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Supplementary material S1

Three methods for performing structural identifiability analysis of dynamic models
This section describes briefly three methods for testing structural identifiability in dynamic models. Consider the model described by the following ordinary differential equations


   				    (1)

where  is the time,  is the vector of state variables,  is the vector of model observables, and  is the vector of external stimuli (input vector). The equations contain a set of parameters defined by the vector, and f, g are vector functions. 

Laplace Transform
If the model in Eq. (1) is linear, a classical approach for testing its structural identifiability is via the analysis of the transfer function of the model resulting from the Laplace transformation (Bellman and Astrom, 1970). The transfer function matrix  is defined by
					   					    (2)
where  is the argument of the Laplace domain,   and are the Laplace transforms of the observables () and inputs (). 
Once  is written in canonical form, we can proceed to write the transfer function matrix for two parameters sets . Further, by establishing the relation  we can derive a set of equations translating the identities of the coefficients of  and .
If the solution for the set of equations is unique for , that is , the model is structurally identifiable. 
For illustration, let us consider the following single-input and single-output (SISO) model


     		                                    (3)
with parameters   and the input . The observable  is the state variable . By applying the Laplace transform, we obtain
    			    (4)
where  correspond respectively to the state variable and the input variable in the Laplace domain. The model observable in the Laplace domain is . The transfer function is given by 

    (5)
The identity equations are 
          					              (6)
           			              (7)
From Eq. (6) and Eq. (7), we can conclude that the parameter  is uniquely identifiable while the parameters  are nonidentifiable since Eq. (7) have infinite solutions. 

Many examples of identifiability analysis for linear compartmental models are presented in Carson et al., 1983. 

Taylor series expansion
This approach was developed by Pohjanpalo, 1978. It assumes that the vector functions f, g in Eq. (1) are continuously differentiable in their arguments, implying that the state and the observable vectors can have infinitely many time derivatives. The development of the Taylor series of the observable  in the model described by Eq. (1) results 
         (8)

Let us denote
     					    (9)

Since the observable vector is a unique function of time, all its derivatives () are unique and known. The structural identifiability of the model is determined from the analysis of the equations of the successive derivatives  evaluated at two parameters sets . The model is structurally identifiable if 

		                           (10) 
where  is at least the number of unknown parameters.

As example, consider the following model 





     		                                  (11)

With parameters  and the input . The model has two state variables  and one observable  that corresponds to the state variable . By developing the successive derivatives of , we obtain 
  						          				  (12)
  				  				  (13)
 	            		  (14)

The model is globally identifiable. The parameter can be uniquely obtained from the coefficient , and subsequently  can be uniquely recovered from . 


Generating series
This method was developed by Walter and Lecourtier, 1982 and it is conceptually similar to the Taylor series approach.  Consider the model described by the following ordinary differential equations


   				            (15)


where  () and g are analytic, implying that the model observables  can be expanded in series with respect to time and the model inputs. The coefficients of the series are   and the successive Lie derivatives evaluated at 
                                                       				  (16)
where  is the Lie derivative of g along f, defined by

  		  (17)
with  the number of state variables.

Analogous to the Taylor series, let  the vector of the series coefficients. The model is structurally identifiable if (Walter and Pronzato, 1996).

                     			  (18) 
As example, consider again the model in Eq. (11), which can be written as 


   				                       (19)
where  ,   ,    
The first Lie derivative operators are
 				 				         	  (20)
                                          	  						  (21)
The coefficients of the series are the following Lie derivatives 
 
  					  			  (22)
 
      
     								  (23)
From the coefficient in Eq. (22), it is deduced that  is identifiable. From Eq. (23), we obtain that  is identifiable. 

Finally, the interested reader is referred to recent literature on structural identifiability methods and their comparison (Chis et al., 2011; Miao et al., 2011; Raue et al., 2014). 
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