
	16
	18.2
	13.3
	1.23
	85.4
	
	49
	34.8
	29.5
	0.10
	149
	
	0.001


Min = minimum value; Max = maximum value; nt = number of treatments
[bookmark: _GoBack]a a positive value indicates a net release; a negative value indicates a net uptake
b See Supplementary Material S1. 
Supplementary Material S5. Comparison of net hepatic uptake of nutrients predicted using net portal appearance of total afferent fluxes as the predictor



Supplementary Table S4. Response equations of the net hepatic fluxes (mmol/kg BW per hour) of propionate, α-amino-nitrogen, and L-lactate to variations in their net portal appearance (NPA, mmol/kg BW per hour) or total hepatic afferent flux (THAF, mmol/kg BW per hour) in ruminants
	Y
	Number
	
	Equation
	
	Adjustment

	
	nexp
	nt
	
	
	
	RMSE
	Adjusted R²

	Propionate
	27
	69
	
	0.0024 ± 0.021NS - 0.913 ± 0.027***× NPA-propionate 
	
	0.027
	0.992

	
	19
	48
	
	0.091 ± 0.042* - 0.887 ± 0.049***× THAF-propionate
	
	0.003
	0.990

	α-N
	30
	85
	
	0.0055 ± 0.033NS - 0.749 ± 0.067 *** × NPA-α-amino-nitrogen
	
	0.062
	0.898

	
	20
	50
	
	-0.025 ± 0.175NS - 0.029 ± 0.157† × THAF-α-amino-nitrogen
	
	0.127
	0.609

	L-lactate
	25
	66
	
	-0.066 ± 0.026* - 0.887 ± 0.105*** × NPA-L-lactate
	
	0.071
	0.880

	
	20
	52
	
	-0.169 ± 0.097† - 0.067 ± 0.051NS × THAF-L-lactate
	
	0.126
	0.677


NS: not significant (P>0.10); † P<0.10; * P<0.05; *** P<0.001; nexp: number of experimental groups in the model; nt: number of treatments in the model; RMSE = residual means square error

Supplementary Material S6. LSMeans study 



Supplementary Table S5. Linear relationships between least square means (LSMeans, Y variable, mmol/h per kg BW) and interfering factors (X variable) detected in the models listed in Tables 3 and 4, in ruminants

	Model number
	Y variable, LSMeans of
	X Variable
	Intercept
	Linear term
	RMSE
	Adjusted R²

	
	
	
	α
	SD
	β
	SD
	
	

	1
	NHF-C3
	EB 
(kJ/d/kg BW)
	-2,824***
	0.251
	0.0015**
	0.0005
	0.113
	0.245

	1
	NHF-C3
	Starch intake (g/j/kg BW)
	-0.684***
	0.008
	0.0004*
	0.0002
	0.029
	0.015

	2
	NHF-aN
	CP (g/kg DM)
	-0.621***
	0.119
	0.0020*
	0.0009
	0.114
	0.132

	2
	NHF-aN
	PDIE (g/kg DM)
	-0.725***
	0.148
	0.0039*
	0.0016
	0.112
	0.169

	2
	NHF-aN
	PDIN (g/kg DM)
	-0.583***
	0.001
	0.0024*
	0.0011
	0.115
	0.122

	2
	NHF-aN
	NHF-glucose (mmol/h/kg BW)
	-0.475***
	0.061
	0.2027*
	0.0918
	0.109
	0.156

	3
	NHF-L-lactate
	NHF-C3 (mmol/h/kg BW)
	-0.470***
	0.058
	-0.2349**
	0.0773
	0.087
	0.326

	3
	NHF-L-lactate
	NPA-glucose (mmol/h/kg BW)
	-0.229***
	0.030
	0.6704*
	0.2646
	0.112
	0.184

	3
	NHF-L-lactate
	Starch intake (g/d/kg BW)
	-0.353***
	0.035
	0.0168*
	0.0068
	0.111
	0.171

	3
	NHF-L-lactate
	ME (MJ /kg DM) 
	-3.230***
	0.699
	0.0002**
	0.0001
	0.448
	0.234

	3
	NHF-L-lactate
	DOM (g/kg DM)
	-0.899***
	0.181
	0.0009**
	0.0003
	0.102
	0.299

	5
	NHF-L-lactate
	NPA-glucose (mmol/h/kg BW)
	-0.191***
	0.048
	1.3195**
	0.4137
	0.167
	0.285

	5
	NHF-L-lactate
	NPA-N (mmol/h/kg BW)
	-0.044 NS
	0.094**
	-0.6733
	0.2110
	0.170
	0.338

	7
	NHF-glucose
	NPA_N (mmol/h/kg BW)
	2.378***
	0.585
	3.6750**
	1.1770
	0.866
	0.368

	7
	NHF-glucose
	NHF-BHB (mmol/h/kg BW)
	2.727***
	0.263
	4.4347***
	0.8642
	0.571
	0.613

	11
	NHF-glucose
	ME (MJ/kg DM)
	-2.014NS
	1.398
	0.5619***
	0.1377
	1.046
	0.335

	13
	NHF-glucose
	NHF-BHB
	3.269***
	0.249
	0.378*
	0.185
	0.597
	0.131



NS = not significant; * P<0.05; **P<0.01; ***P<0.001
aN α-amino-N; BW body weight; BHB β-hydroxybutyrate; C3 propionate; DM dry matter; DOM digestible organic matter; EB energy balance; ME metabolisable energy; NHF net hepatic flux; NPA net portal appearance; PDIE(N) protein digestible in the intestine as limited by the energy (nitrogen) supply; RMSE residual mean square error
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