Comparison of effects of four weaning methods on health and performance of beef calves

J. D. Taylor, J. N. Gilliam, G. Mourer, C. Stansberry

Animal; supplemental materials

Supplemental Material S1: SAS code

Both locations, all calves for full study period
The first code was done simply as a survey of the full study, including all calves at all times. Diagnostics were included (s residual influence (iter=5 effect=ID est) to examine for the influence of individual calves on the model.
Note that “weight1” and “date1” were initial values used for blocking and assignment to treatment. Weight2 was used as “entry weight” for the trial. The GROUP = command allows for unstructured estimates of variance for each level of a grouping (in most cases, source or location). See section 9.6.2 in Littell RC, Milliken GA, et al., “SAS for Mixed Models,” 2nd Ed.)

```
proc mixed data = agron3.allstep1;
title 'all calves Time*time interactions no outpred';
class source ID trtmt sex;
model wts= source|time|trtmt time*time time*time|source time*time|source|trtmt sex
   base / ddfm = kr solution s 
   residual 
   influence (iter=5 effect=ID est);
random int time / type =un sub = ID group = source;
run;
proc mixed data = agron3.allstep1;
title 'all calves time*time interactions with outpred';
class source ID trtmt dummy sex;
model wts= source|time|trtmt time*time time*time|source time*time|source|trtmt sex
   base / ddfm = kr solution outpred = agron4.alltimequad;
random int time / type =un sub = ID group = source;
run;
proc sort data= agron3.AlltimeQuad;
by ID;
data agron4.predgain ; set agron4.AlltimeQuad;
keep ID source sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date1
date2 date3 date4 date5 date6 date7 date8;
by ID;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = -2 then do;
pwt1=pred;
end;
if time = -1 then do;
pwt2=pred;
end;
```
if time = 0 then do;
pwt3=pred;
end;
if time = 1 then do;
pwt4=pred;
end;
if time = 2 then do;
pwt5=pred;
end;
if time = 3 then do;
pwt6=pred;
end;
if last.ID then output;

retain ID pwt1-pwt6;
run;
data agron4.AllGainquad; set agron4.Predgain ;
PredGain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3) ;
run;
proc glm data = agron4.AllgainQuad;
class trtmt;
model predGain = trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted gains full study compare trtmts';
run;
proc mixed data = agron4.AllgainQuad;
class trtmt;
model predGain = trtmt;
lsmeans trtmt / adjust = tukey;
run;
proc glm data = agron4.AllgainQuad;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted ADG full compare trtmts';
run;
proc mixed data = agron4.AllgainQuad;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
run;

Both locations, all calves from D-13 to D0 and -13 to D7
The code below was used as first assessment. Results showed multiple interactions with source location, so separate analyses were run for the two locations (see below).

data agron4.temp ; set agron3.allkg;
keep source ID trtmt sex staygo base date3 date4 date5 date6 kg3 kg4 kg5 kg6 ;
data agron4.allToD7; set agron4.temp;
array kgs{4} Kg;:
do i=1 to 4 ;
time = (i-4) +1 ;
wts = kgs{i};
output;
end;
run;
proc mixed data = agron4.AlltoD7;
title 'with weight2 as base Unstructure variance time*time full interactions no outpred '
class source ID trtmt sex;
model wts= source|time|trtmt time*time time*time*trtmt time*time*source
 time*time*source*trtmt sex base / ddfm = kr solution
random int time / type =un sub = ID group = source;
run;
proc mixed data = agron4.AlltoD7;
title 'with weight2 as base Unstructure variance timt*time full interactions with
 outpred';
class source ID trtmt sex;
model wts= source|time|trtmt time*time time*time*trtmt time*time*source
 time*time*source*trtmt sex base / ddfm = kr solution outpred = agron4.AllpredD7;
random int time / type =un sub = ID group = source;
run;

Note that the above model was used to generate predicted weight values for each
calf based upon the complete model. The predicted weight values are then sent to a
new file ("OUTPRED = agron4.Allpred7") which is subsequently analyzed to detect
main treatment differences (after arraying data to reflect the repeated measures
for each calf).

proc sort data= agron4.AllpredD7;
 by ID;
data agron4.predd7gains ; set agron4.AllpredD7;
 keep ID source sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 date1 date2 date3
date4 date5 date6 ;
 by ID;
 if first.ID then do;
 pwt1 = . ;
 pwt2 = . ;
 pwt3 = . ;
 pwt4 = . ;
 end;
 if time = -2 then do;
 pwt1=pred;
 end;
 if time = -1 then do;
 pwt2=pred;
 end;
 if time = 0 then do;
 pwt3=pred;
 end;
 if time = 1 then do;
 pwt4=pred;
 end;
 if last.ID then output;
 retain ID pwt1-pwt4;
run;
data agron4.PredD7ADG ; set agron4.predd7gains ;
 PredGain = pwt4 - pwt1;
 predADG = Predgain/(date6 - date3) ;
run;
proc glm data = agron4.PredD7ADG;
class trtmt;
model predGain= trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted gains to D7 compare trtmts';
run;
proc mixed data = agron4.PredD7ADG;
class trtmt;
model predGain= trtmt;
lsmeans trtmt / adjust = tukey;
run;
```sas
proc glm data = agron4.PredD7ADG;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
title 'All calves predicted ADG to D7 compare trtmts';
run;

proc mixed data = agron4.PredD7ADG;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
run;
```

Location #1, all calves from D-13 to D0 and -13 to D7

This model examined the same time interval as above, but only examining the 1st location. Because only the one location was used, no GROUP function was included.

```sas
data agron4.temp ; set agron3.Lallkg;
keep ID trtmt sex staygo base date3 date4 date5 date6 kg3 kg4 kg5 kg6 ;
data agron4.LToD7; set agron4.temp;
array kgs{4} Kg;:
do i=1 to 4 ;
time = (i-4) + 1 ;
wts = kgs{i};
 output;
end;
run;

proc mixed data = agron4.LToD7;
title 'Lindley only with weight2 as base Unstructure variance timt*time full interactions no group ';
class ID trtmt sex;
model wts= time|trtmt  time*time time*time*trtmt  sex base / ddfm = kr solution;
random int time / type =un sub = ID ;
run;

proc mixed data = agron4.LToD7;
title 'Lindley only with weight2 as base Unstructure variance timt*time full interactions with outpred';
class ID trtmt sex;
model wts= time|trtmt  time*time time*time*trtmt  sex base / ddfm = kr solution
outpred = agron4.LpredD7;
random int time / type =un sub = ID ;
run;

proc sort data= agron4.LpredD7;
by ID;
data agron4.Lpredd7gains ; set agron4.LpredD7;
keep ID  sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 date3 date4 date5 date6 ;
by ID;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
end;
if time = -2 then do;
pwt1=pred;
end;
if time = -1 then do;
pwt2=pred;
end;
```

if time = 0 then do;
pwt3=pred;
end;
if time = 1 then do;
pwt4=pred;
end;
if last.ID then output;
retain ID pwt1-pwt4;
run;
data agron4.LPredD7ADG ; set agron4.LpredD7gains ;
PredGain = pwt4 - pwt1;
predADG = Predgain/(date6 - date3) ;
run;
proc glm data = agron4.LPredD7ADG;
class trtmt;
model predGain = trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted gains to D7 compare trtmts';
run;
proc mixed data = agron4.LPredD7ADG;
class trtmt;
model predGain = trtmt;
lsmeans trtmt / adjust = tukey;
run;
proc glm data = agron4.LPredD7ADG;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted ADG to D7 compare trtmts';
run;
proc mixed data = agron4.LPredD7ADG;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
run;
proc mixed data = agron4.LPredD7ADG;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted ADG to D7 compare trtmts';
run;
Location #2, all calves from D-13 to D0 and -13 to D7
This is the same program for location #2.
data agron4.temp ; set agron3.Rallkg;
keep ID trtmt sex staygo base date3 date4 date5 date6 kg3 kg4 kg5 kg6 ;
data agron4.RToD7; set agron4.temp;
array kgs{4} Kg;:
do i=1 to 4 ;
time = (i-4) +1 ;
wts = kgs[i];
output;
end;
run;
proc mixed data = agron4.RtoD7;
title 'Range only with weight2 as base Unstructure variance timt*time full
interactions no group ';
class ID trtmt sex;
model wts= time|trtmt time*time time*time*trtmt sex base / ddfm = kr solution;
random int time / type =un sub = ID ;
run;
proc mixed data = agron4.RtoD7;
title 'Range only with weight2 as base Unstructure variance timt*time full
interactions with outpred';
class ID trtmt sex;
model wts= time|trtmt time*time time*time*time*trtmt sex base / ddfm = kr solution
outpred = agron4.RpredD7;
random int time / type =un sub = ID ;
run;
proc sort data= agron4.RpredD7;
by ID;
data agron4.RpredD7gains ; set agron4.RpredD7;
keep ID sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 date3 date4 date5 date6 ;
by ID;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
end;
if time = -2 then do;
pwt1=pred;
end;
if time = -1 then do;
pwt2=pred;
end;
if time = 0 then do;
pwt3=pred;
end;
if time = 1 then do;
pwt4=pred;
end;
if last.ID then output;
retain ID pwt1-pwt4;
run;
data agron4.RPredD7ADG ; set agron4.RpredD7gains ;
PredGain = pwt4 - pwt1;
predADG = Predgain/(date6 - date3) ;
run;
proc glm data = agron4.RPredD7ADG;
class trtmt;
model predGain = trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted gains to D7 compare trtmts' ;
run;
proc mixed data = agron4.RPredD7ADG;
class trtmt;
model predGain= trtmt;
lsmeans trtmt / adjust = tukey;
run;
proc glm data = agron4.RPredD7ADG;
class trtmt;
model predADG = trtmt;
lsmeans trtmt / adjust = tukey;
title ' All calves predicted ADG to D7 compare trtmts' ;
run;
proc mixed data = agron4.RPredD7ADG;
class trtmt;
model predADG= trtmt;
lsmeans trtmt / adjust = tukey;
run;
Both sources, abruptly weaned calves excluded; from D-13 to D28 and D7 to D28

This model excludes the abruptly weaned calves so that the effect of shipping on D7 vs. D28 can be assessed. It includes calves from both sources, and again uses ‘‘GROUP =’’ to account for heterogeneity of variance between the two sources. Multiple location interactions were again present, so each location was subsequently assessed individually (see below).

data agron4.temp; set agron3.noabrpt;
base = weight2/2.2;
kg3 = weight3/2.2;
kg4 = weight4/2.2;
kg5 = weight5/2.2;
kg6 = weight6/2.2;
kg7 = weight7/2.2;
kg8 = weight8/2.2;
run;
data agron4.temp2; set agron4.temp;
keep source ID staygo base sex trtmt date3 date4 date5 date6 date7 date8 kg3 kg4
kg5 kg6 kg7 kg8;
data agron4.noabrptalltime; set agron4.temp2;
keep source ID staygo base sex trtmt time wts date3 date4 date5 date6 date7 date8
;
array kgs{6} Kg:;
do i=1 to 6 ;
time = (i-4) +1 ;
wts = kgs(i);
output;
end;
run;
proc sort data= agron4.noabrptalltime;
by ID;
run;
proc mixed data = agron4.noabrptalltime;
class source ID trtmt staygo sex ;
model wts= source|trtmt|time|staygo time*time*time*trtmt
time*time*source|trtmt time*time*staygo time*time*source|staygo sex base /ddfm =
kr solution outpred = agron4.noabrptlong;
random int time / type = un sub = ID group = source;
title 'Both sources, no abrupt D-13 to D28';
run;
data agron4.temp2; set agron4.temp;
keep source ID staygo base sex trtmt date3 date6 date7 date8 kg6 kg7 kg8;
data agron4.noabprpt; set agron4.temp2;
keep source ID staygo base sex trtmt time wts date3 date6 date7 date8 ;
array kgs{3} Kg:;
do i=1 to 3 ;
time = (i-1) +1 ;
wts = kgs(i);
output;
end;
run;
proc sort data= agron4.noabprpt;
by ID;
run;
proc mixed data = agron4.noabprpt;
class source ID trtmt staygo sex ;
model wts= source|trtmt|time|staygo time*time*time|trtmt
time*time*source|trtmt sex base /ddfm = kr solution outpred = agron4.noabptshort;
random int time / type = un sub = ID group = source;
title 'Both sources, no abrupt ship to end';
run;
proc sort data= agron4.noabptlong;
by id;
data agron4.temp1 ; set agron4.noabptlong;
keep ID source staygo sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3 date6 date8;
by id;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time =3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
run;
data agron4.noabptLonggains ; set agron4.temp1;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.noabptlonggains;
class trtmt staygo ;
model predgain =trtmt staygo trtmt*staygo;
lsmeans trtmt / adjust = Tukey;
lsmeans staygo / adjust = tukey;
title 'Both sources no abrupt Predicted gains over full study';
run;
proc glm data = agron4.noabptlonggains;
class trtmt staygo;
model predADG = trtmt staygo trtmt*staygo;
lsmeans trtmt / adjust = tukey;
lsmeans staygo/ adjust = tukey;
title 'both sources no abrupt Predicted ADG over full study';
run;
proc sort data= agron4.noabptshort;
by id;
data agron4.temp1 ; set agron4.noabptshort;
keep ID source sex staygo trtmt base time wts pred pwt4 pwt5 pwt6 date3 date6 date8;
by id;
if first.ID then do;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time = 3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt4-pwt6;
run;
data agron4.noabptshortgains ; set agron4.temp1;
predgain = pwt6 - pwt4;
predADG = Predgain/(date8 - date6);
run;
proc glm data = agron4.noabptshortgains;
class trtmt staygo;
model predgain =trtmt staygo trtmt*staygo;
lsmeans trtmt*staygo / diff adjust = tukey;
title 'Both sources no abrupt Predicted gains post ship';
run;
proc glm data = agron4.noabptshortgains;
class trtmt staygo;
model predADG = trtmt staygo trtmt*staygo;
lsmeans trtmt*staygo / diff adjust = tukey;
title 'both sources no abrupt Predicted ADG post ship';
run;
quit;

Source #1 abruptly weaned calves excluded; D-13 to D28 and D7 to D28
The same approach as was used immediately above, only including location #1.

data agron4.lnoabrptfull; set agron3.lnoabpt;
base = weight2/2.2;
kg3 = weight3/2.2;
kg4 = weight4/2.2;
kg5 = weight5/2.2;
kg6 = weight6/2.2;
kg7 = weight7/2.2;
kg8 = weight8/2.2;
run;
data agron4.temp1; set agron4.lnoabrptfull;
keep ID staygo base sex trtmt date3 date4 date5 date6 date7 date8 kg3 kg4 kg5 kg6
kg7 kg8;
data agron4.lnoabrptalltime; set agron4.temp1;
keep ID staygo base sex trtmt time wts date3 date4 date5 date6 date7 date8 ;
array kgs{6} Kg;:
do i=1 to 6 ;
time = (i-4) +1 ;
wts = kgs(i);
output;
end;
run;
proc sort data= agron4.lnoabrptalltime;
by ID;
run;
proc mixed data = agron4.lnoabrptalltime;
class ID trtmt staygo sex ;
model wts = trtmt|time|staygo time*time time*trtmt time*time*staygo sex base
/ddfm = kr solution outpred = agron4.lnoabptlong;
random int time / type = un sub = ID;
title 'Lindley only, no abrupt D-13 to D28';
run;
data agron4.ltemp ; set agron4.temp1;
keep ID staygo base sex trtmt date3 date6 date8 kg6 kg7 kg8;
data agron4.lnoabrpt; set agron4.ltemp;
keep ID staygo base sex trtmt time wts date3 date6 date8 ;
array kgs{3} Kg; ;
do i=1 to 3 ;
time = (i-1) +1 ;
wts = kgs{i};
output;
end;
run;
proc sort data= agron4.lnoabrpt;
by ID;
run;
proc mixed data = agron4.lnoabrpt;
class ID trtmt staygo sex ;
model wts= trtmt|time|staygo time*time time*trtmt sex base /ddfm = kr
solution outpred = agron4.Lnoabptshort;
random int time / type = un sub = ID ;
title 'Lindley only, no abrupt ship to end';
run;
proc sort data= agron4.Lnoabptlong;
by id;
data agron4.temp1 ; set agron4.Lnoabptlong;
keep ID staygo sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3
date6 date8;
by id;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time = 3 then do;
pwt6 = pred;
end;
if last.ID then output;
retain ID pwt1-pwt6;
run;
data agron4.LnoabptLonggains ; set agron4.temp1;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.Lnoabptlonggains;
class trtmt staygo ;
model predgain =trtmt staygo trtmt*staygo;
lsmeans trtmt / adjust = Tukey;
lsmeans staygo / adjust = tukey;
lsmeans trtmt*staygo / diff adjust = tukey;
title 'Lindley no abrupt Predicted gains over full study';
run;
proc glm data = agron4.Lnoabptlonggains;
class trtmt staygo;
model predADG = trtmt staygo trtmt*staygo;
lsmeans trtmt / adjust = tukey;
lsmeans staygo/ adjust = tukey;
lsmeans trtmt*staygo / diff adjust= tukey;
title 'Lindley no abrupt Predicted ADG over full study';
run;
proc sort data= agron4.Lnoabptshort;
by id;
data agron4.temp1 ; set agron4.Lnoabptshort;
keep ID sex staygo trtmt base time wts pred pwt4 pwt5 pwt6 date3 date6 date8;
by id;
if first.ID then do;
pwt4 = .;
pwt5 = . ;
pwt6 = . ;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time =3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt4-pwt6;
run;
data agron4.Lnoabptshortgains ; set agron4.temp1;
predgain = pwt6 - pwt4;
predADG = Predgain/(date8 - date6);
run;
proc glm data = agron4.Lnoabptshortgains;
class trtmt staygo;
model predgain =trtmt staygo trtmt*staygo;
lsmeans trtmt*staygo / diff adjust = tukey;
title 'Lindley no abrupt Predicted gains post ship';
run;
proc glm data = agron4.Lnoabptshortgains;
class trtmt staygo;
model predADG = trtmt staygo trtmt*staygo;
lsmeans trtmt*staygo / diff adjust = tukey;
title 'Lindley no abrupt Predicted ADG post ship';
run;
quit;
Source #2 abruptly weaned calves excluded; D-13 to D28 and D7 to D28
Same approach as used above, only including calves from location #2.

```r
data agron4.Rnoabrptfull; set agron3.Rnoabpt;
base = weight2/2.2;
kg3 = weight3/2.2;
kg4 = weight4/2.2;
kg5 = weight5/2.2;
kg6 = weight6/2.2;
kg7 = weight7/2.2;
kg8 = weight8/2.2;
run;
data agron4.temp1; set agron4.Rnoabrptfull;
keep ID staygo base sex trtmt date3 date4 date5 date6 date7 date8 kg3 kg4 kg5 kg6 kg7 kg8;
data agron4.Rnoabrptalltime; set agron4.temp1;
keep ID staygo base sex trtmt time wts date3 date4 date5 date6 date7 date8;
array kgs{6} Kg;=
do i=1 to 6;
time = (i-4) + 1;
wts = kgs{i};
output;
end;
run;
proc sort data= agron4.Rnoabrptalltime;
by ID;
run;
proc mixed data = agron4.Rnoabrptalltime;
class ID trtmt staygo sex;
model wts= trtmt|time|staygo time*time*time*trtmt time*time*staygo sex base
/ddfm = kr solution outpred = agron4.Rnoabptlong;
random int time / type = un sub = ID;
title 'Range only, no abrupt D-13 to D28';
run;
data agron4.Rtemp ; set agron4.Rnoabrpt;
keep ID staygo base sex trtmt date3 date6 date8 kg6 kg7 kg8;
data agron4.Rnoabrpt; set agron4.Rtemp;
keep ID staygo base sex trtmt time wts date3 date6 date8;
array kgs{3} Kg;=
do i=1 to 3;
time = (i-1) + 1;
wts = kgs{i};
output;
end;
run;
proc sort data= agron4.Rnoabrpt;
by ID;
run;
proc mixed data = agron4.Rnoabrpt;
class ID trtmt staygo sex;
model wts= trtmt|time|staygo time*time*time*trtmt sex base /ddfm = kr
solution outpred = agron4.Rnoabptshort;
random int time / type = un sub = ID;
title 'Range only, no abrupt ship to end';
run;
proc sort data= agron4.Rnoabptlong;
by id;
data agron4.temp1 ; set agron4.Rnoabptlong;
keep ID staygo sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3
date6 date8;
by id;
if first.ID then do;
```
pwt1 = .;
pwt2 = .;
pwt3 = .;
pwt4 = .;
pwt5 = .;
pwt6 = .;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time = 3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
run;
data agron4.RnoabptLonggains ; set agron4.temp1;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.Rnoabptlonggains;
class trtmt staygo ;
model predgain =trtmt staygo trtmt*staygo;
lsmeans trtmt / adjust = Tukey;
lsmeans staygo / adjust = tukey;
lsmeans trtmt*staygo / diff adjust = tukey;
title 'Range no abrupt Predicted gains over full study';
run;
proc glm data = agron4.Rnoabptlonggains;
class trtmt staygo;
model predADG = trtmt staygo trtmt*staygo;
lsmeans trtmt / adjust = tukey;
lsmeans staygo / adjust = tukey;
lsmeans trtmt*staygo / diff adjust = tukey;
title 'Range no abrupt Predicted ADG over full study';
run;
proc sort data= agron4.Rnoabptshort;
by id;
data agron4.temp1 ; set agron4.Rnoabptshort;
keep ID sex staygo trtmt base time wts pred pwt4 pwt5 pwt6 date3 date6 date8;
by id;
if first.ID then do;
pwt4 = .;
pwt5 = . ;
pwt6 = . ;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
Both sources, calves that stayed at ranch & AW-I, D-13 to D28
This program examined all calves that remained on the ranch until D28 (excludes those shipped on D7). The
AW-I group was retained as a negative control to compare each long-term retained treatment to a negative
control of abrupt weaning with immediate shipment. As with previous attempts, location interactions
necessitated examination of the locations separately.
CLASS source ID trtmt sex;
MODEL wts = source|trtmt|time time*time time*time|trtmt time*time|source|trtmt sex base /ddfm = kr solution outpred = agron4.AClong;
RANDOM int time / type = un sub = ID group = source;
title 'Both sources, A and C only D-13 to D28';
RUN;
DATA agron4.temp2; set agron4.temp;
keep source ID base sex trtmt date3 date6 date7 date8 kg6 kg7 kg8;
DATA agron4.ACD7D28; set agron4.temp2;
keep source ID base sex trtmt time wts date3 date6 date7 date8;
array kgs{3} Kg:;
do i=1 to 3;
time = (i-1) + 1;
wts = kgs{i};
output;
end;
RUN;
PROC SORT data= agron4.ACD7D28;
by ID;
RUN;
PROC MIXED data = agron4.ACD7D28;
CLASS source ID trtmt sex;
MODEL wts = source|trtmt|time time*time time*time|trtmt time*time|source|trtmt sex base /ddfm = kr solution outpred = agron4.ACshort;
RANDOM int time / type = un sub = ID group = source;
title 'Both sources, A & C only D7 to D28';
RUN;
PROC SORT data= agron4.AClong;
by id;
DATA agron4.temp1; set agron4.AClong;
keep ID source sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3 date6 date8;
by id;
if first.ID then do;
pwt1 = .;
pwt2 = .;
pwt3 = .;
pwt4 = .;
pwt5 = .;
pwt6 = .;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time =3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
RUN;
data agron4.AClonggains; set agron4.temp1;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.AClonggains;
class trtmt ;
model predgain =trtmt ;
lsmeans trtmt / adjust = Tukey;
title 'Both sources A & C only Predicted gains over full study';
run;
proc glm data = agron4.AClonggains;
class trtmt ;
model predADG = trtmt ;
lsmeans trtmt / adjust = tukey;
title 'both sources A & C Predicted ADG over full study';
run;
proc sort data= agron4.ACshort;
by id;
data agron4.temp1 ; set agron4.ACshort;
keep ID source sex trtmt base time wts pred pwt4 pwt5 pwt6 date3 date6 date8;
by id;
if first.ID then do;
pwt4 = .;
pwt5 = . ;
pwt6 = . ;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time =3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt4-pwt6;
run;
data agron4.ACshortgains ; set agron4.temp1;
predgain = pwt6 - pwt4;
predADG = Predgain/(date8 - date6);
run;
proc glm data = agron4.ACshortgains;
class trtmt ;
model predgain =trtmt ;
lsmeans trtmt / adjust = tukey;
title 'Both sources A & C Predicted gains post ship';
run;
proc glm data = agron4.ACshortgains;
class trtmt ;
model predADG = trtmt ;
lsmeans trtmt / adjust = tukey;
title 'both sources A & C Predicted ADG post ship';
run;
quit;

Source #1, calves that stayed at ranch & AW-I; various time periods
Assessment of D28 groups with AW-i as negative control, for location #1 only.
data agron4.AOnlyL; set agron4.LAOnly;
base = weight2/2.2;
kg3 = weight3/2.2;
kg4 = weight4/2.2;
kg5 = weight5/2.2;
kg6 = weight6/2.2;
kg7 = weight7/2.2;
kg8 = weight8/2.2;

run;
data agron4.Ltemp; set agron4.AConlyL;
keep ID base sex trtmt date3 date4 date5 date6 date7 date8 kg3 kg4 kg5 kg6 kg7 kg8;
data agron4.AConlyforL; set agron4.Ltemp;
keep ID base sex trtmt time wts date3 date4 date5 date6 date7 date8 ;
array kgs{6} Kg:;
do i=1 to 6 ;
time = (i-4) +1 ;
wts = kgs{i};
output;
end;
run;
proc sort data= agron4.AConlyforl;
by ID;
run;
proc mixed data = agron4.AConlyforl;
class ID trtmt sex ;
model wts= trtmt*time time*time time*time*trtmt sex base /ddfm = kr solution
outpred = agron4.AConlyforLlong;
store agron4.LACTemp;
random int time / type = un sub = ID ;
lsmeans trtmt / diff ;
title 'Grps A & C from Lindley only D-13 to D28';
run;
Proc PLM restore = agron4.LACTemp;
estimate 'slope 24' time 1 trtmt*time 1 0 0 0 ,
'slope Abrupt' time 1 trtmt*time 0 1 0 0 ,
'slope fence' time 1 trtmt*time 0 0 1 0 ,
'slope flap' time 1 trtmt*time 0 0 0 1 / e;
proc sort data= agron4.AConlyforllong;
by id;
data agron4.LACtemp ; set agron4.AConlyforllong;
keep ID sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3 date6
date8;
by id;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time = 3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
run;
data agron4.AConlyLLonggains ; set agron4.LACtemp;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.AConlyLLonggains;
class trtmt ;
model predgain = trtmt;
lsmeans trtmt / adjust = Tukey;
title 'Grps A & C from Lindley only Predicted gains over full study';
run;
proc glm data = agron4.AConlyLLonggains;
class trtmt ;
model predADG = trtmt ;
lsmeans trtmt / adjust = tukey;
title 'A & C from Lindley only Predicted ADG over full study';
run;
data agron4.Ltemp; set agron4.AConlyL;
keep ID base sex trtmt date3 date4 date5 date6 date7 date8 kg6 kg7 kg8;
data agron4.ACLD7D28; set agron4.Ltemp;
keep ID base sex trtmt time wts date3 date4 date5 date6 date7 date8 ;
array kgs\{3\} Kg:\;
do i=1 to 3 ;
time = (i-1) + 1 ;
wts = kgs(i);
output;
end;
run;
proc sort data= agron4.ACLD7D28;
by ID;
run;
proc mixed data = agron4.ACLD7D28;
class ID trtmt sex ;
model wts= trtmt*time time*time*time*time*trtmt sex base /ddfm = kr solution
outpred = agron4.AConlyforLshort;
store agron4.LACTemp2;
random int time / type = un sub = ID ;
lsmeans trtmt / diff ;
title 'Grps A & C from Lindley only D7 to D28';
run;
Proc PLM restore = agron4.LACTemp2;
estimate 'slope 24' time 1 trtmt*time 1 0 0 0 ,
'slope Abrupt' time 1 trtmt*time 0 1 0 0 ,
'slope fence' time 1 trtmt*time 0 0 1 0 ,
'slope flap' time 1 trtmt*time 0 0 0 1 / e;
data agron4.LACTemp2 ; set agron4.AConlyforLshort;
keep ID sex trtmt base time wts pred pwt1 pwt2 pwt3 date3 date6 date8;
by id;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = 1 then do;
pwt1 = pred;
end;
if time = 2 then do;
pwt2 = pred;
end;
if time = 3 then do;
pwt3 = pred;
end;
if last.id then output;
retain ID pwt1-pwt3;
run;
data agron4.AConlyLshortgains ; set agron4.LACtemp2;
predgain = pwt3 - pwt1;
predADG = Predgain/(date8 - date6);
run;
proc glm data = agron4.AConlyLshortgains;
class trtmt ;
model predgain =trtmt;
lsmeans trtmt / adjust = Tukey;
title 'Grps A & C from Lindley only Predicted gains D7 to D28';
run;
proc glm data = agron4.AConlyLshortgains;
class trtmt ;
model predADG = trtmt ;
lsmeans trtmt / adjust = tukey;
title 'A & C from Lindley only Predicted ADG D7 to D28';
run;quit;

Source #2, calves that stayed at ranch & AW-I; various time intervals
Assessment of D28 groups with AW-I as negative control, for location #2 only.

data agron4.AConlyR; set agron4.RAConly;
base = weight2/2.2;
kg3 = weight3/2.2;
kg4 = weight4/2.2;
kg5 = weight5/2.2;
kg6 = weight6/2.2;
kg7 = weight7/2.2;
kg8 = weight8/2.2;
run;
data agron4.Rtemp; set agron4.AConlyR;
keep ID base sex trtmt date3 date4 date5 date6 date7 date8 kg3 kg4 kg5 kg6 kg7
kg8;
data agron4.AConlyforR; set agron4.Rtemp;
keep ID base sex trtmt time wts date3 date4 date5 date6 date7 date8 ;
array kgs{6} Kg:;
do i=1 to 6 ;
time = (i-4) +1 ;
wts = kgs{i};
output;
end;
run;
proc sort data= agron4.AConlyforR;
by ID;
run;
proc mixed data = agron4.AConlyforR;
class ID trtmt sex;
model wts= trtmt|time time*time time*time*trtmt sex base /ddfm = kr solution
outpred = agron4.AConlyforRlong;
random int time / type = un sub = ID;
lsmmeans trtmt / diff;
title 'Grps A & C from Range only D-13 to D28';
run;
proc sort data= agron4.AConlyforRlong;
by id;
data agron4.RACtemp ; set agron4.AConlyforRlong;
keep ID sex trtmt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3 date6
 date8;
by id;
if first.ID then do;
pwt1 = .;
pwt2 = .;
pwt3 = .;
pwt4 = .;
pwt5 = .;
pwt6 = .;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time =3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
run;
data agron4.AConlyRLonggains ; set agron4.RACtemp;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.AConlyRlonggains;
class trtmt ;
model predgain =trtmt;
lsmmeans trtmt / adjust = Tukey;
title 'Grps A & C from Range only Predicted gains over full study';
run;
proc glm data = agron4.AConlyRlonggains;
class trtmt ;
model predADG = trtmt ;
lsmmeans trtmt / adjust = tukey;
title 'A & C from Range only Predicted ADG over full study';
run;
data agron4.Rtemp; set agron4.AConlyR;
keep ID base sex trtmt date3 date4 date5 date6 date7 date8 kg6 kg7 kg8;
data agron4.ACRD7D28; set agron4.Rtemp;
keep ID base sex trtmt time wts date3 date4 date5 date6 date7 date8;
array kgs{3} Kg::;
do i=1 to 3;
time = (i-1) + 1;
 wts = kgs{i};
 output;
end;
run;
proc sort data= agron4.ACRD7D28;
by ID;
run;
proc mixed data = agron4.ACRD7D28;
class ID trtmt sex ;
model wts= trtmt|time time*time*time*time*time*trtmt sex base /ddfm = kr solution
 outpred = agron4.AConlyforRshort;
random int time / type = un sub = ID ;
lsmeans trtmt / diff ;
title 'Grps A & C from Range only D7 to D28';
run;
data agron4.RACtemp2 ; set agron4.AConlyforRshort;
keep ID sex trtmt base time wts pred pwt1 pwt2 pwt3 date3 date6 date8;
by id;
if first.ID then do;
pwt1 = .;
pwt2 = .;
pwt3 = .;
pwt4 = .;
pwt5 = .;
pwt6 = .;
end;
if time = 1 then do;
pwt1 = pred;
end;
if time = 2 then do;
pwt2 = pred;
end;
if time =3 then do;
pwt3 = pred;
end;
if last.id then output;
retain ID pwt1-pwt3;
run;
data agron4.AConlyRshortgains ; set agron4.RACtemp2;
predgain = pwt3 - pwt1;
predADG = Predgain/(date8 - date6);
run;
proc glm data = agron4.AConlyRshortgains;
class trtmt ;
model predgain =trtmt;
lsmeans trtmt / adjust = Tukey;
title 'Grps A & C from Range only Predicted gains D7 to D28';
run;
proc glm data = agron4.AConlyRshortgains;
class trtmt ;
model predADG = trtmt ;
lsmeans trtmt / adjust = tukey;
title 'A & C from Range only Predicted ADG D7 to D28';
run;quit;
Both sources, all calves (treatment groups and ship dates combined into single trtmt classification); D-13 to D28
A single variable was created to combine both weaning method and shipment day for all calves. This model examined the full study period for both locations. The locations are examined separately below.

```plaintext
data agron4.temp; set agron3.Allstrt;
base = weight2/2.2;
kg3 = weight3/2.2;
kg4 = weight4/2.2;
kg5 = weight5/2.2;
kg6 = weight6/2.2;
kg7 = weight7/2.2;
kg8 = weight8/2.2;
run;
data agron4.temp2; set agron4.temp;
keep source ID base sex strt date3 date4 date5 date6 date7 date8 kg3 kg4 kg5 kg6 kg7 kg8;
data agron4ISTRTalltime; set agron4.temp2;
keep source ID base sex strt time wts date3 date4 date5 date6 date7 date8 ;
array kgs{6} Kg;;
do i=1 to 6 ;
time = (i-4) +1 ;
wts = kgs{i};
output;
end;
run;
proc sort data= agron4ISTRTalltime;
by ID;
run;
proc mixed data = agron4ISTRTalltime;
class source ID strt sex ;
model wts= source|strt|time time*time|time*strt time*time|source|strt sex base /ddfm = kr solution outpred = agron4ISTRTlong;
random int time / type = un sub = ID group = source;
title 'Both sources, STRT D-13 to D28';
run;
proc sort data= agron4ISTRTlong;
by id;
data agron4.tempSTRT ; set agron4ISTRTlong;
keep ID source sex strt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3 date6 date8;
by id;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
```

end;
if time = 2 then do;
pwt5 = pred;
end;
if time = 3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
run;
data agron4.STRTLlonggains ; set agron4.tempSTRT;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.STRTLlonggains;
class strt ;
model predgain =strt ;
lsmeans strt / adjust = Tukey;
title 'Both sourcesSTRT Predicted gains over full study';
run;
proc glm data = agron4.STRTLlonggains;
class strt ;
model predADG = strt ;
lsmeans strt / adjust = tukey;
title 'both sources STRT Predicted ADG over full study';
run;
quit;

Source #1, all calves (treatment groups and ship dates combined into single trtmt classification); D-13 to D28
A single variable was created to combine both weaning method and shipment day for all calves. This model examined the full study period for location #1 only.
model wts = strt | time time*time time*time time*time*strt sex base / ddfm = kr solution outpred = agron4.StrtforLlong;
store agron4.LSTRTTemp;
random int time / type = un sub = ID;
lsmeans strt / diff;
title 'STRT from Lindley only D-13 to D28';
run;

Proc PLM restor = agron4.LGrpATemp;
estimate 'slope 24' time 1 strt*time 1 0 0 0 ,
'slope Abrupt' time 1 strt*time 0 1 0 0 ,
'slope fence' time 1 strt*time 0 0 1 0 ,
'slope flap' time 1 strt*time 0 0 0 1 / e;
proc sort data= agron4.STRTforllong;
by id;
data agron4.LtempSTRT ; set agron4.STRTforllong;
keep ID sex strt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3 date6
date8;
by id;
if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = . ;
pwt6 = . ;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time =3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
run;
data agron4.STRTforLLonggains ; set agron4.LtempSTRT;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.STRTforLlonggains;
class strt ;
model predgain =strt;
lsmeans strt / adjust = Tukey;
title 'STRT from Lindley only Predicted gains over full study';
run;
proc glm data = agron4.STRTforLlonggains;
class strt ;
model predADG = strt ;
lsmeans strt / adjust = tukey;
title 'STRT from Lindley only Predicted ADG over full study';
run;
quit;

Source #2, all calves (treatment groups and ship dates combined into single trtmt classification); D-13 to D28
A single variable was created to combine both weaning method and shipment day for all calves. This model examined the full study period for location #2 only.

data agron4.StrtonlyR; set agron4.RStrt;
 base = weight2/2.2;
 kg3 = weight3/2.2;
 kg4 = weight4/2.2;
 kg5 = weight5/2.2;
 kg6 = weight6/2.2;
 kg7 = weight7/2.2;
 kg8 = weight8/2.2;
run;

data agron4.Rtemp; set agron4.StrtonlyR;
 keep ID base sex strt date3 date4 date5 date6 date7 date8 kg3 kg4 kg5 kg6 kg7 kg8;
data agron4.StrtonlyforR; set agron4.Rtemp;
 keep ID base sex strt time wts date3 date4 date5 date6 date7 date8;
array kgs{6} Kg:;
do i=1 to 6;
time = (i-4) + 1;
wts = kgs[i];
 output;
end;
run;
proc sort data= agron4.strtonlyforR;
 by ID;
run;
proc mixed data = agron4.strtOnlyforR;
 class ID strt sex ;
 model wts= strt*time*time time*strt sex base /ddfm = kr solution
 outpred = agron4.StrtforRLong;
 store agron4.RSTRTTemp;
 random int time / type = un sub = ID ;
lsmeans strt / diff ;
title 'STRT from Range only D-13 to D28';
run;

Proc PLM restore = agron4.RGrpATemp;
estimate 'slope 24' time 1 strt*time 1 0 0 0 ,
 'slope Abrupt' time 1 strt*time 0 1 0 0 ,
 'slope fence' time 1 strt*time 0 0 1 0 ,
 'slope flap' time 1 strt*time 0 0 0 1 / e;
proc sort data= agron4.STRTforRLong;
 by id;
data agron4.RtempSTRT ; set agron4.STRTforRLong;
 keep ID sex strt base time wts pred pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 date3 date6
 date8;
 by id;
 if first.ID then do;
pwt1 = . ;
pwt2 = . ;
pwt3 = . ;
pwt4 = . ;
pwt5 = .;
pwt6 = .;
end;
if time = -2 then do;
pwt1 = pred;
end;
if time = -1 then do;
pwt2 = pred;
end;
if time = 0 then do;
pwt3 = pred;
end;
if time = 1 then do;
pwt4 = pred;
end;
if time = 2 then do;
pwt5 = pred;
end;
if time = 3 then do;
pwt6 = pred;
end;
if last.id then output;
retain ID pwt1-pwt6;
run;
data agron4.STRTforRLonggains; set agron4.RtempSTRT;
predgain = pwt6 - pwt1;
predADG = Predgain/(date8 - date3);
run;
proc glm data = agron4.STRTforRLonggains;
class strt ;
model predgain = strt;
lsmeans strt / adjust = Tukey;
title 'STRT from Range only Predicted gains over full study';
run;
proc glm data = agron4.STRTforRLonggains;
class strt ;
model predADG = strt ;
lsmeans strt / adjust = tukey;
title 'STRT from Range only Predicted ADG over full study';
run;
quit;

Graphs were made for both the actual performance and predicted weights from the full model. For the actual performance the code is:

data agron4.temp; set agron3.Allstrt;
kg2 = weight2/2.2;
kg3 = weight3/2.2;
kg4 = weight4/2.2;
kg5 = weight5/2.2;
kg6 = weight6/2.2;
kg7 = weight7/2.2;
kg8 = weight8/2.2;
run;
data agron4.temp2; set agron4.temp;
keep strt kg2 kg3 kg4 kg5 kg6 kg7 kg8;
run;
proc sort data= agron4.temp2;
by strt;
run;
proc means data = agron4.temp2;
by strt;
var kg2 kg3 kg4 kg5 kg6 kg7 kg8;
output out = agron4.Strtplaymean mean= / autoname;
run;
data agron4.Strtplayintermed ; set agron4.Strtplaymean ;
kg2 = kg2_Mean ;
kg3 = kg3_Mean ;
kg4 = kg4_mean ;
kg5 = kg5_mean;
kg6 = kg6_mean;
kg7 = kg7_Mean;
kg8 = kg8_mean;
keep strt kg2 kg3 kg4 kg5 kg6 kg7 kg8;
run;
data agron4.Strtplayfinal; set agron4.Strtplayintermed;
array kgs{7} kg:;
do i =1 to 7;
time = (i-4) +1;
Means = kgs{i};
output;
end;
run;
proc sgplot data = agron4.Strtplayfinal ;
series y=Means x = time / group = strt;
run;
quit;

For plotting of the predicted weights (which were generated previously; see above):

proc sort data = agron4.tempstrt;
by strt;
run;
data agron4.predplay; set agron4.tempstrt;
keep strt pwt0 pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 ;
pwt0 = base;
run;
proc means data = agron4.predplay;
by strt;
var pwt0 pwt1 pwt2 pwt3 pwt4 pwt5 pwt6 ;
output out = agron4.predplaymean mean= / autoname;
run;
data agron4.predplayintermed ; set agron4.predplaymean ;
kg2 = pwt0_Mean ;
kg3 = pwt1_Mean ;
kg4 = pwt2_mean ;
kg5 = pwt3_mean;
kg6 = pwt4_mean;
kg7 = pwt5_Mean;
kg8 = pwt6_mean;
keep strt kg2 kg3 kg4 kg5 kg6 kg7 kg8;
run;
data agron4.predplayfinal; set agron4.predplayintermed;
array kgs{7} kg:;
do i =1 to 7;
time = (i-4) +1;
Means = kgs{i};
output;
end;
run;
 proc sgplot data = agron4.predplayfinal ;
series y=means x = time / group = strt;
run;
quit;
Supplemental Material S2: Example of SAS output

The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>AGRON3.ALLSTEP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>wts</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Unstructured</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>ID</td>
</tr>
<tr>
<td>Group Effect</td>
<td>source</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>REML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Kenward-Roger</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Kenward-Roger</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>2</td>
<td>L R</td>
</tr>
<tr>
<td>ID</td>
<td>293</td>
<td>1001 1002 1003 1005 1006 1007 1008 1009 1010 1011 1012 1013 1015 1016 1017 1018 1019 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299</td>
</tr>
<tr>
<td>all calves Time*time interactions no outpred</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trtmt 5 24hr ablv abst fenc flap

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>2</td>
<td>C S</td>
</tr>
</tbody>
</table>

Dimensions

- Covariance Parameters: 7
- Columns in X: 52
- Columns in Z per Subject: 4
- Subjects: 293
- Max Obs per Subject: 6

Number of Observations

- Number of Observations Read: 1794
- Number of Observations Used: 1724
- Number of Observations Not Used: 70

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Res Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>12459.91680226</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>11575.67021610</td>
<td>0.00000014</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>11575.66961824</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Group</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>ID</td>
<td>source L</td>
<td>36.0905</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>ID</td>
<td>source L</td>
<td>4.2641</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>ID</td>
<td>source L</td>
<td>1.4259</td>
</tr>
<tr>
<td>UN(1,1)</td>
<td>ID</td>
<td>source R</td>
<td>38.9885</td>
</tr>
</tbody>
</table>
Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Group</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td>30.1572</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood: 11575.7
AIC (Smaller is Better): 11589.7
AICC (Smaller is Better): 11589.7
BIC (Smaller is Better): 11615.4

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>884.25</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>source</th>
<th>Trtmt</th>
<th>Sex</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>L</td>
<td>Trtmt</td>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source L</td>
<td>7.8097</td>
<td>3.5973</td>
<td></td>
<td>285</td>
<td>2.17</td>
<td>0.0308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source R</td>
<td>5.9386</td>
<td>1.8707</td>
<td></td>
<td>187</td>
<td>3.17</td>
<td>0.0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td></td>
</tr>
<tr>
<td>time L</td>
<td>3.5092</td>
<td>0.7068</td>
<td></td>
<td>90.6</td>
<td>4.97</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time R</td>
<td>-1.6541</td>
<td>0.7574</td>
<td></td>
<td>119</td>
<td>-2.18</td>
<td>0.0309</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*source L</td>
<td></td>
</tr>
<tr>
<td>time*source L</td>
<td>-1.6541</td>
<td>0.7574</td>
<td></td>
<td>119</td>
<td>-2.18</td>
<td>0.0309</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td></td>
</tr>
<tr>
<td>Trtmt 24hr</td>
<td>0.9450</td>
<td>2.2301</td>
<td></td>
<td>99.7</td>
<td>0.42</td>
<td>0.6727</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt ablv</td>
<td>-8.5158</td>
<td>2.7386</td>
<td></td>
<td>99</td>
<td>-3.11</td>
<td>0.0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt abst</td>
<td>0.3493</td>
<td>2.6531</td>
<td></td>
<td>99.1</td>
<td>0.13</td>
<td>0.8955</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt fenc</td>
<td>0.3157</td>
<td>2.2209</td>
<td></td>
<td>98</td>
<td>0.14</td>
<td>0.8872</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt flap</td>
<td></td>
</tr>
<tr>
<td>Trtmt flap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt L</td>
<td></td>
</tr>
<tr>
<td>source*Trtmt L</td>
<td>1.1769</td>
<td>2.6096</td>
<td></td>
<td>178</td>
<td>0.45</td>
<td>0.6526</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt ablv</td>
<td></td>
</tr>
<tr>
<td>source*Trtmt ablv</td>
<td>12.3539</td>
<td>3.1856</td>
<td></td>
<td>173</td>
<td>3.88</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>source</th>
<th>Trtmt</th>
<th>Sex</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source*Trtmt L</td>
<td>abst</td>
<td>0.9333</td>
<td>3.1133</td>
<td>179</td>
<td>0.30</td>
<td>0.7647</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt L</td>
<td>fenc</td>
<td>2.2486</td>
<td>2.5937</td>
<td>174</td>
<td>0.87</td>
<td>0.3872</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>source</th>
<th>Trtmt</th>
<th>Sex</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>time*Trtmt 24hr</td>
<td></td>
<td>0.6851</td>
<td>1.0157</td>
<td>91.8</td>
<td>0.67</td>
<td>0.5017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*Trtmt ablV</td>
<td></td>
<td>-3.8405</td>
<td>1.2437</td>
<td>90.4</td>
<td>-3.09</td>
<td>0.0027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*Trtmt abst</td>
<td></td>
<td>1.8799</td>
<td>1.2084</td>
<td>91.4</td>
<td>1.56</td>
<td>0.1232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*Trtmt fenc</td>
<td></td>
<td>1.0128</td>
<td>1.2084</td>
<td>91.4</td>
<td>1.56</td>
<td>0.1232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt L 24hr</td>
<td></td>
<td>-0.4817</td>
<td>1.0887</td>
<td>120</td>
<td>-0.44</td>
<td>0.6590</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt L ablV</td>
<td></td>
<td>3.2272</td>
<td>1.3299</td>
<td>118</td>
<td>2.43</td>
<td>0.0168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt L abst</td>
<td></td>
<td>-2.7070</td>
<td>1.2969</td>
<td>120</td>
<td>-2.09</td>
<td>0.0390</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt L fenc</td>
<td></td>
<td>0.5949</td>
<td>1.0827</td>
<td>118</td>
<td>0.55</td>
<td>0.5837</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt L flap</td>
<td></td>
<td>0.2292</td>
<td>0.1781</td>
<td>1129</td>
<td>1.29</td>
<td>0.1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt R 24hr</td>
<td></td>
<td>0.2290</td>
<td>0.2344</td>
<td>1131</td>
<td>0.98</td>
<td>0.3289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt R ablV</td>
<td></td>
<td>0.2290</td>
<td>0.1781</td>
<td>1129</td>
<td>1.29</td>
<td>0.1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt R abst</td>
<td></td>
<td>-0.7545</td>
<td>0.2131</td>
<td>1129</td>
<td>-3.54</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt R fenc</td>
<td></td>
<td>0.3085</td>
<td>0.2143</td>
<td>1129</td>
<td>1.44</td>
<td>0.1502</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*time</td>
<td></td>
<td>-0.1864</td>
<td>0.1987</td>
<td>1132</td>
<td>-0.94</td>
<td>0.3482</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesource L</td>
<td></td>
<td>0.2290</td>
<td>0.2344</td>
<td>1131</td>
<td>0.98</td>
<td>0.3289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesource R</td>
<td></td>
<td>0.2290</td>
<td>0.1781</td>
<td>1129</td>
<td>1.29</td>
<td>0.1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect | source Trmt | Sex | Estimate | Standard Error | DF | t Value | Pr > |t| |
|----------------------------|-------------|-----|----------|----------------|-----|---------|------|---|
| time*time*sour*Trtmt L | fenc | | -0.2392 | 0.1770 | 1131| -1.35 | 0.1769 | |
| time*time*sour*Trtmt L | flap | | 0 | | . | . | . | |
| time*time*sour*Trtmt R | 24hr | | 0.5043 | 0.2878 | 1140| 1.75 | 0.0800 | |
| time*time*sour*Trtmt R | ablv | | 0.5600 | 0.3494 | 1131| 1.60 | 0.1093 | |
| time*time*sour*Trtmt R | abst | | 0.5732 | 0.3390 | 1131| 1.69 | 0.0912 | |
| time*time*sour*Trtmt R | fenc | | 0.1743 | 0.2826 | 1130| 0.62 | 0.5376 | |
| time*time*sour*Trtmt R | flap | | 0 | | . | . | . | |
| Sex | C | | -1.4574 | 0.7414 | 281 | -1.97 | 0.0503 | |
| Sex | S | | 0 | | . | . | . | |
| base | | | 1.0093 | 0.01164 | 279 | 86.68 | <.0001 | |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>1</td>
<td>212</td>
<td>74.17</td>
<td><.0001</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>119</td>
<td>177.44</td>
<td><.0001</td>
</tr>
<tr>
<td>time*source</td>
<td>1</td>
<td>119</td>
<td>14.27</td>
<td>0.0002</td>
</tr>
<tr>
<td>Trtmt</td>
<td>4</td>
<td>176</td>
<td>1.83</td>
<td>0.1247</td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>4</td>
<td>176</td>
<td>4.25</td>
<td>0.0026</td>
</tr>
<tr>
<td>time*Trtmt</td>
<td>4</td>
<td>119</td>
<td>7.25</td>
<td><.0001</td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>4</td>
<td>119</td>
<td>4.07</td>
<td>0.0040</td>
</tr>
<tr>
<td>timetimeTrtmt</td>
<td>1</td>
<td>1132</td>
<td>1.04</td>
<td>0.3081</td>
</tr>
<tr>
<td>timetimesource</td>
<td>1</td>
<td>1132</td>
<td>3.24</td>
<td>0.0721</td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>8</td>
<td>1131</td>
<td>4.18</td>
<td><.0001</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>281</td>
<td>3.86</td>
<td>0.0503</td>
</tr>
<tr>
<td>base</td>
<td>1</td>
<td>279</td>
<td>7513.47</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Conditional Pearson Residuals for wts

Residual Statistics
- Observations: 1724
- Minimum: -3.485
- Mean: -5E-14
- Maximum: 3.3476
- Std Dev: 0.8772

Fit Statistics
- Objective: 11576
- AIC: 11590
- AICC: 11590
- BIC: 11615
<table>
<thead>
<tr>
<th>ID</th>
<th>Number of Observations in Level</th>
<th>Iterations</th>
<th>PRESS Statistic</th>
<th>Cook's D</th>
<th>MDFFITS</th>
<th>COVRATIO</th>
<th>COVTRACE</th>
<th>Cook's D CovParms</th>
<th>MDFFITS CovParms</th>
<th>COVRATIO CovParms</th>
<th>COVTRACE CovParms</th>
<th>RMSE without deleted level</th>
<th>Restricted Likelihood Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>6</td>
<td>2</td>
<td>61.01</td>
<td>0.00021</td>
<td>0.00020</td>
<td>1.1493</td>
<td>0.1402</td>
<td>0.00751</td>
<td>0.09742</td>
<td>1.0505</td>
<td>0.0496</td>
<td>5.49829</td>
<td>0.0140</td>
</tr>
<tr>
<td>1002</td>
<td>6</td>
<td>2</td>
<td>84.96</td>
<td>0.00064</td>
<td>0.00062</td>
<td>1.1372</td>
<td>0.1296</td>
<td>0.00577</td>
<td>0.00571</td>
<td>1.0428</td>
<td>0.0422</td>
<td>5.49830</td>
<td>0.0262</td>
</tr>
<tr>
<td>1003</td>
<td>6</td>
<td>2</td>
<td>46.41</td>
<td>0.00055</td>
<td>0.00054</td>
<td>1.1534</td>
<td>0.1438</td>
<td>0.00791</td>
<td>0.00782</td>
<td>1.0523</td>
<td>0.0513</td>
<td>5.49918</td>
<td>0.0256</td>
</tr>
<tr>
<td>1005</td>
<td>6</td>
<td>2</td>
<td>1518.31</td>
<td>0.00597</td>
<td>0.00591</td>
<td>0.9829</td>
<td>0.0151</td>
<td>0.06142</td>
<td>0.06378</td>
<td>0.9786</td>
<td>0.0205</td>
<td>5.49713</td>
<td>0.2537</td>
</tr>
<tr>
<td>1006</td>
<td>6</td>
<td>2</td>
<td>435.79</td>
<td>0.00231</td>
<td>0.00224</td>
<td>1.0862</td>
<td>0.0840</td>
<td>0.00808</td>
<td>0.00803</td>
<td>1.0338</td>
<td>0.0336</td>
<td>5.48851</td>
<td>0.0788</td>
</tr>
<tr>
<td>1007</td>
<td>6</td>
<td>2</td>
<td>223.62</td>
<td>0.00081</td>
<td>0.00080</td>
<td>1.1075</td>
<td>0.1030</td>
<td>0.00302</td>
<td>0.00298</td>
<td>1.0314</td>
<td>0.0311</td>
<td>5.49391</td>
<td>0.0290</td>
</tr>
<tr>
<td>1008</td>
<td>6</td>
<td>2</td>
<td>82.65</td>
<td>0.00082</td>
<td>0.00080</td>
<td>1.1378</td>
<td>0.1301</td>
<td>0.00521</td>
<td>0.00514</td>
<td>1.0478</td>
<td>0.0470</td>
<td>5.49594</td>
<td>0.0314</td>
</tr>
<tr>
<td>1009</td>
<td>6</td>
<td>2</td>
<td>1240.11</td>
<td>0.00334</td>
<td>0.00330</td>
<td>0.9995</td>
<td>0.0007</td>
<td>0.02301</td>
<td>0.02341</td>
<td>0.9899</td>
<td>0.0097</td>
<td>5.48960</td>
<td>0.1307</td>
</tr>
<tr>
<td>1010</td>
<td>6</td>
<td>2</td>
<td>742.47</td>
<td>0.00201</td>
<td>0.00199</td>
<td>1.0406</td>
<td>0.0407</td>
<td>0.01158</td>
<td>0.01166</td>
<td>0.9998</td>
<td>0.0000</td>
<td>5.49094</td>
<td>0.0766</td>
</tr>
<tr>
<td>1011</td>
<td>6</td>
<td>2</td>
<td>291.13</td>
<td>0.00203</td>
<td>0.00199</td>
<td>1.0702</td>
<td>0.0689</td>
<td>0.00627</td>
<td>0.00625</td>
<td>1.0213</td>
<td>0.0212</td>
<td>5.49053</td>
<td>0.0709</td>
</tr>
<tr>
<td>1012</td>
<td>6</td>
<td>2</td>
<td>103.81</td>
<td>0.00088</td>
<td>0.00086</td>
<td>1.1326</td>
<td>0.1256</td>
<td>0.00459</td>
<td>0.00453</td>
<td>1.0481</td>
<td>0.0473</td>
<td>5.49392</td>
<td>0.0327</td>
</tr>
<tr>
<td>1013</td>
<td>6</td>
<td>2</td>
<td>124.91</td>
<td>0.00013</td>
<td>0.00012</td>
<td>1.1307</td>
<td>0.1238</td>
<td>0.00489</td>
<td>0.00482</td>
<td>1.0472</td>
<td>0.0464</td>
<td>5.49420</td>
<td>0.0087</td>
</tr>
<tr>
<td>1015</td>
<td>6</td>
<td>2</td>
<td>930.71</td>
<td>0.00226</td>
<td>0.00223</td>
<td>1.0401</td>
<td>0.0402</td>
<td>0.00970</td>
<td>0.00977</td>
<td>1.0050</td>
<td>0.0052</td>
<td>5.49083</td>
<td>0.0841</td>
</tr>
<tr>
<td>1016</td>
<td>6</td>
<td>2</td>
<td>184.03</td>
<td>0.00065</td>
<td>0.00063</td>
<td>1.1227</td>
<td>0.1167</td>
<td>0.00352</td>
<td>0.00348</td>
<td>1.0423</td>
<td>0.0417</td>
<td>5.49358</td>
<td>0.0242</td>
</tr>
<tr>
<td>1017</td>
<td>6</td>
<td>2</td>
<td>53.18</td>
<td>0.00024</td>
<td>0.00024</td>
<td>1.1563</td>
<td>0.1464</td>
<td>0.00956</td>
<td>0.00946</td>
<td>1.0496</td>
<td>0.0487</td>
<td>5.50055</td>
<td>0.0172</td>
</tr>
<tr>
<td>1018</td>
<td>6</td>
<td>2</td>
<td>3018.73</td>
<td>0.00693</td>
<td>0.00706</td>
<td>0.8288</td>
<td>0.1827</td>
<td>0.18950</td>
<td>0.20578</td>
<td>0.8936</td>
<td>0.1083</td>
<td>5.49083</td>
<td>0.4455</td>
</tr>
<tr>
<td>1019</td>
<td>6</td>
<td>2</td>
<td>203.25</td>
<td>0.00155</td>
<td>0.00152</td>
<td>1.0684</td>
<td>0.0671</td>
<td>0.00724</td>
<td>0.00721</td>
<td>1.0156</td>
<td>0.0157</td>
<td>5.49349</td>
<td>0.0562</td>
</tr>
<tr>
<td>1021</td>
<td>6</td>
<td>2</td>
<td>1185.63</td>
<td>0.00741</td>
<td>0.00749</td>
<td>0.8756</td>
<td>0.1282</td>
<td>0.16925</td>
<td>0.18218</td>
<td>0.9168</td>
<td>0.0833</td>
<td>5.49960</td>
<td>0.4334</td>
</tr>
<tr>
<td>1022</td>
<td>6</td>
<td>2</td>
<td>479.01</td>
<td>0.00153</td>
<td>0.00150</td>
<td>1.0793</td>
<td>0.0772</td>
<td>0.00399</td>
<td>0.00395</td>
<td>1.0311</td>
<td>0.0308</td>
<td>5.49054</td>
<td>0.0522</td>
</tr>
<tr>
<td>1023</td>
<td>6</td>
<td>2</td>
<td>534.74</td>
<td>0.00360</td>
<td>0.00358</td>
<td>0.9679</td>
<td>0.0313</td>
<td>0.03805</td>
<td>0.03912</td>
<td>0.9762</td>
<td>0.0235</td>
<td>5.48557</td>
<td>0.1577</td>
</tr>
<tr>
<td>1024</td>
<td>6</td>
<td>2</td>
<td>191.41</td>
<td>0.00144</td>
<td>0.00141</td>
<td>1.0990</td>
<td>0.0955</td>
<td>0.00623</td>
<td>0.00618</td>
<td>1.0236</td>
<td>0.0235</td>
<td>5.49777</td>
<td>0.0534</td>
</tr>
<tr>
<td>1025</td>
<td>6</td>
<td>2</td>
<td>145.50</td>
<td>0.00119</td>
<td>0.00117</td>
<td>1.1115</td>
<td>0.1067</td>
<td>0.00333</td>
<td>0.00328</td>
<td>1.0387</td>
<td>0.0382</td>
<td>5.49161</td>
<td>0.0410</td>
</tr>
<tr>
<td>1026</td>
<td>6</td>
<td>2</td>
<td>224.46</td>
<td>0.00190</td>
<td>0.00186</td>
<td>1.1194</td>
<td>0.1138</td>
<td>0.00303</td>
<td>0.00299</td>
<td>1.0437</td>
<td>0.0430</td>
<td>5.49260</td>
<td>0.0637</td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D MDFFITS</td>
<td>COVRATIO CovParms</td>
<td>Cook's D MDFFITS CovParms</td>
<td>COVRATIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
<td>Restricted Likelihood Distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1027</td>
<td>6</td>
<td>2</td>
<td>428.10</td>
<td>0.00573</td>
<td>0.00565</td>
<td>1.0046</td>
<td>0.0057</td>
<td>0.02304</td>
<td>0.02327</td>
<td>0.9931</td>
<td>0.0066</td>
<td>5.48212</td>
<td>0.2076</td>
</tr>
<tr>
<td>1028</td>
<td>6</td>
<td>2</td>
<td>237.24</td>
<td>0.00064</td>
<td>0.00062</td>
<td>1.1120</td>
<td>0.1073</td>
<td>0.00281</td>
<td>0.00277</td>
<td>1.0379</td>
<td>0.0374</td>
<td>5.49032</td>
<td>0.0232</td>
</tr>
<tr>
<td>1029</td>
<td>6</td>
<td>2</td>
<td>678.52</td>
<td>0.00190</td>
<td>0.00187</td>
<td>1.0801</td>
<td>0.0780</td>
<td>0.01312</td>
<td>0.01309</td>
<td>1.0124</td>
<td>0.0125</td>
<td>5.49993</td>
<td>0.0749</td>
</tr>
<tr>
<td>1030</td>
<td>6</td>
<td>2</td>
<td>690.30</td>
<td>0.00404</td>
<td>0.00394</td>
<td>1.0857</td>
<td>0.0834</td>
<td>0.00981</td>
<td>0.00979</td>
<td>1.0327</td>
<td>0.0325</td>
<td>5.49251</td>
<td>0.1346</td>
</tr>
<tr>
<td>1031</td>
<td>6</td>
<td>2</td>
<td>384.26</td>
<td>0.00115</td>
<td>0.00112</td>
<td>1.1233</td>
<td>0.1175</td>
<td>0.00742</td>
<td>0.00733</td>
<td>1.0330</td>
<td>0.0327</td>
<td>5.49909</td>
<td>0.0438</td>
</tr>
<tr>
<td>1032</td>
<td>6</td>
<td>2</td>
<td>449.96</td>
<td>0.00316</td>
<td>0.00311</td>
<td>1.0267</td>
<td>0.0272</td>
<td>0.00989</td>
<td>0.00988</td>
<td>1.0061</td>
<td>0.0063</td>
<td>5.48643</td>
<td>0.1107</td>
</tr>
<tr>
<td>1033</td>
<td>6</td>
<td>2</td>
<td>523.20</td>
<td>0.00172</td>
<td>0.00167</td>
<td>1.0925</td>
<td>0.0897</td>
<td>0.00703</td>
<td>0.00697</td>
<td>1.0170</td>
<td>0.0171</td>
<td>5.49827</td>
<td>0.0618</td>
</tr>
<tr>
<td>1034</td>
<td>6</td>
<td>2</td>
<td>392.91</td>
<td>0.00319</td>
<td>0.00318</td>
<td>1.0334</td>
<td>0.0344</td>
<td>0.04539</td>
<td>0.04655</td>
<td>0.9821</td>
<td>0.0173</td>
<td>5.50059</td>
<td>0.1508</td>
</tr>
<tr>
<td>1035</td>
<td>6</td>
<td>2</td>
<td>131.36</td>
<td>0.00153</td>
<td>0.00151</td>
<td>1.0962</td>
<td>0.0928</td>
<td>0.01034</td>
<td>0.01031</td>
<td>1.0233</td>
<td>0.0232</td>
<td>5.49916</td>
<td>0.0601</td>
</tr>
<tr>
<td>1036</td>
<td>6</td>
<td>2</td>
<td>421.49</td>
<td>0.00137</td>
<td>0.00135</td>
<td>1.0850</td>
<td>0.0824</td>
<td>0.00354</td>
<td>0.00350</td>
<td>1.0275</td>
<td>0.0273</td>
<td>5.49394</td>
<td>0.0478</td>
</tr>
<tr>
<td>1037</td>
<td>6</td>
<td>2</td>
<td>217.11</td>
<td>0.00100</td>
<td>0.00098</td>
<td>1.1187</td>
<td>0.1131</td>
<td>0.00369</td>
<td>0.00364</td>
<td>1.0369</td>
<td>0.0364</td>
<td>5.49556</td>
<td>0.0357</td>
</tr>
<tr>
<td>1038</td>
<td>6</td>
<td>2</td>
<td>347.82</td>
<td>0.00426</td>
<td>0.00418</td>
<td>1.0366</td>
<td>0.0374</td>
<td>0.01862</td>
<td>0.01881</td>
<td>1.0050</td>
<td>0.0053</td>
<td>5.48621</td>
<td>0.1545</td>
</tr>
<tr>
<td>1039</td>
<td>6</td>
<td>2</td>
<td>549.76</td>
<td>0.00361</td>
<td>0.00355</td>
<td>0.9977</td>
<td>0.0013</td>
<td>0.02749</td>
<td>0.02766</td>
<td>1.0025</td>
<td>0.0027</td>
<td>5.47656</td>
<td>0.1427</td>
</tr>
<tr>
<td>1040</td>
<td>6</td>
<td>2</td>
<td>57.75</td>
<td>0.00020</td>
<td>0.00020</td>
<td>1.1497</td>
<td>0.1407</td>
<td>0.00696</td>
<td>0.00688</td>
<td>1.0493</td>
<td>0.0485</td>
<td>5.49786</td>
<td>0.0133</td>
</tr>
<tr>
<td>1041</td>
<td>6</td>
<td>2</td>
<td>1102.62</td>
<td>0.00358</td>
<td>0.00352</td>
<td>1.0063</td>
<td>0.0073</td>
<td>0.01726</td>
<td>0.01740</td>
<td>0.9970</td>
<td>0.0027</td>
<td>5.48574</td>
<td>0.1318</td>
</tr>
<tr>
<td>1042</td>
<td>6</td>
<td>2</td>
<td>720.69</td>
<td>0.00120</td>
<td>0.00117</td>
<td>1.0261</td>
<td>0.0266</td>
<td>0.01276</td>
<td>0.01278</td>
<td>1.0121</td>
<td>0.0121</td>
<td>5.48007</td>
<td>0.0516</td>
</tr>
<tr>
<td>1043</td>
<td>6</td>
<td>2</td>
<td>447.41</td>
<td>0.00354</td>
<td>0.00349</td>
<td>1.0240</td>
<td>0.0246</td>
<td>0.01480</td>
<td>0.01491</td>
<td>0.9951</td>
<td>0.0047</td>
<td>5.48502</td>
<td>0.1286</td>
</tr>
<tr>
<td>1044</td>
<td>6</td>
<td>2</td>
<td>409.54</td>
<td>0.00308</td>
<td>0.00305</td>
<td>1.0212</td>
<td>0.0223</td>
<td>0.03071</td>
<td>0.03122</td>
<td>0.9882</td>
<td>0.0114</td>
<td>5.49858</td>
<td>0.1297</td>
</tr>
<tr>
<td>1045</td>
<td>6</td>
<td>2</td>
<td>150.79</td>
<td>0.00097</td>
<td>0.00096</td>
<td>1.1098</td>
<td>0.1052</td>
<td>0.00468</td>
<td>0.00463</td>
<td>1.0283</td>
<td>0.0281</td>
<td>5.49621</td>
<td>0.0359</td>
</tr>
<tr>
<td>1046</td>
<td>6</td>
<td>2</td>
<td>914.00</td>
<td>0.00266</td>
<td>0.00264</td>
<td>1.0330</td>
<td>0.0335</td>
<td>0.02246</td>
<td>0.02287</td>
<td>0.9993</td>
<td>0.0003</td>
<td>5.49230</td>
<td>0.1081</td>
</tr>
<tr>
<td>1047</td>
<td>6</td>
<td>2</td>
<td>161.27</td>
<td>0.00124</td>
<td>0.00122</td>
<td>1.1020</td>
<td>0.0982</td>
<td>0.00574</td>
<td>0.00570</td>
<td>1.0265</td>
<td>0.0263</td>
<td>5.49602</td>
<td>0.0454</td>
</tr>
<tr>
<td>1048</td>
<td>6</td>
<td>2</td>
<td>940.54</td>
<td>0.00271</td>
<td>0.00268</td>
<td>1.0500</td>
<td>0.0500</td>
<td>0.02686</td>
<td>0.02725</td>
<td>1.0008</td>
<td>0.0012</td>
<td>5.49862</td>
<td>0.1136</td>
</tr>
<tr>
<td>1049</td>
<td>6</td>
<td>2</td>
<td>141.70</td>
<td>0.00231</td>
<td>0.00226</td>
<td>1.0910</td>
<td>0.0884</td>
<td>0.01393</td>
<td>0.01391</td>
<td>1.0103</td>
<td>0.0105</td>
<td>5.49961</td>
<td>0.0885</td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFFITS CovParms</td>
<td>COVRATIO CovParms</td>
<td>RMSE without deleted level</td>
<td>Restricted Likelihood Distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1052</td>
<td>6</td>
<td>2</td>
<td>313.91</td>
<td>0.00083</td>
<td>0.00081</td>
<td>1.0968</td>
<td>0.00356</td>
<td>1.0356</td>
<td>0.0352</td>
<td>5.48877</td>
<td>0.299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1053</td>
<td>6</td>
<td>2</td>
<td>1180.23</td>
<td>0.00305</td>
<td>0.00303</td>
<td>0.9918</td>
<td>0.03089</td>
<td>0.03166</td>
<td>0.9756</td>
<td>0.0241</td>
<td>5.48982</td>
<td>0.1317</td>
<td></td>
</tr>
<tr>
<td>1054</td>
<td>6</td>
<td>2</td>
<td>594.32</td>
<td>0.00149</td>
<td>0.00146</td>
<td>1.0993</td>
<td>0.01049</td>
<td>0.01042</td>
<td>1.0279</td>
<td>0.0277</td>
<td>5.49951</td>
<td>0.0576</td>
<td></td>
</tr>
<tr>
<td>1055</td>
<td>6</td>
<td>2</td>
<td>272.09</td>
<td>0.00030</td>
<td>0.00029</td>
<td>1.1418</td>
<td>0.01614</td>
<td>0.01613</td>
<td>1.0395</td>
<td>0.0391</td>
<td>5.47931</td>
<td>0.0259</td>
<td></td>
</tr>
<tr>
<td>1056</td>
<td>6</td>
<td>2</td>
<td>234.08</td>
<td>0.00223</td>
<td>0.00215</td>
<td>1.1377</td>
<td>0.00456</td>
<td>0.00453</td>
<td>1.0287</td>
<td>0.0285</td>
<td>5.48616</td>
<td>0.0762</td>
<td></td>
</tr>
<tr>
<td>1057</td>
<td>6</td>
<td>2</td>
<td>144.53</td>
<td>0.00125</td>
<td>0.00120</td>
<td>1.1941</td>
<td>0.00678</td>
<td>0.00670</td>
<td>1.0439</td>
<td>0.0431</td>
<td>5.49929</td>
<td>0.0468</td>
<td></td>
</tr>
<tr>
<td>1058</td>
<td>6</td>
<td>2</td>
<td>1103.72</td>
<td>0.00528</td>
<td>0.00510</td>
<td>1.0899</td>
<td>0.02299</td>
<td>0.02316</td>
<td>0.9879</td>
<td>0.0117</td>
<td>5.50053</td>
<td>0.1968</td>
<td></td>
</tr>
<tr>
<td>1059</td>
<td>6</td>
<td>2</td>
<td>499.27</td>
<td>0.00194</td>
<td>0.00186</td>
<td>1.1575</td>
<td>0.00396</td>
<td>0.00392</td>
<td>1.0354</td>
<td>0.0349</td>
<td>5.49389</td>
<td>0.0652</td>
<td></td>
</tr>
<tr>
<td>1060</td>
<td>6</td>
<td>2</td>
<td>547.32</td>
<td>0.00247</td>
<td>0.00238</td>
<td>1.1445</td>
<td>0.00504</td>
<td>0.00500</td>
<td>1.0298</td>
<td>0.0295</td>
<td>5.49425</td>
<td>0.0836</td>
<td></td>
</tr>
<tr>
<td>1061</td>
<td>6</td>
<td>2</td>
<td>490.83</td>
<td>0.00419</td>
<td>0.00405</td>
<td>1.1294</td>
<td>0.00646</td>
<td>0.00644</td>
<td>1.0160</td>
<td>0.0160</td>
<td>5.49180</td>
<td>0.1409</td>
<td></td>
</tr>
<tr>
<td>1062</td>
<td>6</td>
<td>2</td>
<td>221.20</td>
<td>0.00054</td>
<td>0.00052</td>
<td>1.1502</td>
<td>0.00627</td>
<td>0.00623</td>
<td>1.0372</td>
<td>0.0368</td>
<td>5.48522</td>
<td>0.0235</td>
<td></td>
</tr>
<tr>
<td>1063</td>
<td>6</td>
<td>2</td>
<td>51.69</td>
<td>0.00122</td>
<td>0.00117</td>
<td>1.2156</td>
<td>0.00734</td>
<td>0.00725</td>
<td>1.0535</td>
<td>0.0524</td>
<td>5.49723</td>
<td>0.0461</td>
<td></td>
</tr>
<tr>
<td>1064</td>
<td>6</td>
<td>2</td>
<td>101.42</td>
<td>0.00025</td>
<td>0.00024</td>
<td>1.2138</td>
<td>0.00630</td>
<td>0.00623</td>
<td>1.0535</td>
<td>0.0525</td>
<td>5.49720</td>
<td>0.0144</td>
<td></td>
</tr>
<tr>
<td>1065</td>
<td>6</td>
<td>2</td>
<td>81.86</td>
<td>0.00274</td>
<td>0.00263</td>
<td>1.2047</td>
<td>0.00603</td>
<td>0.00595</td>
<td>1.0498</td>
<td>0.0489</td>
<td>5.49554</td>
<td>0.0933</td>
<td></td>
</tr>
<tr>
<td>1066</td>
<td>6</td>
<td>2</td>
<td>93.41</td>
<td>0.00097</td>
<td>0.00093</td>
<td>1.2058</td>
<td>0.00735</td>
<td>0.00727</td>
<td>1.0466</td>
<td>0.0458</td>
<td>5.49915</td>
<td>0.0384</td>
<td></td>
</tr>
<tr>
<td>1067</td>
<td>6</td>
<td>2</td>
<td>135.36</td>
<td>0.00064</td>
<td>0.00062</td>
<td>1.1853</td>
<td>0.00351</td>
<td>0.00347</td>
<td>1.0421</td>
<td>0.0415</td>
<td>5.49408</td>
<td>0.0239</td>
<td></td>
</tr>
<tr>
<td>1068</td>
<td>6</td>
<td>2</td>
<td>472.26</td>
<td>0.00336</td>
<td>0.00324</td>
<td>1.1270</td>
<td>0.00751</td>
<td>0.00750</td>
<td>1.0221</td>
<td>0.0221</td>
<td>5.49423</td>
<td>0.1150</td>
<td></td>
</tr>
<tr>
<td>1069</td>
<td>6</td>
<td>2</td>
<td>172.39</td>
<td>0.00139</td>
<td>0.00134</td>
<td>1.1764</td>
<td>0.00310</td>
<td>0.00306</td>
<td>1.0351</td>
<td>0.0346</td>
<td>5.49464</td>
<td>0.0477</td>
<td></td>
</tr>
<tr>
<td>1070</td>
<td>6</td>
<td>2</td>
<td>528.38</td>
<td>0.00346</td>
<td>0.00332</td>
<td>1.1138</td>
<td>0.01104</td>
<td>0.00809</td>
<td>0.00806</td>
<td>1.0252</td>
<td>0.0251</td>
<td>5.48303</td>
<td>0.1189</td>
</tr>
<tr>
<td>1071</td>
<td>6</td>
<td>2</td>
<td>523.23</td>
<td>0.00341</td>
<td>0.00327</td>
<td>1.1433</td>
<td>0.01367</td>
<td>0.00902</td>
<td>0.00901</td>
<td>1.0309</td>
<td>0.0307</td>
<td>5.49364</td>
<td>0.1153</td>
</tr>
<tr>
<td>1072</td>
<td>6</td>
<td>2</td>
<td>836.40</td>
<td>0.00799</td>
<td>0.00778</td>
<td>1.0334</td>
<td>0.02010</td>
<td>0.02577</td>
<td>0.9677</td>
<td>0.0319</td>
<td>5.49896</td>
<td>0.3192</td>
<td></td>
</tr>
<tr>
<td>1073</td>
<td>6</td>
<td>2</td>
<td>190.88</td>
<td>0.00493</td>
<td>0.00474</td>
<td>1.1781</td>
<td>0.01670</td>
<td>0.00457</td>
<td>1.0462</td>
<td>0.0454</td>
<td>5.48775</td>
<td>0.1627</td>
<td></td>
</tr>
<tr>
<td>1074</td>
<td>6</td>
<td>2</td>
<td>177.00</td>
<td>0.00475</td>
<td>0.00458</td>
<td>1.1368</td>
<td>0.01229</td>
<td>0.01234</td>
<td>1.0177</td>
<td>0.0178</td>
<td>5.49591</td>
<td>0.1641</td>
<td></td>
</tr>
<tr>
<td>1075</td>
<td>6</td>
<td>2</td>
<td>145.54</td>
<td>0.00057</td>
<td>0.00055</td>
<td>1.1556</td>
<td>0.01471</td>
<td>0.00442</td>
<td>1.0415</td>
<td>0.0409</td>
<td>5.48817</td>
<td>0.0228</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFITS</td>
<td>COVRATIO</td>
<td>COVTRACE</td>
<td>Cook's D CovParms</td>
<td>MDFITS CovParms</td>
<td>COVRATIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
<td>Restricted Distance</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1076</td>
<td>6 2</td>
<td>257.40</td>
<td>0.00091</td>
<td>0.0088</td>
<td>1.1695</td>
<td>0.1598</td>
<td>0.00350</td>
<td>0.00347</td>
<td>1.0381</td>
<td>0.0376</td>
<td>5.48802</td>
<td>0.0328</td>
<td></td>
</tr>
<tr>
<td>1077</td>
<td>6 2</td>
<td>177.88</td>
<td>0.00202</td>
<td>0.00195</td>
<td>1.1649</td>
<td>0.1553</td>
<td>0.00261</td>
<td>0.00258</td>
<td>1.0328</td>
<td>0.0325</td>
<td>5.49328</td>
<td>0.0675</td>
<td></td>
</tr>
<tr>
<td>1078</td>
<td>6 2</td>
<td>77.70</td>
<td>0.00022</td>
<td>0.0021</td>
<td>1.2069</td>
<td>0.1911</td>
<td>0.00585</td>
<td>0.00577</td>
<td>1.0514</td>
<td>0.0505</td>
<td>5.49506</td>
<td>0.0128</td>
<td></td>
</tr>
<tr>
<td>1079</td>
<td>6 2</td>
<td>213.86</td>
<td>0.00090</td>
<td>0.00087</td>
<td>1.1979</td>
<td>0.1834</td>
<td>0.00634</td>
<td>0.00627</td>
<td>1.0423</td>
<td>0.0417</td>
<td>5.49862</td>
<td>0.0352</td>
<td></td>
</tr>
<tr>
<td>1080</td>
<td>6 2</td>
<td>201.37</td>
<td>0.00184</td>
<td>0.00177</td>
<td>1.1391</td>
<td>0.1329</td>
<td>0.00357</td>
<td>0.00352</td>
<td>1.0249</td>
<td>0.0247</td>
<td>5.49025</td>
<td>0.0619</td>
<td></td>
</tr>
<tr>
<td>1081</td>
<td>6 2</td>
<td>630.77</td>
<td>0.00450</td>
<td>0.00430</td>
<td>1.0984</td>
<td>0.0967</td>
<td>0.00668</td>
<td>0.00668</td>
<td>1.0046</td>
<td>0.0048</td>
<td>5.48978</td>
<td>0.1533</td>
<td></td>
</tr>
<tr>
<td>1082</td>
<td>6 2</td>
<td>268.59</td>
<td>0.00678</td>
<td>0.00662</td>
<td>1.0653</td>
<td>0.0661</td>
<td>0.04101</td>
<td>0.04207</td>
<td>0.9793</td>
<td>0.0202</td>
<td>5.49714</td>
<td>0.2604</td>
<td></td>
</tr>
<tr>
<td>1083</td>
<td>6 2</td>
<td>419.46</td>
<td>0.00968</td>
<td>0.00950</td>
<td>1.0126</td>
<td>0.0158</td>
<td>0.06558</td>
<td>0.06831</td>
<td>0.9568</td>
<td>0.0429</td>
<td>5.49122</td>
<td>0.3814</td>
<td></td>
</tr>
<tr>
<td>1084</td>
<td>6 2</td>
<td>193.24</td>
<td>0.00331</td>
<td>0.00319</td>
<td>1.1700</td>
<td>0.1597</td>
<td>0.00547</td>
<td>0.00540</td>
<td>1.0442</td>
<td>0.0435</td>
<td>5.48812</td>
<td>0.1113</td>
<td></td>
</tr>
<tr>
<td>1085</td>
<td>5 2</td>
<td>405.05</td>
<td>0.00559</td>
<td>0.00538</td>
<td>1.1209</td>
<td>0.1165</td>
<td>0.00560</td>
<td>0.00559</td>
<td>1.0182</td>
<td>0.0182</td>
<td>5.49299</td>
<td>0.1846</td>
<td></td>
</tr>
<tr>
<td>1086</td>
<td>6 2</td>
<td>480.38</td>
<td>0.00145</td>
<td>0.00139</td>
<td>1.1315</td>
<td>0.1263</td>
<td>0.00443</td>
<td>0.00440</td>
<td>1.0242</td>
<td>0.0241</td>
<td>5.48683</td>
<td>0.0504</td>
<td></td>
</tr>
<tr>
<td>1087</td>
<td>6 2</td>
<td>633.15</td>
<td>0.00250</td>
<td>0.00241</td>
<td>1.0655</td>
<td>0.0661</td>
<td>0.04296</td>
<td>0.04346</td>
<td>1.0167</td>
<td>0.0169</td>
<td>5.46831</td>
<td>0.1235</td>
<td></td>
</tr>
<tr>
<td>1088</td>
<td>6 2</td>
<td>1025.27</td>
<td>0.00561</td>
<td>0.00544</td>
<td>1.0689</td>
<td>0.0690</td>
<td>0.01766</td>
<td>0.01789</td>
<td>0.9942</td>
<td>0.0056</td>
<td>5.48636</td>
<td>0.2001</td>
<td></td>
</tr>
<tr>
<td>1089</td>
<td>6 2</td>
<td>215.84</td>
<td>0.00324</td>
<td>0.00314</td>
<td>1.1487</td>
<td>0.1414</td>
<td>0.01378</td>
<td>0.01378</td>
<td>1.0161</td>
<td>0.0162</td>
<td>5.49938</td>
<td>0.1181</td>
<td></td>
</tr>
<tr>
<td>1090</td>
<td>6 2</td>
<td>175.60</td>
<td>0.00093</td>
<td>0.00088</td>
<td>1.1935</td>
<td>0.1801</td>
<td>0.00434</td>
<td>0.00428</td>
<td>1.0422</td>
<td>0.0416</td>
<td>5.49502</td>
<td>0.0337</td>
<td></td>
</tr>
<tr>
<td>1091</td>
<td>6 2</td>
<td>261.52</td>
<td>0.00005</td>
<td>0.00005</td>
<td>1.1434</td>
<td>0.1367</td>
<td>0.01285</td>
<td>0.01282</td>
<td>1.0410</td>
<td>0.0405</td>
<td>5.48110</td>
<td>0.0146</td>
<td></td>
</tr>
<tr>
<td>1092</td>
<td>6 2</td>
<td>126.87</td>
<td>0.00054</td>
<td>0.00052</td>
<td>1.1911</td>
<td>0.1778</td>
<td>0.00462</td>
<td>0.00455</td>
<td>1.0494</td>
<td>0.0485</td>
<td>5.49135</td>
<td>0.0218</td>
<td></td>
</tr>
<tr>
<td>1093</td>
<td>6 2</td>
<td>488.21</td>
<td>0.00597</td>
<td>0.00578</td>
<td>1.0769</td>
<td>0.0764</td>
<td>0.01332</td>
<td>0.01345</td>
<td>1.0033</td>
<td>0.0035</td>
<td>5.48829</td>
<td>0.2063</td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>6 2</td>
<td>657.83</td>
<td>0.00294</td>
<td>0.00282</td>
<td>1.1359</td>
<td>0.1307</td>
<td>0.00604</td>
<td>0.00603</td>
<td>1.0206</td>
<td>0.0205</td>
<td>5.48674</td>
<td>0.1011</td>
<td></td>
</tr>
<tr>
<td>1095</td>
<td>6 2</td>
<td>451.84</td>
<td>0.00531</td>
<td>0.00514</td>
<td>1.0680</td>
<td>0.0684</td>
<td>0.01746</td>
<td>0.01775</td>
<td>0.9904</td>
<td>0.0093</td>
<td>5.49095</td>
<td>0.1920</td>
<td></td>
</tr>
<tr>
<td>1096</td>
<td>5 2</td>
<td>362.79</td>
<td>0.00419</td>
<td>0.00403</td>
<td>1.1257</td>
<td>0.1208</td>
<td>0.00250</td>
<td>0.00247</td>
<td>1.0186</td>
<td>0.0186</td>
<td>5.49136</td>
<td>0.1364</td>
<td></td>
</tr>
<tr>
<td>1097</td>
<td>6 2</td>
<td>334.49</td>
<td>0.00078</td>
<td>0.00075</td>
<td>1.1523</td>
<td>0.1444</td>
<td>0.00400</td>
<td>0.00396</td>
<td>1.0355</td>
<td>0.0351</td>
<td>5.48763</td>
<td>0.0289</td>
<td></td>
</tr>
<tr>
<td>1098</td>
<td>6 2</td>
<td>214.90</td>
<td>0.00062</td>
<td>0.00059</td>
<td>1.1580</td>
<td>0.1495</td>
<td>0.00623</td>
<td>0.00619</td>
<td>1.0411</td>
<td>0.0406</td>
<td>5.48526</td>
<td>0.0261</td>
<td></td>
</tr>
<tr>
<td>1099</td>
<td>6 3</td>
<td>3026.89</td>
<td>0.03769</td>
<td>0.03938</td>
<td>0.5701</td>
<td>0.5343</td>
<td>1.24555</td>
<td>1.50354</td>
<td>0.7268</td>
<td>0.2937</td>
<td>5.44437</td>
<td>2.7249</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFFITS</td>
<td>COVRATIO</td>
<td>COVTRACE</td>
<td>Cook's D CovParms</td>
<td>MDFFITS CovParms</td>
<td>COVRATIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
<td>Restricted Likelihood Distance</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1100</td>
<td>6</td>
<td>2</td>
<td>381.40</td>
<td>0.00160</td>
<td>0.00154</td>
<td>1.1657</td>
<td>0.1560</td>
<td>0.00332</td>
<td>0.00328</td>
<td>1.0328</td>
<td>0.0324</td>
<td>5.49509</td>
<td>0.0545</td>
</tr>
<tr>
<td>1101</td>
<td>6</td>
<td>2</td>
<td>464.70</td>
<td>0.00429</td>
<td>0.00417</td>
<td>1.1033</td>
<td>0.1009</td>
<td>0.01634</td>
<td>0.01655</td>
<td>0.9986</td>
<td>0.0011</td>
<td>5.49334</td>
<td>0.1551</td>
</tr>
<tr>
<td>1102</td>
<td>6</td>
<td>2</td>
<td>184.00</td>
<td>0.00194</td>
<td>0.00186</td>
<td>1.1922</td>
<td>0.1796</td>
<td>0.00405</td>
<td>0.00401</td>
<td>1.0455</td>
<td>0.0448</td>
<td>5.48660</td>
<td>0.0663</td>
</tr>
<tr>
<td>1103</td>
<td>6</td>
<td>2</td>
<td>1159.80</td>
<td>0.00472</td>
<td>0.00457</td>
<td>1.0520</td>
<td>0.0532</td>
<td>0.02119</td>
<td>0.02138</td>
<td>0.9979</td>
<td>0.0018</td>
<td>5.48333</td>
<td>0.1720</td>
</tr>
<tr>
<td>1104</td>
<td>6</td>
<td>2</td>
<td>454.59</td>
<td>0.00253</td>
<td>0.00244</td>
<td>1.0992</td>
<td>0.0973</td>
<td>0.02441</td>
<td>0.02456</td>
<td>1.0272</td>
<td>0.0271</td>
<td>5.47463</td>
<td>0.1058</td>
</tr>
<tr>
<td>1105</td>
<td>6</td>
<td>2</td>
<td>157.46</td>
<td>0.00292</td>
<td>0.00282</td>
<td>1.1551</td>
<td>0.1468</td>
<td>0.00540</td>
<td>0.00537</td>
<td>1.0270</td>
<td>0.0268</td>
<td>5.49592</td>
<td>0.0996</td>
</tr>
<tr>
<td>1106</td>
<td>6</td>
<td>2</td>
<td>130.05</td>
<td>0.00259</td>
<td>0.00250</td>
<td>1.1947</td>
<td>0.1811</td>
<td>0.00484</td>
<td>0.00477</td>
<td>1.0484</td>
<td>0.0476</td>
<td>5.49133</td>
<td>0.0878</td>
</tr>
<tr>
<td>1107</td>
<td>6</td>
<td>2</td>
<td>1166.61</td>
<td>0.00486</td>
<td>0.00471</td>
<td>1.0562</td>
<td>0.0571</td>
<td>0.01540</td>
<td>0.01558</td>
<td>0.9907</td>
<td>0.0090</td>
<td>5.48726</td>
<td>0.1745</td>
</tr>
<tr>
<td>1108</td>
<td>6</td>
<td>2</td>
<td>187.81</td>
<td>0.00096</td>
<td>0.00092</td>
<td>1.2024</td>
<td>0.1873</td>
<td>0.00472</td>
<td>0.00466</td>
<td>1.0471</td>
<td>0.0463</td>
<td>5.49614</td>
<td>0.0357</td>
</tr>
<tr>
<td>1109</td>
<td>6</td>
<td>2</td>
<td>350.31</td>
<td>0.00101</td>
<td>0.00099</td>
<td>1.0438</td>
<td>0.0437</td>
<td>0.01096</td>
<td>0.01096</td>
<td>1.0173</td>
<td>0.0173</td>
<td>5.48145</td>
<td>0.0436</td>
</tr>
<tr>
<td>1110</td>
<td>5</td>
<td>2</td>
<td>216.37</td>
<td>0.00133</td>
<td>0.00131</td>
<td>1.1026</td>
<td>0.0984</td>
<td>0.00347</td>
<td>0.00344</td>
<td>1.0360</td>
<td>0.0355</td>
<td>5.49543</td>
<td>0.0460</td>
</tr>
<tr>
<td>1111</td>
<td>6</td>
<td>2</td>
<td>212.33</td>
<td>0.00062</td>
<td>0.00061</td>
<td>1.1400</td>
<td>0.1322</td>
<td>0.00806</td>
<td>0.00796</td>
<td>1.0408</td>
<td>0.0402</td>
<td>5.49993</td>
<td>0.0276</td>
</tr>
<tr>
<td>1112</td>
<td>6</td>
<td>2</td>
<td>28.12</td>
<td>0.00002</td>
<td>0.00002</td>
<td>1.1767</td>
<td>0.1645</td>
<td>0.00918</td>
<td>0.00907</td>
<td>1.0555</td>
<td>0.0544</td>
<td>5.49912</td>
<td>0.0097</td>
</tr>
<tr>
<td>1113</td>
<td>6</td>
<td>2</td>
<td>1034.28</td>
<td>0.00824</td>
<td>0.00844</td>
<td>0.8132</td>
<td>0.1994</td>
<td>0.27879</td>
<td>0.30675</td>
<td>0.8780</td>
<td>0.1240</td>
<td>5.49986</td>
<td>0.5731</td>
</tr>
<tr>
<td>1114</td>
<td>6</td>
<td>2</td>
<td>329.75</td>
<td>0.00074</td>
<td>0.00073</td>
<td>1.1176</td>
<td>0.1121</td>
<td>0.00456</td>
<td>0.00451</td>
<td>1.0404</td>
<td>0.0398</td>
<td>5.49667</td>
<td>0.0282</td>
</tr>
<tr>
<td>1115</td>
<td>5</td>
<td>2</td>
<td>339.27</td>
<td>0.00094</td>
<td>0.00093</td>
<td>1.0964</td>
<td>0.0928</td>
<td>0.00553</td>
<td>0.00548</td>
<td>1.0259</td>
<td>0.0257</td>
<td>5.49770</td>
<td>0.0357</td>
</tr>
<tr>
<td>1116</td>
<td>6</td>
<td>2</td>
<td>238.10</td>
<td>0.00085</td>
<td>0.00083</td>
<td>1.1496</td>
<td>0.1406</td>
<td>0.00755</td>
<td>0.00747</td>
<td>1.0472</td>
<td>0.0463</td>
<td>5.49983</td>
<td>0.0352</td>
</tr>
<tr>
<td>1117</td>
<td>6</td>
<td>2</td>
<td>189.70</td>
<td>0.00081</td>
<td>0.00079</td>
<td>1.1057</td>
<td>0.1013</td>
<td>0.00325</td>
<td>0.00320</td>
<td>1.0373</td>
<td>0.0368</td>
<td>5.49334</td>
<td>0.0288</td>
</tr>
<tr>
<td>1118</td>
<td>5</td>
<td>2</td>
<td>95.37</td>
<td>0.00051</td>
<td>0.00050</td>
<td>1.1212</td>
<td>0.1152</td>
<td>0.00526</td>
<td>0.00521</td>
<td>1.0400</td>
<td>0.0395</td>
<td>5.49775</td>
<td>0.0214</td>
</tr>
<tr>
<td>1119</td>
<td>5</td>
<td>2</td>
<td>314.37</td>
<td>0.00194</td>
<td>0.00191</td>
<td>1.0583</td>
<td>0.0574</td>
<td>0.00530</td>
<td>0.00529</td>
<td>1.0190</td>
<td>0.0189</td>
<td>5.49284</td>
<td>0.0679</td>
</tr>
<tr>
<td>1120</td>
<td>6</td>
<td>2</td>
<td>167.88</td>
<td>0.00126</td>
<td>0.00124</td>
<td>1.0950</td>
<td>0.0917</td>
<td>0.00372</td>
<td>0.00367</td>
<td>1.0291</td>
<td>0.0289</td>
<td>5.49395</td>
<td>0.0432</td>
</tr>
<tr>
<td>1121</td>
<td>6</td>
<td>2</td>
<td>547.44</td>
<td>0.00168</td>
<td>0.00166</td>
<td>1.0828</td>
<td>0.0805</td>
<td>0.01176</td>
<td>0.01172</td>
<td>1.0129</td>
<td>0.0130</td>
<td>5.49894</td>
<td>0.0658</td>
</tr>
<tr>
<td>1122</td>
<td>6</td>
<td>2</td>
<td>823.76</td>
<td>0.00168</td>
<td>0.00165</td>
<td>1.0302</td>
<td>0.0305</td>
<td>0.00680</td>
<td>0.00679</td>
<td>1.0070</td>
<td>0.0071</td>
<td>5.48692</td>
<td>0.0616</td>
</tr>
<tr>
<td>1123</td>
<td>6</td>
<td>2</td>
<td>251.40</td>
<td>0.00167</td>
<td>0.00163</td>
<td>1.1149</td>
<td>0.1099</td>
<td>0.00707</td>
<td>0.00701</td>
<td>1.0356</td>
<td>0.0352</td>
<td>5.49765</td>
<td>0.0601</td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFFITS</td>
<td>COVARTIO</td>
<td>COVTRACE</td>
<td>Cook's D CovParms</td>
<td>MDFFITS CovParms</td>
<td>COVARTIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
<td>Restricted Likelihood Distance</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1124</td>
<td>6</td>
<td>2</td>
<td>914.20</td>
<td>0.00393</td>
<td>0.00382</td>
<td>1.0298</td>
<td>0.0308</td>
<td>0.01297</td>
<td>0.01303</td>
<td>0.9870</td>
<td>0.0126</td>
<td>5.49612</td>
<td>0.1415</td>
</tr>
<tr>
<td>1125</td>
<td>6</td>
<td>2</td>
<td>238.80</td>
<td>0.00278</td>
<td>0.00273</td>
<td>1.0762</td>
<td>0.0743</td>
<td>0.00840</td>
<td>0.00840</td>
<td>1.0145</td>
<td>0.0146</td>
<td>5.49559</td>
<td>0.0977</td>
</tr>
<tr>
<td>1126</td>
<td>5</td>
<td>2</td>
<td>15.61</td>
<td>0.00023</td>
<td>0.00023</td>
<td>1.1415</td>
<td>0.1332</td>
<td>0.00762</td>
<td>0.00753</td>
<td>1.0516</td>
<td>0.0506</td>
<td>5.49782</td>
<td>0.0149</td>
</tr>
<tr>
<td>1127</td>
<td>6</td>
<td>2</td>
<td>1117.56</td>
<td>0.00292</td>
<td>0.00289</td>
<td>0.9930</td>
<td>0.0059</td>
<td>0.02376</td>
<td>0.02420</td>
<td>0.9812</td>
<td>0.0185</td>
<td>5.49524</td>
<td>0.1220</td>
</tr>
<tr>
<td>1128</td>
<td>6</td>
<td>2</td>
<td>640.26</td>
<td>0.00286</td>
<td>0.00283</td>
<td>1.0331</td>
<td>0.0336</td>
<td>0.01941</td>
<td>0.01973</td>
<td>0.9941</td>
<td>0.0056</td>
<td>5.49256</td>
<td>0.1122</td>
</tr>
<tr>
<td>1129</td>
<td>6</td>
<td>2</td>
<td>314.36</td>
<td>0.00163</td>
<td>0.00160</td>
<td>1.0899</td>
<td>0.0870</td>
<td>0.00544</td>
<td>0.00540</td>
<td>1.0381</td>
<td>0.0376</td>
<td>5.48605</td>
<td>0.0577</td>
</tr>
<tr>
<td>1130</td>
<td>5</td>
<td>2</td>
<td>245.74</td>
<td>0.00126</td>
<td>0.00124</td>
<td>1.0848</td>
<td>0.0821</td>
<td>0.00745</td>
<td>0.00741</td>
<td>1.0252</td>
<td>0.0250</td>
<td>5.49830</td>
<td>0.0483</td>
</tr>
<tr>
<td>1131</td>
<td>6</td>
<td>2</td>
<td>370.17</td>
<td>0.00087</td>
<td>0.00085</td>
<td>1.1084</td>
<td>0.1037</td>
<td>0.00446</td>
<td>0.00441</td>
<td>1.0359</td>
<td>0.0354</td>
<td>5.49628</td>
<td>0.0321</td>
</tr>
<tr>
<td>1132</td>
<td>6</td>
<td>2</td>
<td>118.49</td>
<td>0.00098</td>
<td>0.00095</td>
<td>1.1321</td>
<td>0.1255</td>
<td>0.00453</td>
<td>0.00448</td>
<td>1.0402</td>
<td>0.0396</td>
<td>5.49652</td>
<td>0.0359</td>
</tr>
<tr>
<td>1133</td>
<td>6</td>
<td>2</td>
<td>508.82</td>
<td>0.00127</td>
<td>0.00125</td>
<td>1.0801</td>
<td>0.0778</td>
<td>0.00337</td>
<td>0.00333</td>
<td>1.0289</td>
<td>0.0286</td>
<td>5.49093</td>
<td>0.0439</td>
</tr>
<tr>
<td>1134</td>
<td>6</td>
<td>2</td>
<td>702.01</td>
<td>0.00283</td>
<td>0.00275</td>
<td>1.0690</td>
<td>0.0680</td>
<td>0.00720</td>
<td>0.00717</td>
<td>1.0064</td>
<td>0.0067</td>
<td>5.49629</td>
<td>0.0979</td>
</tr>
<tr>
<td>1135</td>
<td>5</td>
<td>2</td>
<td>78.05</td>
<td>0.00011</td>
<td>0.00011</td>
<td>1.1233</td>
<td>0.1171</td>
<td>0.00501</td>
<td>0.00494</td>
<td>1.0476</td>
<td>0.0468</td>
<td>5.49322</td>
<td>0.0082</td>
</tr>
<tr>
<td>1136</td>
<td>6</td>
<td>2</td>
<td>958.86</td>
<td>0.00439</td>
<td>0.00434</td>
<td>0.9629</td>
<td>0.0363</td>
<td>0.03419</td>
<td>0.03505</td>
<td>0.9653</td>
<td>0.0346</td>
<td>5.49298</td>
<td>0.1800</td>
</tr>
<tr>
<td>1137</td>
<td>6</td>
<td>2</td>
<td>133.70</td>
<td>0.00115</td>
<td>0.00112</td>
<td>1.1236</td>
<td>0.1175</td>
<td>0.00419</td>
<td>0.00413</td>
<td>1.0484</td>
<td>0.0476</td>
<td>5.49139</td>
<td>0.0409</td>
</tr>
<tr>
<td>1138</td>
<td>6</td>
<td>2</td>
<td>346.22</td>
<td>0.00073</td>
<td>0.00072</td>
<td>1.1100</td>
<td>0.1053</td>
<td>0.00465</td>
<td>0.00458</td>
<td>1.0330</td>
<td>0.0326</td>
<td>5.49690</td>
<td>0.0281</td>
</tr>
<tr>
<td>1139</td>
<td>6</td>
<td>2</td>
<td>495.50</td>
<td>0.00115</td>
<td>0.00112</td>
<td>1.0705</td>
<td>0.0689</td>
<td>0.00291</td>
<td>0.00288</td>
<td>1.0203</td>
<td>0.0202</td>
<td>5.49205</td>
<td>0.0397</td>
</tr>
<tr>
<td>1140</td>
<td>6</td>
<td>2</td>
<td>75.54</td>
<td>0.00012</td>
<td>0.00012</td>
<td>1.1522</td>
<td>0.1427</td>
<td>0.00820</td>
<td>0.00811</td>
<td>1.0534</td>
<td>0.0524</td>
<td>5.49900</td>
<td>0.0121</td>
</tr>
<tr>
<td>1141</td>
<td>6</td>
<td>2</td>
<td>248.40</td>
<td>0.00124</td>
<td>0.00122</td>
<td>1.1079</td>
<td>0.1034</td>
<td>0.01200</td>
<td>0.01191</td>
<td>1.0262</td>
<td>0.0261</td>
<td>5.50107</td>
<td>0.0519</td>
</tr>
<tr>
<td>1142</td>
<td>6</td>
<td>2</td>
<td>106.81</td>
<td>0.00036</td>
<td>0.00035</td>
<td>1.1426</td>
<td>0.1343</td>
<td>0.00655</td>
<td>0.00647</td>
<td>1.0499</td>
<td>0.0490</td>
<td>5.49782</td>
<td>0.0179</td>
</tr>
<tr>
<td>1143</td>
<td>6</td>
<td>2</td>
<td>172.06</td>
<td>0.00088</td>
<td>0.00087</td>
<td>1.1301</td>
<td>0.1232</td>
<td>0.00510</td>
<td>0.00504</td>
<td>1.0417</td>
<td>0.0411</td>
<td>5.49723</td>
<td>0.0333</td>
</tr>
<tr>
<td>1144</td>
<td>6</td>
<td>2</td>
<td>183.64</td>
<td>0.00088</td>
<td>0.00086</td>
<td>1.1124</td>
<td>0.1075</td>
<td>0.00358</td>
<td>0.00353</td>
<td>1.0376</td>
<td>0.0371</td>
<td>5.49478</td>
<td>0.0316</td>
</tr>
<tr>
<td>1145</td>
<td>6</td>
<td>2</td>
<td>35.66</td>
<td>0.00051</td>
<td>0.00050</td>
<td>1.1517</td>
<td>0.1422</td>
<td>0.00855</td>
<td>0.00846</td>
<td>1.0509</td>
<td>0.0499</td>
<td>5.49978</td>
<td>0.0250</td>
</tr>
<tr>
<td>1146</td>
<td>6</td>
<td>2</td>
<td>2554.56</td>
<td>0.00573</td>
<td>0.00581</td>
<td>0.8780</td>
<td>0.1265</td>
<td>0.13309</td>
<td>0.14232</td>
<td>0.9198</td>
<td>0.0808</td>
<td>5.49847</td>
<td>0.3394</td>
</tr>
<tr>
<td>1147</td>
<td>6</td>
<td>2</td>
<td>714.65</td>
<td>0.00447</td>
<td>0.00452</td>
<td>0.9211</td>
<td>0.0796</td>
<td>0.10999</td>
<td>0.10665</td>
<td>0.9373</td>
<td>0.0628</td>
<td>5.48620</td>
<td>0.2529</td>
</tr>
</tbody>
</table>
Influence Diagnostics for Levels of ID

<table>
<thead>
<tr>
<th>ID</th>
<th>Number of Observations in Level</th>
<th>Iterations</th>
<th>PRESS Statistic</th>
<th>Cook's D</th>
<th>MDFFITS</th>
<th>COVRATIO CovParms</th>
<th>COVTRACE CovParms</th>
<th>MDFFITS CovParms</th>
<th>COVRATIO CovParms</th>
<th>COVTRACE CovParms</th>
<th>RMSE without deleted level</th>
<th>Restricted Likelihood Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1148</td>
<td>5</td>
<td>2</td>
<td>244.89</td>
<td>0.00078</td>
<td>0.00076</td>
<td>1.1041</td>
<td>0.0998</td>
<td>0.00249</td>
<td>0.00246</td>
<td>1.0383</td>
<td>0.0377</td>
<td>5.49248</td>
</tr>
<tr>
<td>1150</td>
<td>6</td>
<td>2</td>
<td>437.41</td>
<td>0.00152</td>
<td>0.00148</td>
<td>1.1075</td>
<td>0.1033</td>
<td>0.00775</td>
<td>0.00767</td>
<td>1.0244</td>
<td>0.0244</td>
<td>5.49936</td>
</tr>
<tr>
<td>1151</td>
<td>6</td>
<td>2</td>
<td>192.53</td>
<td>0.00042</td>
<td>0.00041</td>
<td>1.1158</td>
<td>0.1105</td>
<td>0.00307</td>
<td>0.00303</td>
<td>1.0407</td>
<td>0.0401</td>
<td>5.49296</td>
</tr>
<tr>
<td>1152</td>
<td>6</td>
<td>2</td>
<td>55.28</td>
<td>0.00026</td>
<td>0.00025</td>
<td>1.1516</td>
<td>0.1423</td>
<td>0.00738</td>
<td>0.00728</td>
<td>1.0525</td>
<td>0.0515</td>
<td>5.49735</td>
</tr>
<tr>
<td>1153</td>
<td>6</td>
<td>2</td>
<td>982.16</td>
<td>0.00746</td>
<td>0.00730</td>
<td>0.9644</td>
<td>0.0342</td>
<td>0.04741</td>
<td>0.04898</td>
<td>0.9550</td>
<td>0.0450</td>
<td>5.49635</td>
</tr>
<tr>
<td>1154</td>
<td>6</td>
<td>2</td>
<td>269.86</td>
<td>0.00296</td>
<td>0.00295</td>
<td>1.0203</td>
<td>0.0215</td>
<td>0.03767</td>
<td>0.03862</td>
<td>0.9856</td>
<td>0.0139</td>
<td>5.49686</td>
</tr>
<tr>
<td>1155</td>
<td>5</td>
<td>2</td>
<td>161.95</td>
<td>0.00093</td>
<td>0.00091</td>
<td>1.0769</td>
<td>0.0748</td>
<td>0.00320</td>
<td>0.00316</td>
<td>1.0263</td>
<td>0.0261</td>
<td>5.49182</td>
</tr>
<tr>
<td>1157</td>
<td>6</td>
<td>2</td>
<td>33.18</td>
<td>0.00012</td>
<td>0.00011</td>
<td>1.1675</td>
<td>0.1562</td>
<td>0.00940</td>
<td>0.00929</td>
<td>1.0571</td>
<td>0.0558</td>
<td>5.49978</td>
</tr>
<tr>
<td>1158</td>
<td>6</td>
<td>2</td>
<td>187.52</td>
<td>0.00227</td>
<td>0.00222</td>
<td>1.1184</td>
<td>0.1128</td>
<td>0.00325</td>
<td>0.00321</td>
<td>1.0445</td>
<td>0.0438</td>
<td>5.49241</td>
</tr>
<tr>
<td>1159</td>
<td>6</td>
<td>2</td>
<td>384.61</td>
<td>0.00189</td>
<td>0.00187</td>
<td>1.0578</td>
<td>0.0570</td>
<td>0.01024</td>
<td>0.01030</td>
<td>1.0098</td>
<td>0.0099</td>
<td>5.49310</td>
</tr>
<tr>
<td>1160</td>
<td>6</td>
<td>2</td>
<td>973.33</td>
<td>0.00320</td>
<td>0.00315</td>
<td>1.0279</td>
<td>0.0284</td>
<td>0.01063</td>
<td>0.01071</td>
<td>0.9979</td>
<td>0.0018</td>
<td>5.49251</td>
</tr>
<tr>
<td>1161</td>
<td>5</td>
<td>2</td>
<td>120.23</td>
<td>0.00154</td>
<td>0.00152</td>
<td>1.0849</td>
<td>0.0823</td>
<td>0.00702</td>
<td>0.00700</td>
<td>1.0220</td>
<td>0.0219</td>
<td>5.49685</td>
</tr>
<tr>
<td>1162</td>
<td>6</td>
<td>2</td>
<td>352.36</td>
<td>0.00080</td>
<td>0.00078</td>
<td>1.0914</td>
<td>0.0882</td>
<td>0.00365</td>
<td>0.00361</td>
<td>1.0384</td>
<td>0.0378</td>
<td>5.48793</td>
</tr>
<tr>
<td>1163</td>
<td>6</td>
<td>2</td>
<td>333.21</td>
<td>0.00295</td>
<td>0.00292</td>
<td>1.0215</td>
<td>0.0225</td>
<td>0.02397</td>
<td>0.02429</td>
<td>0.9894</td>
<td>0.0102</td>
<td>5.49658</td>
</tr>
<tr>
<td>1164</td>
<td>6</td>
<td>2</td>
<td>1166.10</td>
<td>0.00366</td>
<td>0.00363</td>
<td>0.9580</td>
<td>0.0416</td>
<td>0.03228</td>
<td>0.03312</td>
<td>0.9704</td>
<td>0.0295</td>
<td>5.49056</td>
</tr>
<tr>
<td>1165</td>
<td>6</td>
<td>2</td>
<td>344.65</td>
<td>0.00166</td>
<td>0.00162</td>
<td>1.0954</td>
<td>0.0919</td>
<td>0.00393</td>
<td>0.00389</td>
<td>1.0363</td>
<td>0.0358</td>
<td>5.49425</td>
</tr>
<tr>
<td>1166</td>
<td>6</td>
<td>2</td>
<td>368.50</td>
<td>0.00149</td>
<td>0.00145</td>
<td>1.0957</td>
<td>0.0928</td>
<td>0.01053</td>
<td>0.01051</td>
<td>1.0439</td>
<td>0.0433</td>
<td>5.48162</td>
</tr>
<tr>
<td>1167</td>
<td>6</td>
<td>2</td>
<td>178.21</td>
<td>0.00026</td>
<td>0.00025</td>
<td>1.1052</td>
<td>0.1011</td>
<td>0.00500</td>
<td>0.00494</td>
<td>1.0408</td>
<td>0.0403</td>
<td>5.48871</td>
</tr>
<tr>
<td>1168</td>
<td>5</td>
<td>2</td>
<td>71.55</td>
<td>0.00086</td>
<td>0.00084</td>
<td>1.1306</td>
<td>0.1238</td>
<td>0.00478</td>
<td>0.00471</td>
<td>1.0485</td>
<td>0.0477</td>
<td>5.49364</td>
</tr>
<tr>
<td>1169</td>
<td>6</td>
<td>2</td>
<td>209.56</td>
<td>0.00036</td>
<td>0.00035</td>
<td>1.0976</td>
<td>0.0941</td>
<td>0.00542</td>
<td>0.00537</td>
<td>1.0408</td>
<td>0.0403</td>
<td>5.48670</td>
</tr>
<tr>
<td>1170</td>
<td>6</td>
<td>2</td>
<td>392.82</td>
<td>0.00115</td>
<td>0.00113</td>
<td>1.1095</td>
<td>0.1048</td>
<td>0.00808</td>
<td>0.00800</td>
<td>1.0327</td>
<td>0.0323</td>
<td>5.49927</td>
</tr>
<tr>
<td>1171</td>
<td>6</td>
<td>2</td>
<td>272.68</td>
<td>0.00076</td>
<td>0.00074</td>
<td>1.1264</td>
<td>0.1199</td>
<td>0.00822</td>
<td>0.00813</td>
<td>1.0399</td>
<td>0.0393</td>
<td>5.50022</td>
</tr>
<tr>
<td>1172</td>
<td>6</td>
<td>2</td>
<td>79.00</td>
<td>0.00074</td>
<td>0.00073</td>
<td>1.1410</td>
<td>0.1329</td>
<td>0.00711</td>
<td>0.00703</td>
<td>1.0480</td>
<td>0.0472</td>
<td>5.49870</td>
</tr>
<tr>
<td>1173</td>
<td>6</td>
<td>2</td>
<td>137.73</td>
<td>0.00079</td>
<td>0.00077</td>
<td>1.1122</td>
<td>0.1073</td>
<td>0.00372</td>
<td>0.00368</td>
<td>1.0348</td>
<td>0.0344</td>
<td>5.49539</td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFFITS</td>
<td>COVRATIO</td>
<td>COVTRACE</td>
<td>Cook's D CovParms</td>
<td>MDFFITS CovParms</td>
<td>COVRATIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1174</td>
<td>6</td>
<td>2</td>
<td>477.37</td>
<td>0.00236</td>
<td>0.00236</td>
<td>1.0091</td>
<td>0.0101</td>
<td>0.02471</td>
<td>0.02521</td>
<td>0.9868</td>
<td>0.0129</td>
<td>5.48892</td>
</tr>
<tr>
<td>1175</td>
<td>5</td>
<td>2</td>
<td>1149.88</td>
<td>0.00624</td>
<td>0.00630</td>
<td>0.8602</td>
<td>0.1470</td>
<td>0.13193</td>
<td>0.14108</td>
<td>0.9234</td>
<td>0.0769</td>
<td>5.48978</td>
</tr>
<tr>
<td>1176</td>
<td>6</td>
<td>2</td>
<td>234.62</td>
<td>0.00031</td>
<td>0.0102</td>
<td>1.1133</td>
<td>0.1082</td>
<td>0.00342</td>
<td>0.00338</td>
<td>1.0430</td>
<td>0.0424</td>
<td>5.49196</td>
</tr>
<tr>
<td>1177</td>
<td>5</td>
<td>2</td>
<td>37.73</td>
<td>0.00013</td>
<td>0.0013</td>
<td>1.1451</td>
<td>0.1365</td>
<td>0.00821</td>
<td>0.00812</td>
<td>1.0500</td>
<td>0.0491</td>
<td>5.49884</td>
</tr>
<tr>
<td>1178</td>
<td>5</td>
<td>2</td>
<td>94.07</td>
<td>0.00029</td>
<td>0.00028</td>
<td>1.1367</td>
<td>0.1297</td>
<td>0.00489</td>
<td>0.00482</td>
<td>1.0469</td>
<td>0.0462</td>
<td>5.49155</td>
</tr>
<tr>
<td>1179</td>
<td>6</td>
<td>2</td>
<td>1178.49</td>
<td>0.00257</td>
<td>0.00254</td>
<td>0.9979</td>
<td>0.0011</td>
<td>0.01716</td>
<td>0.01740</td>
<td>0.9849</td>
<td>0.0149</td>
<td>5.48965</td>
</tr>
<tr>
<td>1180</td>
<td>6</td>
<td>2</td>
<td>1082.10</td>
<td>0.00473</td>
<td>0.00465</td>
<td>0.9800</td>
<td>0.0187</td>
<td>0.03189</td>
<td>0.03271</td>
<td>0.9728</td>
<td>0.0269</td>
<td>5.49411</td>
</tr>
<tr>
<td>1181</td>
<td>6</td>
<td>2</td>
<td>624.47</td>
<td>0.00165</td>
<td>0.00163</td>
<td>1.0668</td>
<td>0.0654</td>
<td>0.00613</td>
<td>0.00612</td>
<td>1.0153</td>
<td>0.0153</td>
<td>5.49331</td>
</tr>
<tr>
<td>1182</td>
<td>5</td>
<td>2</td>
<td>178.41</td>
<td>0.00083</td>
<td>0.00082</td>
<td>1.1161</td>
<td>0.1108</td>
<td>0.00482</td>
<td>0.00476</td>
<td>1.0353</td>
<td>0.0349</td>
<td>5.49668</td>
</tr>
<tr>
<td>1183</td>
<td>6</td>
<td>2</td>
<td>426.10</td>
<td>0.00093</td>
<td>0.00091</td>
<td>1.0808</td>
<td>0.0785</td>
<td>0.00276</td>
<td>0.00273</td>
<td>1.0310</td>
<td>0.0307</td>
<td>5.48920</td>
</tr>
<tr>
<td>1184</td>
<td>6</td>
<td>2</td>
<td>163.75</td>
<td>0.00137</td>
<td>0.00134</td>
<td>1.1114</td>
<td>0.1065</td>
<td>0.00539</td>
<td>0.00532</td>
<td>1.0461</td>
<td>0.0453</td>
<td>5.48893</td>
</tr>
<tr>
<td>1185</td>
<td>6</td>
<td>2</td>
<td>88.87</td>
<td>0.00072</td>
<td>0.00070</td>
<td>1.1249</td>
<td>0.1188</td>
<td>0.00552</td>
<td>0.00545</td>
<td>1.0375</td>
<td>0.0371</td>
<td>5.49714</td>
</tr>
<tr>
<td>1186</td>
<td>5</td>
<td>2</td>
<td>192.82</td>
<td>0.00059</td>
<td>0.00057</td>
<td>1.1156</td>
<td>0.1102</td>
<td>0.00378</td>
<td>0.00374</td>
<td>1.0409</td>
<td>0.0403</td>
<td>5.49543</td>
</tr>
<tr>
<td>1187</td>
<td>6</td>
<td>2</td>
<td>107.98</td>
<td>0.00003</td>
<td>0.00003</td>
<td>1.1377</td>
<td>0.1303</td>
<td>0.00488</td>
<td>0.00481</td>
<td>1.0496</td>
<td>0.0488</td>
<td>5.49287</td>
</tr>
<tr>
<td>1188</td>
<td>6</td>
<td>2</td>
<td>409.76</td>
<td>0.00179</td>
<td>0.00175</td>
<td>1.0805</td>
<td>0.0783</td>
<td>0.00437</td>
<td>0.00433</td>
<td>1.0320</td>
<td>0.0317</td>
<td>5.49213</td>
</tr>
<tr>
<td>1189</td>
<td>6</td>
<td>2</td>
<td>703.72</td>
<td>0.00246</td>
<td>0.00243</td>
<td>1.0236</td>
<td>0.0244</td>
<td>0.01876</td>
<td>0.01894</td>
<td>0.9953</td>
<td>0.0044</td>
<td>5.49742</td>
</tr>
<tr>
<td>1190</td>
<td>6</td>
<td>2</td>
<td>929.69</td>
<td>0.00319</td>
<td>0.00313</td>
<td>1.0558</td>
<td>0.0554</td>
<td>0.01417</td>
<td>0.01425</td>
<td>1.0195</td>
<td>0.0197</td>
<td>5.49022</td>
</tr>
<tr>
<td>1191</td>
<td>6</td>
<td>2</td>
<td>918.80</td>
<td>0.00339</td>
<td>0.00334</td>
<td>1.0351</td>
<td>0.0353</td>
<td>0.01218</td>
<td>0.01229</td>
<td>0.9998</td>
<td>0.0000</td>
<td>5.49349</td>
</tr>
<tr>
<td>1192</td>
<td>6</td>
<td>2</td>
<td>90.04</td>
<td>0.00055</td>
<td>0.00054</td>
<td>1.1331</td>
<td>0.1260</td>
<td>0.00429</td>
<td>0.00425</td>
<td>1.0451</td>
<td>0.0443</td>
<td>5.49668</td>
</tr>
<tr>
<td>1193</td>
<td>6</td>
<td>2</td>
<td>47.62</td>
<td>0.00024</td>
<td>0.00024</td>
<td>1.1573</td>
<td>0.1474</td>
<td>0.00776</td>
<td>0.00766</td>
<td>1.0517</td>
<td>0.0507</td>
<td>5.49778</td>
</tr>
<tr>
<td>1194</td>
<td>6</td>
<td>2</td>
<td>378.34</td>
<td>0.00230</td>
<td>0.00226</td>
<td>1.0506</td>
<td>0.0503</td>
<td>0.02555</td>
<td>0.02569</td>
<td>1.0345</td>
<td>0.0343</td>
<td>5.47451</td>
</tr>
<tr>
<td>1195</td>
<td>6</td>
<td>2</td>
<td>962.25</td>
<td>0.00269</td>
<td>0.00264</td>
<td>1.0382</td>
<td>0.0384</td>
<td>0.01133</td>
<td>0.01142</td>
<td>1.0095</td>
<td>0.0097</td>
<td>5.49051</td>
</tr>
<tr>
<td>1196</td>
<td>6</td>
<td>2</td>
<td>622.03</td>
<td>0.00161</td>
<td>0.00158</td>
<td>1.0797</td>
<td>0.0776</td>
<td>0.00922</td>
<td>0.00917</td>
<td>1.0218</td>
<td>0.0217</td>
<td>5.49810</td>
</tr>
<tr>
<td>1197</td>
<td>6</td>
<td>2</td>
<td>99.46</td>
<td>0.00018</td>
<td>0.00017</td>
<td>1.1462</td>
<td>0.1375</td>
<td>0.00742</td>
<td>0.00734</td>
<td>1.0505</td>
<td>0.0496</td>
<td>5.49824</td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFFITS</td>
<td>COVRATIO</td>
<td>COVTRACE</td>
<td>Cook's D CovParms</td>
<td>MDFFITS CovParms</td>
<td>COVRATIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1198</td>
<td>6</td>
<td>2</td>
<td>357.77</td>
<td>0.00164</td>
<td>0.00162</td>
<td>1.0838</td>
<td>0.0814</td>
<td>0.00477</td>
<td>0.00473</td>
<td>1.0225</td>
<td>0.0224</td>
<td>5.49339</td>
</tr>
<tr>
<td>1199</td>
<td>6</td>
<td>2</td>
<td>220.95</td>
<td>0.00117</td>
<td>0.00115</td>
<td>1.1075</td>
<td>0.1030</td>
<td>0.00671</td>
<td>0.00664</td>
<td>1.0288</td>
<td>0.0286</td>
<td>5.49827</td>
</tr>
<tr>
<td>1200</td>
<td>6</td>
<td>2</td>
<td>1627.22</td>
<td>0.00361</td>
<td>0.00361</td>
<td>0.9803</td>
<td>0.0182</td>
<td>0.05385</td>
<td>0.05567</td>
<td>0.9692</td>
<td>0.0303</td>
<td>5.49942</td>
</tr>
<tr>
<td>1201</td>
<td>6</td>
<td>2</td>
<td>1557.88</td>
<td>0.00530</td>
<td>0.00535</td>
<td>0.9578</td>
<td>0.0396</td>
<td>0.12842</td>
<td>0.13648</td>
<td>0.9404</td>
<td>0.0589</td>
<td>5.5009</td>
</tr>
<tr>
<td>1202</td>
<td>6</td>
<td>2</td>
<td>165.12</td>
<td>0.00124</td>
<td>0.00121</td>
<td>1.0853</td>
<td>0.0827</td>
<td>0.00460</td>
<td>0.00457</td>
<td>1.0224</td>
<td>0.0223</td>
<td>5.49500</td>
</tr>
<tr>
<td>1203</td>
<td>6</td>
<td>2</td>
<td>858.79</td>
<td>0.00230</td>
<td>0.00226</td>
<td>1.0582</td>
<td>0.0576</td>
<td>0.01384</td>
<td>0.01395</td>
<td>1.0161</td>
<td>0.0162</td>
<td>5.49308</td>
</tr>
<tr>
<td>1204</td>
<td>6</td>
<td>2</td>
<td>113.73</td>
<td>0.00140</td>
<td>0.00138</td>
<td>1.0900</td>
<td>0.0871</td>
<td>0.01217</td>
<td>0.01209</td>
<td>1.0192</td>
<td>0.0193</td>
<td>5.50002</td>
</tr>
<tr>
<td>1205</td>
<td>6</td>
<td>2</td>
<td>186.12</td>
<td>0.00061</td>
<td>0.00060</td>
<td>1.1349</td>
<td>0.1275</td>
<td>0.00763</td>
<td>0.00754</td>
<td>1.0434</td>
<td>0.0427</td>
<td>5.49959</td>
</tr>
<tr>
<td>1206</td>
<td>6</td>
<td>2</td>
<td>648.63</td>
<td>0.00396</td>
<td>0.00390</td>
<td>1.0587</td>
<td>0.0581</td>
<td>0.01133</td>
<td>0.01142</td>
<td>1.0126</td>
<td>0.0127</td>
<td>5.49178</td>
</tr>
<tr>
<td>1207</td>
<td>6</td>
<td>2</td>
<td>184.25</td>
<td>0.00079</td>
<td>0.00077</td>
<td>1.1346</td>
<td>0.1273</td>
<td>0.00531</td>
<td>0.00525</td>
<td>1.0444</td>
<td>0.0437</td>
<td>5.49675</td>
</tr>
<tr>
<td>1208</td>
<td>6</td>
<td>2</td>
<td>442.48</td>
<td>0.00090</td>
<td>0.00088</td>
<td>1.0845</td>
<td>0.0819</td>
<td>0.00277</td>
<td>0.00273</td>
<td>1.0314</td>
<td>0.0311</td>
<td>5.49115</td>
</tr>
<tr>
<td>1209</td>
<td>6</td>
<td>2</td>
<td>58.42</td>
<td>0.00018</td>
<td>0.00017</td>
<td>1.1339</td>
<td>0.1267</td>
<td>0.00534</td>
<td>0.00527</td>
<td>1.0505</td>
<td>0.0496</td>
<td>5.49477</td>
</tr>
<tr>
<td>1210</td>
<td>6</td>
<td>2</td>
<td>353.34</td>
<td>0.00103</td>
<td>0.00101</td>
<td>1.1018</td>
<td>0.0979</td>
<td>0.00396</td>
<td>0.00392</td>
<td>1.0304</td>
<td>0.0302</td>
<td>5.49555</td>
</tr>
<tr>
<td>1211</td>
<td>5</td>
<td>2</td>
<td>260.15</td>
<td>0.00212</td>
<td>0.00209</td>
<td>1.0360</td>
<td>0.0361</td>
<td>0.00972</td>
<td>0.00979</td>
<td>1.0094</td>
<td>0.0095</td>
<td>5.48965</td>
</tr>
<tr>
<td>1212</td>
<td>6</td>
<td>2</td>
<td>104.98</td>
<td>0.00058</td>
<td>0.00057</td>
<td>1.1305</td>
<td>0.1238</td>
<td>0.00393</td>
<td>0.00388</td>
<td>1.0433</td>
<td>0.0426</td>
<td>5.49575</td>
</tr>
<tr>
<td>1213</td>
<td>6</td>
<td>2</td>
<td>271.03</td>
<td>0.00084</td>
<td>0.00082</td>
<td>1.1043</td>
<td>0.1001</td>
<td>0.00316</td>
<td>0.00312</td>
<td>1.0433</td>
<td>0.0427</td>
<td>5.49023</td>
</tr>
<tr>
<td>1214</td>
<td>6</td>
<td>2</td>
<td>316.40</td>
<td>0.00349</td>
<td>0.00343</td>
<td>1.0845</td>
<td>0.0819</td>
<td>0.00358</td>
<td>0.00354</td>
<td>1.0343</td>
<td>0.0339</td>
<td>5.48837</td>
</tr>
<tr>
<td>1215</td>
<td>6</td>
<td>2</td>
<td>152.18</td>
<td>0.00103</td>
<td>0.00101</td>
<td>1.0969</td>
<td>0.0933</td>
<td>0.00469</td>
<td>0.00465</td>
<td>1.0283</td>
<td>0.0281</td>
<td>5.49656</td>
</tr>
<tr>
<td>1216</td>
<td>6</td>
<td>2</td>
<td>308.84</td>
<td>0.00025</td>
<td>0.00024</td>
<td>1.0890</td>
<td>0.0863</td>
<td>0.00958</td>
<td>0.00955</td>
<td>1.0427</td>
<td>0.0421</td>
<td>5.48258</td>
</tr>
<tr>
<td>1217</td>
<td>6</td>
<td>2</td>
<td>77.01</td>
<td>0.00076</td>
<td>0.00074</td>
<td>1.1379</td>
<td>0.1306</td>
<td>0.00618</td>
<td>0.00611</td>
<td>1.0370</td>
<td>0.0366</td>
<td>5.49836</td>
</tr>
<tr>
<td>1218</td>
<td>6</td>
<td>2</td>
<td>496.25</td>
<td>0.00748</td>
<td>0.00710</td>
<td>1.2247</td>
<td>0.2081</td>
<td>0.00873</td>
<td>0.00847</td>
<td>1.0736</td>
<td>0.0721</td>
<td>5.48689</td>
</tr>
<tr>
<td>1219</td>
<td>6</td>
<td>2</td>
<td>649.04</td>
<td>0.00334</td>
<td>0.00318</td>
<td>1.2786</td>
<td>0.2520</td>
<td>0.01445</td>
<td>0.01401</td>
<td>1.0788</td>
<td>0.0772</td>
<td>5.49929</td>
</tr>
<tr>
<td>1220</td>
<td>6</td>
<td>2</td>
<td>526.66</td>
<td>0.00328</td>
<td>0.00311</td>
<td>1.1758</td>
<td>0.1673</td>
<td>0.02337</td>
<td>0.02323</td>
<td>1.0674</td>
<td>0.0664</td>
<td>5.47670</td>
</tr>
<tr>
<td>1221</td>
<td>6</td>
<td>2</td>
<td>720.73</td>
<td>0.00573</td>
<td>0.00544</td>
<td>1.2285</td>
<td>0.2114</td>
<td>0.00967</td>
<td>0.00935</td>
<td>1.0649</td>
<td>0.0640</td>
<td>5.49385</td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFFITS D</td>
<td>COVRATIO</td>
<td>COVTRACE</td>
<td>Cook's D CovParms</td>
<td>MDFFITS CovParms</td>
<td>COVRATIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1222</td>
<td>6</td>
<td>2</td>
<td>578.26</td>
<td>0.01415</td>
<td>0.01342</td>
<td>1.2166</td>
<td>0.2015</td>
<td>0.01026</td>
<td>0.01006</td>
<td>1.0746</td>
<td>0.0731</td>
<td>5.48390</td>
</tr>
<tr>
<td>1223</td>
<td>6</td>
<td>2</td>
<td>690.36</td>
<td>0.01524</td>
<td>0.01523</td>
<td>0.8456</td>
<td>0.1511</td>
<td>0.21385</td>
<td>0.24492</td>
<td>0.8646</td>
<td>0.1339</td>
<td>5.49332</td>
</tr>
<tr>
<td>1224</td>
<td>5</td>
<td>2</td>
<td>1630.69</td>
<td>0.00861</td>
<td>0.00834</td>
<td>1.0150</td>
<td>0.0213</td>
<td>0.05203</td>
<td>0.05512</td>
<td>0.9633</td>
<td>0.0352</td>
<td>5.49125</td>
</tr>
<tr>
<td>1225</td>
<td>6</td>
<td>2</td>
<td>728.71</td>
<td>0.00930</td>
<td>0.00906</td>
<td>0.9809</td>
<td>0.0109</td>
<td>0.07559</td>
<td>0.08002</td>
<td>0.9582</td>
<td>0.0394</td>
<td>5.48679</td>
</tr>
<tr>
<td>1226</td>
<td>5</td>
<td>2</td>
<td>1155.20</td>
<td>0.00932</td>
<td>0.00896</td>
<td>1.0956</td>
<td>0.0962</td>
<td>0.02378</td>
<td>0.02429</td>
<td>1.0061</td>
<td>0.0073</td>
<td>5.49043</td>
</tr>
<tr>
<td>1227</td>
<td>6</td>
<td>2</td>
<td>530.13</td>
<td>0.00341</td>
<td>0.00323</td>
<td>1.2577</td>
<td>0.2353</td>
<td>0.01105</td>
<td>0.01073</td>
<td>1.0904</td>
<td>0.0881</td>
<td>5.48490</td>
</tr>
<tr>
<td>1228</td>
<td>6</td>
<td>2</td>
<td>696.72</td>
<td>0.00816</td>
<td>0.00776</td>
<td>1.2185</td>
<td>0.2031</td>
<td>0.01140</td>
<td>0.01108</td>
<td>1.0717</td>
<td>0.0705</td>
<td>5.48502</td>
</tr>
<tr>
<td>1229</td>
<td>6</td>
<td>2</td>
<td>312.03</td>
<td>0.00775</td>
<td>0.00735</td>
<td>1.2872</td>
<td>0.2586</td>
<td>0.01319</td>
<td>0.01283</td>
<td>1.1091</td>
<td>0.1055</td>
<td>5.48454</td>
</tr>
<tr>
<td>1230</td>
<td>6</td>
<td>2</td>
<td>2457.83</td>
<td>0.01095</td>
<td>0.01083</td>
<td>0.8878</td>
<td>0.1092</td>
<td>0.13530</td>
<td>0.14560</td>
<td>0.9148</td>
<td>0.0836</td>
<td>5.47360</td>
</tr>
<tr>
<td>1231</td>
<td>5</td>
<td>2</td>
<td>277.09</td>
<td>0.00398</td>
<td>0.00383</td>
<td>1.1016</td>
<td>0.1099</td>
<td>0.01400</td>
<td>0.01406</td>
<td>1.0120</td>
<td>0.0133</td>
<td>5.49104</td>
</tr>
<tr>
<td>1232</td>
<td>6</td>
<td>2</td>
<td>1495.36</td>
<td>0.02264</td>
<td>0.02166</td>
<td>1.0650</td>
<td>0.0687</td>
<td>0.06142</td>
<td>0.06203</td>
<td>1.0154</td>
<td>0.0167</td>
<td>5.46833</td>
</tr>
<tr>
<td>1233</td>
<td>5</td>
<td>2</td>
<td>558.88</td>
<td>0.00570</td>
<td>0.00539</td>
<td>1.2047</td>
<td>0.1921</td>
<td>0.01294</td>
<td>0.01260</td>
<td>1.0463</td>
<td>0.0464</td>
<td>5.49457</td>
</tr>
<tr>
<td>1234</td>
<td>6</td>
<td>2</td>
<td>165.33</td>
<td>0.00268</td>
<td>0.00253</td>
<td>1.3516</td>
<td>0.3082</td>
<td>0.01176</td>
<td>0.01132</td>
<td>1.1225</td>
<td>0.1177</td>
<td>5.49302</td>
</tr>
<tr>
<td>1235</td>
<td>6</td>
<td>2</td>
<td>1321.99</td>
<td>0.00867</td>
<td>0.00829</td>
<td>1.0901</td>
<td>0.0922</td>
<td>0.04386</td>
<td>0.04396</td>
<td>1.0234</td>
<td>0.0244</td>
<td>5.47425</td>
</tr>
<tr>
<td>1236</td>
<td>5</td>
<td>2</td>
<td>666.27</td>
<td>0.00483</td>
<td>0.00465</td>
<td>1.1764</td>
<td>0.1674</td>
<td>0.01296</td>
<td>0.01278</td>
<td>1.0382</td>
<td>0.0384</td>
<td>5.49225</td>
</tr>
<tr>
<td>1237</td>
<td>6</td>
<td>2</td>
<td>1084.27</td>
<td>0.00976</td>
<td>0.00946</td>
<td>1.0222</td>
<td>0.0283</td>
<td>0.05847</td>
<td>0.06045</td>
<td>0.9762</td>
<td>0.0220</td>
<td>5.47882</td>
</tr>
<tr>
<td>1238</td>
<td>6</td>
<td>2</td>
<td>359.91</td>
<td>0.00647</td>
<td>0.00584</td>
<td>1.4680</td>
<td>0.4014</td>
<td>0.01098</td>
<td>0.01068</td>
<td>1.0852</td>
<td>0.0829</td>
<td>5.49902</td>
</tr>
<tr>
<td>1239</td>
<td>6</td>
<td>2</td>
<td>556.22</td>
<td>0.02020</td>
<td>0.01845</td>
<td>1.2516</td>
<td>0.2397</td>
<td>0.03754</td>
<td>0.03765</td>
<td>1.0276</td>
<td>0.0282</td>
<td>5.47259</td>
</tr>
<tr>
<td>1240</td>
<td>6</td>
<td>2</td>
<td>701.88</td>
<td>0.00845</td>
<td>0.00769</td>
<td>1.4231</td>
<td>0.3693</td>
<td>0.01277</td>
<td>0.01244</td>
<td>1.0715</td>
<td>0.0702</td>
<td>5.49831</td>
</tr>
<tr>
<td>1241</td>
<td>4</td>
<td>2</td>
<td>91.35</td>
<td>0.00347</td>
<td>0.00320</td>
<td>1.4626</td>
<td>0.3948</td>
<td>0.00976</td>
<td>0.00941</td>
<td>1.1146</td>
<td>0.1104</td>
<td>5.49306</td>
</tr>
<tr>
<td>1242</td>
<td>6</td>
<td>2</td>
<td>244.24</td>
<td>0.00462</td>
<td>0.00416</td>
<td>1.4968</td>
<td>0.4213</td>
<td>0.00910</td>
<td>0.00883</td>
<td>1.1050</td>
<td>0.1012</td>
<td>5.49720</td>
</tr>
<tr>
<td>1243</td>
<td>6</td>
<td>2</td>
<td>729.92</td>
<td>0.00908</td>
<td>0.00830</td>
<td>1.3244</td>
<td>0.2971</td>
<td>0.02120</td>
<td>0.02121</td>
<td>1.0409</td>
<td>0.0411</td>
<td>5.49585</td>
</tr>
<tr>
<td>1244</td>
<td>6</td>
<td>2</td>
<td>147.56</td>
<td>0.00017</td>
<td>0.00016</td>
<td>1.5359</td>
<td>0.4478</td>
<td>0.01349</td>
<td>0.01298</td>
<td>1.1288</td>
<td>0.1236</td>
<td>5.48982</td>
</tr>
<tr>
<td>1245</td>
<td>6</td>
<td>2</td>
<td>168.81</td>
<td>0.00530</td>
<td>0.00480</td>
<td>1.4575</td>
<td>0.3945</td>
<td>0.01140</td>
<td>0.01110</td>
<td>1.0709</td>
<td>0.0696</td>
<td>5.49895</td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D MDFFITS</td>
<td>COVRATIO CovParms</td>
<td>MDFITS CovParms</td>
<td>COVTRACE CovParms</td>
<td>RMSE without deleted level</td>
<td>Restricted Likelihood Distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1246</td>
<td>6</td>
<td>2</td>
<td>292.12 0.00493</td>
<td>0.00445 1.4455</td>
<td>0.3869 0.01549</td>
<td>0.01514</td>
<td>1.0832</td>
<td>0.0810</td>
<td>5.50038</td>
<td>0.1712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1247</td>
<td>6</td>
<td>2</td>
<td>653.41 0.00571</td>
<td>0.00519 1.4332</td>
<td>0.3768 0.00881</td>
<td>0.00844</td>
<td>1.0844</td>
<td>0.0824</td>
<td>5.49005</td>
<td>0.1897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1248</td>
<td>6</td>
<td>2</td>
<td>870.55 0.01559</td>
<td>0.01392 1.3433</td>
<td>0.3152 0.02233</td>
<td>0.02240</td>
<td>1.0196</td>
<td>0.0207</td>
<td>5.49548</td>
<td>0.5348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1249</td>
<td>6</td>
<td>2</td>
<td>481.67 0.01880</td>
<td>0.01691 1.3145</td>
<td>0.2939 0.02279</td>
<td>0.02281</td>
<td>1.0112</td>
<td>0.0123</td>
<td>5.48188</td>
<td>0.6367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>6</td>
<td>2</td>
<td>149.37 0.00535</td>
<td>0.00480 1.5839</td>
<td>0.4823 0.01269</td>
<td>0.01221</td>
<td>1.1262</td>
<td>0.1211</td>
<td>5.49039</td>
<td>0.1838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1251</td>
<td>6</td>
<td>2</td>
<td>440.28 0.00274</td>
<td>0.00245 1.5264</td>
<td>0.4440 0.00751</td>
<td>0.00722</td>
<td>1.0983</td>
<td>0.0953</td>
<td>5.49250</td>
<td>0.0945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1252</td>
<td>5</td>
<td>2</td>
<td>207.62 0.00545</td>
<td>0.00498 1.4785</td>
<td>0.4096 0.00770</td>
<td>0.00744</td>
<td>1.0938</td>
<td>0.0912</td>
<td>5.49193</td>
<td>0.1806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1253</td>
<td>6</td>
<td>2</td>
<td>378.49 0.01443</td>
<td>0.01342 1.2378</td>
<td>0.2332 0.06285</td>
<td>0.06601</td>
<td>0.9671</td>
<td>0.0305</td>
<td>5.50004</td>
<td>0.5540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1254</td>
<td>6</td>
<td>2</td>
<td>242.25 0.00656</td>
<td>0.00592 1.4312</td>
<td>0.3777 0.00939</td>
<td>0.00910</td>
<td>1.0698</td>
<td>0.0685</td>
<td>5.49310</td>
<td>0.2191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1255</td>
<td>6</td>
<td>2</td>
<td>492.16 0.00452</td>
<td>0.00409 1.4717</td>
<td>0.4067 0.00783</td>
<td>0.00753</td>
<td>1.0728</td>
<td>0.0713</td>
<td>5.49229</td>
<td>0.1525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1256</td>
<td>6</td>
<td>2</td>
<td>318.56 0.01557</td>
<td>0.01398 1.4722</td>
<td>0.4069 0.01157</td>
<td>0.01131</td>
<td>1.0938</td>
<td>0.0911</td>
<td>5.48412</td>
<td>0.5099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1257</td>
<td>6</td>
<td>2</td>
<td>657.97 0.01592</td>
<td>0.01435 1.3521</td>
<td>0.3205 0.01940</td>
<td>0.01920</td>
<td>1.0504</td>
<td>0.0501</td>
<td>5.47954</td>
<td>0.5323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1258</td>
<td>6</td>
<td>2</td>
<td>230.99 0.00228</td>
<td>0.00203 1.5309</td>
<td>0.4470 0.00815</td>
<td>0.00785</td>
<td>1.1049</td>
<td>0.1014</td>
<td>5.49174</td>
<td>0.0803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1259</td>
<td>6</td>
<td>2</td>
<td>200.64 0.00529</td>
<td>0.00502 1.2617</td>
<td>0.2380 0.00702</td>
<td>0.00675</td>
<td>1.0913</td>
<td>0.0887</td>
<td>5.49178</td>
<td>0.1760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1260</td>
<td>6</td>
<td>2</td>
<td>865.92 0.01247</td>
<td>0.01210 1.0152</td>
<td>0.0226 0.06837</td>
<td>0.07229</td>
<td>0.9632</td>
<td>0.0345</td>
<td>5.48843</td>
<td>0.4784</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1261</td>
<td>6</td>
<td>2</td>
<td>152.65 0.00227</td>
<td>0.00215 1.3577</td>
<td>0.3127 0.01324</td>
<td>0.01276</td>
<td>1.1267</td>
<td>0.1216</td>
<td>5.49453</td>
<td>0.0843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1262</td>
<td>6</td>
<td>2</td>
<td>1547.24 0.00778</td>
<td>0.00753 1.0984</td>
<td>0.1006 0.04516</td>
<td>0.04623</td>
<td>1.0004</td>
<td>0.0027</td>
<td>5.49381</td>
<td>0.2956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1263</td>
<td>6</td>
<td>2</td>
<td>440.09 0.00647</td>
<td>0.00616 1.2401</td>
<td>0.2208 0.00965</td>
<td>0.00941</td>
<td>1.0877</td>
<td>0.0855</td>
<td>5.48506</td>
<td>0.2172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1264</td>
<td>6</td>
<td>2</td>
<td>670.55 0.01039</td>
<td>0.00989 1.1651</td>
<td>0.1580 0.01432</td>
<td>0.01411</td>
<td>1.0596</td>
<td>0.0588</td>
<td>5.48333</td>
<td>0.3468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1265</td>
<td>6</td>
<td>2</td>
<td>573.03 0.01701</td>
<td>0.01624 1.2251</td>
<td>0.2088 0.02581</td>
<td>0.02567</td>
<td>1.0897</td>
<td>0.0875</td>
<td>5.47590</td>
<td>0.5730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1266</td>
<td>6</td>
<td>2</td>
<td>612.99 0.00934</td>
<td>0.00898 1.1066</td>
<td>0.1069 0.02850</td>
<td>0.02894</td>
<td>1.0062</td>
<td>0.0076</td>
<td>5.48918</td>
<td>0.3325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1267</td>
<td>6</td>
<td>2</td>
<td>1421.86 0.01924</td>
<td>0.01842 1.0780</td>
<td>0.0802 0.03298</td>
<td>0.03331</td>
<td>1.0120</td>
<td>0.0130</td>
<td>5.47825</td>
<td>0.6559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1268</td>
<td>6</td>
<td>2</td>
<td>199.25 0.00411</td>
<td>0.00391 1.2130</td>
<td>0.1988 0.01701</td>
<td>0.01676</td>
<td>1.0581</td>
<td>0.0574</td>
<td>5.49924</td>
<td>0.1485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1269</td>
<td>6</td>
<td>2</td>
<td>1109.15 0.02166</td>
<td>0.02085 1.0175</td>
<td>0.0228 0.10439</td>
<td>0.10621</td>
<td>0.9999</td>
<td>0.0013</td>
<td>5.45795</td>
<td>0.8082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Number of Observations in Level</td>
<td>Iterations</td>
<td>PRESS Statistic</td>
<td>Cook's D</td>
<td>MDFFITS</td>
<td>COVRATIO CovParms</td>
<td>COVTRACE CovParms</td>
<td>Cook's D</td>
<td>MDFFITS</td>
<td>COVRATIO</td>
<td>COVTRACE</td>
<td>RMSE without deleted level</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1270</td>
<td>6</td>
<td>2</td>
<td>244.50</td>
<td>0.00274</td>
<td>0.00259</td>
<td>1.3405</td>
<td>0.2993</td>
<td>0.01177</td>
<td>0.01142</td>
<td>1.1156</td>
<td>0.1112</td>
<td>5.4979</td>
</tr>
<tr>
<td>1271</td>
<td>6</td>
<td>2</td>
<td>2144.70</td>
<td>0.01073</td>
<td>0.01044</td>
<td>0.9420</td>
<td>0.0530</td>
<td>0.10224</td>
<td>0.10611</td>
<td>0.9515</td>
<td>0.0469</td>
<td>5.4672</td>
</tr>
<tr>
<td>1272</td>
<td>6</td>
<td>2</td>
<td>590.22</td>
<td>0.00809</td>
<td>0.00805</td>
<td>0.9375</td>
<td>0.0556</td>
<td>0.09572</td>
<td>0.10366</td>
<td>0.9253</td>
<td>0.0727</td>
<td>5.4870</td>
</tr>
<tr>
<td>1273</td>
<td>6</td>
<td>2</td>
<td>1718.43</td>
<td>0.01658</td>
<td>0.01593</td>
<td>1.0225</td>
<td>0.0289</td>
<td>0.07846</td>
<td>0.07940</td>
<td>0.9923</td>
<td>0.0056</td>
<td>5.4681</td>
</tr>
<tr>
<td>1274</td>
<td>6</td>
<td>2</td>
<td>1226.89</td>
<td>0.00789</td>
<td>0.00759</td>
<td>1.0212</td>
<td>0.0264</td>
<td>0.06566</td>
<td>0.06641</td>
<td>0.9990</td>
<td>0.0004</td>
<td>5.4679</td>
</tr>
<tr>
<td>1275</td>
<td>6</td>
<td>2</td>
<td>802.50</td>
<td>0.02076</td>
<td>0.01991</td>
<td>1.0803</td>
<td>0.0823</td>
<td>0.06097</td>
<td>0.06151</td>
<td>1.0323</td>
<td>0.0328</td>
<td>5.4659</td>
</tr>
<tr>
<td>1276</td>
<td>6</td>
<td>2</td>
<td>558.28</td>
<td>0.00770</td>
<td>0.00740</td>
<td>1.1341</td>
<td>0.1311</td>
<td>0.02210</td>
<td>0.02226</td>
<td>1.0259</td>
<td>0.0268</td>
<td>5.4914</td>
</tr>
<tr>
<td>1277</td>
<td>6</td>
<td>2</td>
<td>471.08</td>
<td>0.00575</td>
<td>0.00549</td>
<td>1.1399</td>
<td>0.1360</td>
<td>0.01628</td>
<td>0.01608</td>
<td>1.0428</td>
<td>0.0429</td>
<td>5.4854</td>
</tr>
<tr>
<td>1278</td>
<td>6</td>
<td>2</td>
<td>287.04</td>
<td>0.00647</td>
<td>0.00617</td>
<td>1.2961</td>
<td>0.2663</td>
<td>0.02531</td>
<td>0.02486</td>
<td>1.1196</td>
<td>0.1153</td>
<td>5.4788</td>
</tr>
<tr>
<td>1279</td>
<td>6</td>
<td>2</td>
<td>1121.32</td>
<td>0.00778</td>
<td>0.00764</td>
<td>1.0635</td>
<td>0.0675</td>
<td>0.04387</td>
<td>0.04531</td>
<td>0.9942</td>
<td>0.0039</td>
<td>5.4956</td>
</tr>
<tr>
<td>1280</td>
<td>6</td>
<td>2</td>
<td>177.29</td>
<td>0.00046</td>
<td>0.00044</td>
<td>1.3015</td>
<td>0.2691</td>
<td>0.00995</td>
<td>0.00959</td>
<td>1.1171</td>
<td>0.1127</td>
<td>5.4900</td>
</tr>
<tr>
<td>1281</td>
<td>6</td>
<td>2</td>
<td>286.03</td>
<td>0.00450</td>
<td>0.00428</td>
<td>1.2540</td>
<td>0.2320</td>
<td>0.00889</td>
<td>0.00860</td>
<td>1.0885</td>
<td>0.0862</td>
<td>5.4870</td>
</tr>
<tr>
<td>1282</td>
<td>4</td>
<td>2</td>
<td>234.10</td>
<td>0.00214</td>
<td>0.00205</td>
<td>1.1971</td>
<td>0.1836</td>
<td>0.00822</td>
<td>0.00801</td>
<td>1.0714</td>
<td>0.0699</td>
<td>5.4961</td>
</tr>
<tr>
<td>1283</td>
<td>6</td>
<td>2</td>
<td>981.84</td>
<td>0.00506</td>
<td>0.00486</td>
<td>1.1599</td>
<td>0.1536</td>
<td>0.02118</td>
<td>0.02102</td>
<td>1.0363</td>
<td>0.0369</td>
<td>5.4960</td>
</tr>
<tr>
<td>1284</td>
<td>6</td>
<td>2</td>
<td>499.64</td>
<td>0.00548</td>
<td>0.00522</td>
<td>1.2370</td>
<td>0.2177</td>
<td>0.00799</td>
<td>0.00771</td>
<td>1.0778</td>
<td>0.0761</td>
<td>5.4933</td>
</tr>
<tr>
<td>1285</td>
<td>6</td>
<td>2</td>
<td>981.66</td>
<td>0.00438</td>
<td>0.00421</td>
<td>1.1746</td>
<td>0.1660</td>
<td>0.01965</td>
<td>0.01947</td>
<td>1.0429</td>
<td>0.0432</td>
<td>5.4973</td>
</tr>
<tr>
<td>1286</td>
<td>6</td>
<td>2</td>
<td>368.18</td>
<td>0.00937</td>
<td>0.00904</td>
<td>1.0593</td>
<td>0.0660</td>
<td>0.06785</td>
<td>0.07102</td>
<td>0.9838</td>
<td>0.0137</td>
<td>5.4983</td>
</tr>
<tr>
<td>1287</td>
<td>6</td>
<td>2</td>
<td>584.24</td>
<td>0.00412</td>
<td>0.00391</td>
<td>1.2434</td>
<td>0.2230</td>
<td>0.00741</td>
<td>0.00723</td>
<td>1.0778</td>
<td>0.0758</td>
<td>5.4963</td>
</tr>
<tr>
<td>1288</td>
<td>6</td>
<td>2</td>
<td>1088.79</td>
<td>0.00659</td>
<td>0.00646</td>
<td>1.0699</td>
<td>0.0744</td>
<td>0.05205</td>
<td>0.05431</td>
<td>0.9764</td>
<td>0.0214</td>
<td>5.4933</td>
</tr>
<tr>
<td>1289</td>
<td>6</td>
<td>2</td>
<td>852.49</td>
<td>0.01627</td>
<td>0.01576</td>
<td>0.9730</td>
<td>0.0194</td>
<td>0.08317</td>
<td>0.08767</td>
<td>0.9405</td>
<td>0.0576</td>
<td>5.4792</td>
</tr>
<tr>
<td>1290</td>
<td>6</td>
<td>2</td>
<td>2642.17</td>
<td>0.01166</td>
<td>0.01164</td>
<td>0.9007</td>
<td>0.0930</td>
<td>0.14855</td>
<td>0.16546</td>
<td>0.8989</td>
<td>0.0990</td>
<td>5.4918</td>
</tr>
<tr>
<td>1291</td>
<td>6</td>
<td>2</td>
<td>417.20</td>
<td>0.00285</td>
<td>0.00274</td>
<td>1.1829</td>
<td>0.1728</td>
<td>0.01065</td>
<td>0.01043</td>
<td>1.0522</td>
<td>0.0518</td>
<td>5.4908</td>
</tr>
<tr>
<td>1292</td>
<td>6</td>
<td>2</td>
<td>644.62</td>
<td>0.00492</td>
<td>0.00471</td>
<td>1.1731</td>
<td>0.1664</td>
<td>0.01929</td>
<td>0.01903</td>
<td>1.0344</td>
<td>0.0349</td>
<td>5.4833</td>
</tr>
<tr>
<td>1293</td>
<td>6</td>
<td>2</td>
<td>419.73</td>
<td>0.00809</td>
<td>0.00772</td>
<td>1.2311</td>
<td>0.2132</td>
<td>0.02056</td>
<td>0.02032</td>
<td>1.0935</td>
<td>0.0910</td>
<td>5.4787</td>
</tr>
</tbody>
</table>
Influence Diagnostics for Levels of ID

<table>
<thead>
<tr>
<th>ID</th>
<th>Number of Observations in Level</th>
<th>Iterations</th>
<th>PRESS Statistic</th>
<th>Cook's D</th>
<th>MDFFITS</th>
<th>COVRATIO</th>
<th>COVTRACE</th>
<th>Cook's D CovParms</th>
<th>MDFITS CovParms</th>
<th>COVRATIO CovParms</th>
<th>COVTRACE CovParms</th>
<th>RMSE without deleted level</th>
<th>Restricted Likelihood Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1294</td>
<td>6</td>
<td>2</td>
<td>313.92</td>
<td>0.00746</td>
<td>0.00716</td>
<td>1.1278</td>
<td>0.1252</td>
<td>0.02009</td>
<td>0.02021</td>
<td>1.0231</td>
<td>0.0239</td>
<td>5.49377</td>
<td>0.2643</td>
</tr>
<tr>
<td>1295</td>
<td>6</td>
<td>2</td>
<td>243.39</td>
<td>0.00269</td>
<td>0.00256</td>
<td>1.2912</td>
<td>0.2609</td>
<td>0.01057</td>
<td>0.01028</td>
<td>1.0963</td>
<td>0.0933</td>
<td>5.49874</td>
<td>0.0965</td>
</tr>
<tr>
<td>1296</td>
<td>6</td>
<td>2</td>
<td>1258.44</td>
<td>0.00529</td>
<td>0.00511</td>
<td>1.1282</td>
<td>0.1260</td>
<td>0.02564</td>
<td>0.02579</td>
<td>1.0227</td>
<td>0.0239</td>
<td>5.49147</td>
<td>0.1962</td>
</tr>
<tr>
<td>1297</td>
<td>6</td>
<td>2</td>
<td>1131.73</td>
<td>0.00841</td>
<td>0.00805</td>
<td>1.1473</td>
<td>0.1435</td>
<td>0.03214</td>
<td>0.03169</td>
<td>1.0466</td>
<td>0.0471</td>
<td>5.47734</td>
<td>0.2975</td>
</tr>
<tr>
<td>1298</td>
<td>6</td>
<td>2</td>
<td>264.26</td>
<td>0.00337</td>
<td>0.00320</td>
<td>1.2092</td>
<td>0.1952</td>
<td>0.00908</td>
<td>0.00881</td>
<td>1.0631</td>
<td>0.0622</td>
<td>5.49284</td>
<td>0.1179</td>
</tr>
<tr>
<td>1299</td>
<td>6</td>
<td>2</td>
<td>1615.33</td>
<td>0.00735</td>
<td>0.00725</td>
<td>0.9521</td>
<td>0.0414</td>
<td>0.08191</td>
<td>0.08690</td>
<td>0.9494</td>
<td>0.0483</td>
<td>5.48371</td>
<td>0.3305</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Restricted Likelihood Distance

Distance

Deleted ID
Fixed Effects Deletion Estimates for wts

- Intercept
- source L
- time
- time*source L

Deleted ID
Fixed Effects Deletion Estimates for wts

Trtmt 24hr

Trtmt ablv

Trtmt abst

Trtmt fenc

Deleted ID
Fixed Effects Deletion Estimates for wts

- source*Ttnt L 24hr
- source*Ttnt L ablv
- source*Ttnt L abst
- source*Ttnt L fenc

Deleted ID
Fixed Effects Deletion Estimates for wts

time*Trtmt 24hr

time*Trtmt ablv

time*Trtmt abst

time*Trtmt fenc

Deleted ID
Fixed Effects Deletion Estimates for wts

```
time*time*sour*Trtmt R abst
```

```
time*time*sour*Trtmt R fenc
```

```
Sex C
```

```
base
```

Deleted ID
Covariance Parameter Deletion Estimates for wts

UN(1,1) ID source L

UN(2,1) ID source L

UN(2,2) ID source L

UN(1,1) ID source R

Deleted ID
Covariance Parameter Deletion Estimates for wts

UN(2,1) ID source R

UN(2,2) ID source R

Residual

Deleted ID
The Mixed Procedure

Model Information

Data Set
 AGRON3.ALLSTEP1

Dependent Variable
 wts

Covariance Structure
 Unstructured

Subject Effect
 ID

Group Effect
 source

Estimation Method
 REML

Residual Variance Method
 Profile

Fixed Effects SE Method
 Kenward-Roger

Degrees of Freedom Method
 Kenward-Roger

Class Level Information

 Class Levels Values
 source 2 L R
 ID 293
 1001 1002 1003 1005 1006 1007 1008 1009 1010 1011 1012 1013 1015
 1016 1017 1018 1019 1021 1022 1023 1024 1025 1026 1027 1028 1029
 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
 1148 1150 1151 1152 1153 1154 1155 1157 1158 1159 1160 1161 1162
 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

// all calves time*time interactions with outpred
Class Level Information

Class Levels Values
 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
 1293 1294 1295 1296 1297 1298 1299

Trtmt dummy Sex
 5 6 2 C S

24hr ablv abst fenc flap

Dimensions

Covariance Parameters 7
Columns in X 52
Columns in Z per Subject 4
Subjects 293
Max Obs per Subject 6

Number of Observations

Number of Observations Read 1794
Number of Observations Used 1724
Number of Observations Not Used 70

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
 0 1 12459.91680226
 1 2 11575.67021610 0.00000014
 2 1 11575.66961824 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Group Estimate
 UN(1,1) ID source L 36.0905
Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Group</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>ID</td>
<td>source R</td>
<td>38.9885</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>ID</td>
<td>source R</td>
<td>10.6735</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>ID</td>
<td>source R</td>
<td>7.9348</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td>30.1572</td>
</tr>
</tbody>
</table>

Fit Statistics

- **-2 Res Log Likelihood**: 11575.7
- **AIC (Smaller is Better)**: 11589.7
- **AICC (Smaller is Better)**: 11589.7
- **BIC (Smaller is Better)**: 11615.4

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>884.25</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>source</th>
<th>Trtmt</th>
<th>Sex</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td>7.8097</td>
<td>3.5973</td>
<td>285</td>
<td>2.17</td>
<td>0.0308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>L</td>
<td></td>
<td></td>
<td>5.9386</td>
<td>1.8707</td>
<td>187</td>
<td>3.17</td>
<td>0.0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>R</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td></td>
<td></td>
<td></td>
<td>3.5092</td>
<td>0.7068</td>
<td>90.6</td>
<td>4.97</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*source</td>
<td>L</td>
<td></td>
<td></td>
<td>-1.6541</td>
<td>0.7574</td>
<td>119</td>
<td>-2.18</td>
<td>0.0309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*source</td>
<td>R</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>24hr</td>
<td></td>
<td></td>
<td>0.9450</td>
<td>2.2301</td>
<td>99.7</td>
<td>0.42</td>
<td>0.6727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>abiv</td>
<td></td>
<td></td>
<td>-8.5158</td>
<td>2.7386</td>
<td>99</td>
<td>-3.11</td>
<td>0.0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>abst</td>
<td></td>
<td></td>
<td>0.3493</td>
<td>2.6531</td>
<td>99.1</td>
<td>0.13</td>
<td>0.8955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>fenc</td>
<td></td>
<td></td>
<td>0.3157</td>
<td>2.2209</td>
<td>98</td>
<td>0.14</td>
<td>0.8872</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>source</th>
<th>Trtmt</th>
<th>Sex</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source*Trtmt</td>
<td>L</td>
<td>flap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>L</td>
<td>24hr</td>
<td></td>
<td>1.1769</td>
<td>2.6096</td>
<td>178</td>
<td>0.45</td>
<td>0.6526</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>time*Trtmt</td>
<td>24hr</td>
<td></td>
<td></td>
<td>0.6851</td>
<td>1.0157</td>
<td>91.8</td>
<td>0.67</td>
<td>0.5017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*Trtmt</td>
<td>ablv</td>
<td></td>
<td></td>
<td>-3.8405</td>
<td>1.2437</td>
<td>90.4</td>
<td>-3.09</td>
<td>0.0027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*Trtmt</td>
<td>abst</td>
<td></td>
<td></td>
<td>1.8799</td>
<td>1.2084</td>
<td>91.4</td>
<td>1.56</td>
<td>0.1232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*Trtmt</td>
<td>fenc</td>
<td></td>
<td></td>
<td>1.0128</td>
<td>1.0113</td>
<td>90.4</td>
<td>1.00</td>
<td>0.3193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*Trtmt</td>
<td>flap</td>
<td></td>
<td></td>
<td>0.5949</td>
<td>1.0827</td>
<td>118</td>
<td>0.55</td>
<td>0.5837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*time</td>
<td>flap</td>
<td></td>
<td></td>
<td>0.2290</td>
<td>0.2344</td>
<td>1131</td>
<td>0.98</td>
<td>0.3289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesource</td>
<td>L</td>
<td></td>
<td></td>
<td>-0.1864</td>
<td>0.1987</td>
<td>1132</td>
<td>-0.94</td>
<td>0.3482</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>source</th>
<th>Trtmt</th>
<th>Sex</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source*Trtmt</td>
<td>L</td>
<td>ablv</td>
<td></td>
<td>12.3539</td>
<td>3.1856</td>
<td>173</td>
<td>3.88</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>L</td>
<td>abst</td>
<td></td>
<td>0.9333</td>
<td>3.1133</td>
<td>179</td>
<td>0.30</td>
<td>0.7647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>L</td>
<td>fenc</td>
<td></td>
<td>2.2486</td>
<td>2.5937</td>
<td>174</td>
<td>0.87</td>
<td>0.3872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>L</td>
<td>flap</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>R</td>
<td>24hr</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>R</td>
<td>ablv</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>R</td>
<td>abst</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>R</td>
<td>fenc</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>R</td>
<td>flap</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>L</td>
<td>24hr</td>
<td></td>
<td>-0.4817</td>
<td>1.0887</td>
<td>120</td>
<td>-0.44</td>
<td>0.6590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>L</td>
<td>ablv</td>
<td></td>
<td>3.2272</td>
<td>1.3299</td>
<td>118</td>
<td>2.43</td>
<td>0.0168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>L</td>
<td>abst</td>
<td></td>
<td>-2.7070</td>
<td>1.2969</td>
<td>120</td>
<td>-2.09</td>
<td>0.0390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>L</td>
<td>fenc</td>
<td></td>
<td>0.5949</td>
<td>1.0827</td>
<td>118</td>
<td>0.55</td>
<td>0.5837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>L</td>
<td>flap</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>R</td>
<td>24hr</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>R</td>
<td>ablv</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>R</td>
<td>abst</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>R</td>
<td>fenc</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>R</td>
<td>flap</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time*time</td>
<td></td>
<td>flap</td>
<td></td>
<td>-0.1864</td>
<td>0.1987</td>
<td>1132</td>
<td>-0.94</td>
<td>0.3482</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>source</th>
<th>Trtmt</th>
<th>Sex</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>timetimesour*Trtmt</td>
<td>L</td>
<td>24hr</td>
<td></td>
<td>0.2292</td>
<td>0.1781</td>
<td>1129</td>
<td>1.29</td>
<td>0.1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>L</td>
<td>abl</td>
<td></td>
<td>-0.7545</td>
<td>0.2131</td>
<td>1129</td>
<td>-3.54</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>L</td>
<td>abst</td>
<td></td>
<td>0.3085</td>
<td>0.2143</td>
<td>1129</td>
<td>1.44</td>
<td>0.1502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>L</td>
<td>fenc</td>
<td></td>
<td>-0.2392</td>
<td>0.1770</td>
<td>1131</td>
<td>-1.35</td>
<td>0.1769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>L</td>
<td>flap</td>
<td></td>
<td>0</td>
<td>.</td>
<td></td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>R</td>
<td>24hr</td>
<td></td>
<td>0.5043</td>
<td>0.2878</td>
<td>1140</td>
<td>1.75</td>
<td>0.0800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>R</td>
<td>abl</td>
<td></td>
<td>0.5600</td>
<td>0.3494</td>
<td>1131</td>
<td>1.60</td>
<td>0.1093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>R</td>
<td>abst</td>
<td></td>
<td>0.5732</td>
<td>0.3390</td>
<td>1131</td>
<td>1.69</td>
<td>0.0912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>R</td>
<td>fenc</td>
<td></td>
<td>0.1743</td>
<td>0.2826</td>
<td>1130</td>
<td>0.62</td>
<td>0.5376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>R</td>
<td>flap</td>
<td></td>
<td>0</td>
<td>.</td>
<td></td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>C</td>
<td></td>
<td>-1.4574</td>
<td>0.7414</td>
<td>281</td>
<td>-1.97</td>
<td>0.0503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>S</td>
<td></td>
<td>0</td>
<td>.</td>
<td></td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>base</td>
<td></td>
<td></td>
<td></td>
<td>1.0093</td>
<td>0.01164</td>
<td>279</td>
<td>86.68</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>1</td>
<td>212</td>
<td>74.17</td>
<td><.0001</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>119</td>
<td>177.44</td>
<td><.0001</td>
</tr>
<tr>
<td>time*source</td>
<td>1</td>
<td>119</td>
<td>14.27</td>
<td>0.0002</td>
</tr>
<tr>
<td>Trtmt</td>
<td>4</td>
<td>176</td>
<td>1.83</td>
<td>0.1247</td>
</tr>
<tr>
<td>source*Trtmt</td>
<td>4</td>
<td>176</td>
<td>4.25</td>
<td>0.0026</td>
</tr>
<tr>
<td>time*Trtmt</td>
<td>4</td>
<td>119</td>
<td>7.25</td>
<td><.0001</td>
</tr>
<tr>
<td>timesourceTrtmt</td>
<td>4</td>
<td>119</td>
<td>4.07</td>
<td>0.0040</td>
</tr>
<tr>
<td>time*time</td>
<td>1</td>
<td>1132</td>
<td>1.04</td>
<td>0.3081</td>
</tr>
<tr>
<td>timetimesource</td>
<td>1</td>
<td>1132</td>
<td>3.24</td>
<td>0.0721</td>
</tr>
<tr>
<td>timetimesour*Trtmt</td>
<td>8</td>
<td>1131</td>
<td>4.18</td>
<td><.0001</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>281</td>
<td>3.86</td>
<td>0.0503</td>
</tr>
<tr>
<td>base</td>
<td>1</td>
<td>279</td>
<td>7513.47</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>5</td>
<td>24hr ablv abst fenc flap</td>
</tr>
</tbody>
</table>

Number of Observations Read 299
Number of Observations Used 293

All calves predicted gains full study compare trtmts
The GLM Procedure
Dependent Variable: PredGain

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>6727.49331</td>
<td>1681.87333</td>
<td>20.12</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>288</td>
<td>24074.52297</td>
<td>83.59209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>292</td>
<td>30802.01628</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square Coeff Var Root MSE PredGain Mean
0.218411 70.70143 9.142871 12.93166

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>4</td>
<td>6727.493305</td>
<td>1681.873326</td>
<td>20.12</td>
<td><.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>4</td>
<td>6727.493305</td>
<td>1681.873326</td>
<td>20.12</td>
<td><.0001</td>
</tr>
</tbody>
</table>

All calves predicted gains full study compare trtmts
The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

<table>
<thead>
<tr>
<th>Trtmt</th>
<th>PredGain LSMEAN</th>
<th>LSMEAN Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24hr</td>
<td>14.7682224</td>
<td>1</td>
</tr>
<tr>
<td>ablv</td>
<td>1.9901544</td>
<td>2</td>
</tr>
<tr>
<td>abst</td>
<td>13.2590685</td>
<td>3</td>
</tr>
<tr>
<td>fenc</td>
<td>18.0339725</td>
<td>4</td>
</tr>
<tr>
<td>flap</td>
<td>11.4832213</td>
<td>5</td>
</tr>
</tbody>
</table>

Least Squares Means for effect Trtmt
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: PredGain

<table>
<thead>
<tr>
<th>i/j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><.0001</td>
<td>0.9246</td>
<td>0.2081</td>
<td>0.1973</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><.0001</td>
<td><.0001</td>
<td><.0001</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9246</td>
<td><.0001</td>
<td>0.0710</td>
<td>0.8661</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2081</td>
<td><.0001</td>
<td>0.0710</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1973</td>
<td><.0001</td>
<td>0.8661</td>
<td>0.0002</td>
<td></td>
</tr>
</tbody>
</table>

All calves predicted gains full study compare trtmts
The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>AGRON4.ALLGAINQUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>PredGain</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Diagonal</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>REML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Residual</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>5</td>
<td>24hr ablv abst fenc flap</td>
</tr>
</tbody>
</table>

Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
<td>1</td>
</tr>
<tr>
<td>Columns in X</td>
<td>6</td>
</tr>
<tr>
<td>Columns in Z</td>
<td>0</td>
</tr>
<tr>
<td>Subjects</td>
<td>1</td>
</tr>
<tr>
<td>Max Obs per Subject</td>
<td>293</td>
</tr>
</tbody>
</table>

Number of Observations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Read</td>
<td>299</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>293</td>
</tr>
<tr>
<td>Number of Observations Not Used</td>
<td>6</td>
</tr>
</tbody>
</table>

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>83.5921</td>
</tr>
</tbody>
</table>

All calves predicted gains full study compare trtmts
Fit Statistics

-2 Res Log Likelihood 2112.1
AIC (Smaller is Better) 2114.1
AICC (Smaller is Better) 2114.1
BIC (Smaller is Better) 2117.7

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>4</td>
<td>288</td>
<td>20.12</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Least Squares Means

<table>
<thead>
<tr>
<th>Effect</th>
<th>Trtmt</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>24hr</td>
<td>14.7682</td>
<td>1.0928</td>
<td>288</td>
<td>13.51</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>ablv</td>
<td>1.9902</td>
<td>1.5031</td>
<td>288</td>
<td>1.32</td>
<td>0.1865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>abst</td>
<td>13.2591</td>
<td>1.4832</td>
<td>288</td>
<td>8.94</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>fenc</td>
<td>18.0340</td>
<td>1.0701</td>
<td>288</td>
<td>16.85</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>flap</td>
<td>11.4832</td>
<td>1.0557</td>
<td>288</td>
<td>10.88</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Differences of Least Squares Means

<table>
<thead>
<tr>
<th>Effect</th>
<th>Trtmt</th>
<th>Trtmt</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
<th>Adjustment</th>
<th>Adj P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>24hr</td>
<td>ablv</td>
<td>12.7781</td>
<td>1.8583</td>
<td>288</td>
<td>6.88</td>
<td><.0001</td>
<td>Tukey-Kramer</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>24hr</td>
<td>abst</td>
<td>1.5092</td>
<td>1.8423</td>
<td>288</td>
<td>0.82</td>
<td>0.4134</td>
<td>Tukey-Kramer</td>
<td>0.9246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>24hr</td>
<td>fenc</td>
<td>-3.2658</td>
<td>1.5295</td>
<td>288</td>
<td>-2.14</td>
<td>0.0336</td>
<td>Tukey-Kramer</td>
<td>0.2081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>24hr</td>
<td>flap</td>
<td>3.2850</td>
<td>1.5195</td>
<td>288</td>
<td>2.16</td>
<td>0.0314</td>
<td>Tukey-Kramer</td>
<td>0.1973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>ablv</td>
<td>abst</td>
<td>-11.2689</td>
<td>2.1116</td>
<td>288</td>
<td>-5.34</td>
<td><.0001</td>
<td>Tukey-Kramer</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>ablv</td>
<td>fenc</td>
<td>-16.0438</td>
<td>1.8451</td>
<td>288</td>
<td>-8.70</td>
<td><.0001</td>
<td>Tukey-Kramer</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>ablv</td>
<td>flap</td>
<td>-9.4931</td>
<td>1.8368</td>
<td>288</td>
<td>-5.17</td>
<td><.0001</td>
<td>Tukey-Kramer</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>abst</td>
<td>fenc</td>
<td>-4.7749</td>
<td>1.8289</td>
<td>288</td>
<td>-2.61</td>
<td>0.0095</td>
<td>Tukey-Kramer</td>
<td>0.0710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>abst</td>
<td>flap</td>
<td>1.7758</td>
<td>1.8205</td>
<td>288</td>
<td>0.98</td>
<td>0.3302</td>
<td>Tukey-Kramer</td>
<td>0.8661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trtmt</td>
<td>fenc</td>
<td>flap</td>
<td>6.5508</td>
<td>1.5032</td>
<td>288</td>
<td>4.36</td>
<td><.0001</td>
<td>Tukey-Kramer</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>5</td>
<td>24hr ablv abst fenc flap</td>
</tr>
</tbody>
</table>

Number of Observations Read 299
Number of Observations Used 293

All calves predicted ADG full compare trtmts
The GLM Procedure
Dependent Variable: predADG

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>4</td>
<td>4.00207811</td>
<td>1.00051953</td>
<td>20.12</td>
<td><.0001</td>
</tr>
</tbody>
</table>

All calves predicted ADG full compare trtmts

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>4.00207811</td>
<td>1.00051953</td>
<td>20.12</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>288</td>
<td>14.32154847</td>
<td>0.04972760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>292</td>
<td>18.32362658</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square Coeff Var Root MSE predADG Mean
0.218411 70.70143 0.222997 0.315406

Source DF Type III SS Mean Square F Value Pr > F
Trtmt 4 4.00207811 1.00051953 20.12 <.0001
The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

<table>
<thead>
<tr>
<th>Trtmt</th>
<th>predADG LSMEAN</th>
<th>LSMEAN Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24hr</td>
<td>0.36020055</td>
<td>1</td>
</tr>
<tr>
<td>ablv</td>
<td>0.04854035</td>
<td>2</td>
</tr>
<tr>
<td>abst</td>
<td>0.32339191</td>
<td>3</td>
</tr>
<tr>
<td>fenc</td>
<td>0.43985299</td>
<td>4</td>
</tr>
<tr>
<td>flap</td>
<td>0.28007857</td>
<td>5</td>
</tr>
</tbody>
</table>

Least Squares Means for effect Trtmt
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: predADG

<table>
<thead>
<tr>
<th>i/j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><.0001</td>
<td>0.9246</td>
<td>0.2081</td>
<td>0.1973</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><.0001 <.0001</td>
<td><.0001 <.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9246 <.0001</td>
<td>0.0710</td>
<td>0.8661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2081 <.0001</td>
<td>0.0710</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1973 <.0001</td>
<td>0.8661</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All calves predicted ADG full compare trtmts
The Mixed Procedure

Model Information

Data Set: AGRON4.ALLGAINQUAD
Dependent Variable: predADG
Covariance Structure: Diagonal
Estimation Method: REML
Residual Variance Method: Profile
Fixed Effects SE Method: Model-Based
Degrees of Freedom Method: Residual

Class Level Information

Class Levels Values
Trtmt 5 24hr abl v abst fenc flap

Dimensions

Covariance Parameters: 1
Columns in X: 6
Columns in Z: 0
Subjects: 1
Max Obs per Subject: 293

Number of Observations

Number of Observations Read: 299
Number of Observations Used: 293
Number of Observations Not Used: 6

Covariance Parameter Estimates

Cov Parm Estimate
Residual 0.04973

All calves predicted ADG full compare trtmts
Fit Statistics
-2 Res Log Likelihood -26.9
AIC (Smaller is Better) -24.9
AICC (Smaller is Better) -24.9
BIC (Smaller is Better) -21.3

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trtmt</td>
<td>4</td>
<td>288</td>
<td>20.12</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Least Squares Means

| Effect | Trtmt | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|-------|----------|----------------|----|---------|-------|-----|
| Trtmt | 24hr | 0.3602 | 0.02665 | 288| 13.51 | <.0001|
| Trtmt | ablv | 0.04854 | 0.03666 | 288| 1.32 | 0.1865|
| Trtmt | abst | 0.3234 | 0.03617 | 288| 8.94 | <.0001|
| Trtmt | fenc | 0.4399 | 0.02610 | 288| 16.85 | <.0001|
| Trtmt | flap | 0.2801 | 0.02575 | 288| 10.88 | <.0001|

Differences of Least Squares Means

| Effect | Trtmt | Trtmt | Estimate | Standard Error | DF | t Value | Pr > |t| | Adjustment | Adj P |
|--------|-------|-------|----------|----------------|----|---------|-------|-----|----------------|-------|
| Trtmt | 24hr | ablv | 0.3117 | 0.04533 | 288| 6.88 | <.0001| Tukey-Kramer | <.0001|
| Trtmt | 24hr | abst | 0.03681 | 0.04493 | 288| 0.82 | 0.4134| Tukey-Kramer | 0.9246|
| Trtmt | 24hr | fenc | -0.07965 | 0.03730 | 288| -2.14 | 0.0336| Tukey-Kramer | 0.2081|
| Trtmt | 24hr | flap | 0.08012 | 0.03706 | 288| 2.16 | 0.0314| Tukey-Kramer | 0.1973|
| Trtmt | ablv | abst | -0.2749 | 0.05150 | 288| -5.34 | <.0001| Tukey-Kramer | <.0001|
| Trtmt | ablv | fenc | -0.3913 | 0.04500 | 288| -8.70 | <.0001| Tukey-Kramer | <.0001|
| Trtmt | ablv | flap | -0.2315 | 0.04480 | 288| -5.17 | <.0001| Tukey-Kramer | <.0001|
| Trtmt | abst | fenc | -0.1165 | 0.04461 | 288| -2.61 | 0.0095| Tukey-Kramer | 0.0710|
| Trtmt | abst | flap | 0.04331 | 0.04440 | 288| 0.98 | 0.3302| Tukey-Kramer | 0.8661|
| Trtmt | fenc | flap | 0.1598 | 0.03666 | 288| 4.36 | <.0001| Tukey-Kramer | 0.0002|
Supplemental figure S1: Mean of actual weights of all calves, presented as main treatment groups (no shipment classification). Weaning method designations are different from those used in the manuscript. 24hr is the SEP group, which had 24 hour separation from dam prior to weaning; ablv is AW-I, which were abruptly weaned and immediately shipped; abst is AW-D, which were weaned abruptly but remained at ranch of origin through D28; fenc is fenceline weaned (FL); and flap is nose-flap (NF). Time 1 reflects weaning, with time -2 representing first weight acquisition, upon which assignment to treatment was based; time -1 reflects base weight at time of study initiation (first separation from dam for the SEP group occurred immediately after this weighing); time 0 represents time of second separation for SEP group and placement of nose flaps for NF group; time 2 is D7; time 3 is D14; and time 4 is D28.
Supplemental figure S2: Mean of actual weights of all calves, presented as a single parameter reflecting both main treatment groups and shipment classification (either shipped on D7 [B] or remaining on ranch of origin throughout study [A]). Weaning method designations are different from those used in the manuscript. 24hr is the SEP group, which had 24 hour separation from dam prior to weaning; ablvC is AW-I, which were abruptly weaned and immediately shipped; abstA is AW-D, which were weaned abruptly but remained at ranch of origin through D28; fenc is fenceline weaned (FL); and flap is nose-flap (NF). Time 1 reflects weaning, with time -2 representing first weight acquisition, upon which assignment to treatment was based; time -1 reflects base weight at time of study initiation (first separation from dam for the SEP group occurred immediately after this weighing); time 0 represents time of second separation for SEP group and placement of nose flaps for NF group; time 2 is D7; time 3 is D14; and time 4 is D28.
Supplemental figure S3: Mean of predicted weights of all calves, presented as a single parameter reflecting both main treatment groups and shipment classification (either shipped on D7 [B] or remaining on ranch of origin throughout study [A]). Weaning method designations are different from those used in the manuscript. 24hr is the SEP group, which had 24 hour separation from dam prior to weaning; ablvC is AW-I, which were abruptly weaned and immediately shipped; abstA is AW-D, which were weaned abruptly but remained at ranch of origin through D28; fenc is fenceline weaned (FL); and flap is nose-flap (NF). Time 1 reflects weaning, with time -2 representing first weight acquisition, upon which assignment to treatment was based; time -1 reflects base weight at time of study initiation (first separation from dam for the SEP group occurred immediately after this weighing); time 0 represents time of second separation for SEP group and placement of nose flaps for NF group; time 2 is D7; time 3 is D14; and time 4 is D28.
Supplemental figure S4: Actual weights of calves from location #1, presented as main treatment groups (no shipment classification). Weaning method designations are different from those used in the manuscript. 24hr is the SEP group, which had 24 hour separation from dam prior to weaning; abl is AW-I, which were abruptly weaned and immediately shipped; abst is AW-D, which were weaned abruptly but remained at ranch of origin through D28; fenc is fenceline weaned (FL); and flap is nose-flap (NF). Time points are different from figures 1 and 2. In this figure, time 0 reflects weaning, with time -2 representing base weight at time of study initiation (first separation from dam for the SEP group occurred immediately after this weighing); time -1 represents time of second separation for SEP group and placement of nose flaps for NF group; time 1 is D7; time 2 is D14; and time 3 is D28.
Supplemental figure S5: Actual weights of calves from location #2, presented as main treatment groups (no shipment classification). Weaning method designations are different from those used in the manuscript. 24hr is the SEP group, which had 24 hour separation from dam prior to weaning; ablv is AW-I, which were abruptly weaned and immediately shipped; abst is AW-D, which were weaned abruptly but remained at ranch of origin through D28; fenc is fenceline weaned (FL); and flap is nose-flap (NF). Time points are different from figures 1 and 2. In this figure, time 0 reflects weaning, with time -2 representing base weight at time of study initiation (first separation from dam for the SEP group occurred immediately after this weighing); time -1 represents time of second separation for SEP group and placement of nose flaps for NF group; time 1 is D7; time 2 is D14; and time 3 is D28.