The last stand before Rubin: semi-automated inverse modeling of galaxy-galaxy strong lensing systems CNPq

João Paulo Correia de França^{1,+}, Martin Makler^{2,1}

+joaofranca@cbpf.br

CBPF

¹Brazilian center for Research in Physics (CBPF), Brazil, ²ICAS, ICIFI, Universidad Nacional de San Martín, Argentina

Compilation of SL candidate systems

- 31569 candidate SL systems
- **Cutouts** on the current wide-field subarcsecond seeing surveys
 - HSC, DES, Legacy, KiDS, CFHTLS, CS82, +
- Crossmatch with **spectroscopic surveys**
 - SDSS, Gama, +
- 4167 Single lens galaxies

Cutouts

Aggregated data

Modeling pipeline

Modeling Pipeline for single lens systems

Session	Phase	Component	Model	Prior Info	
Source	SP1	Lens Mass	SIE+Shear	-	
Parametric	511	Source Light	Sérsic	-	
	SI1 SI2	Lens Mass	SIE+Shear	SP1	-
Source		Source Light	MPR	-	
Inversion		Lens Mass	SIE+Shear	SP1	
		Source Light	MPR	SI1	

Source parametric: Guess the best fit parameters for the lens mass

CAPES

Source Inversion: Pixelized source reconstruction

 $M_c(\eta, \psi)r = d + n$

Total mass: Power-law

SOAR 2022A & 2022B data

Many applications require σ_v (including tests on modify gravity)

- 21 strong lenses
- Single slit: spectra of lens and images
- Aim: lens velocity dispersions

SI2 EPL+Shear Lens Mass Lens Power-Law LPL SI1 MPR Source Light

Building on Etherington et al.

Modeling results for J1223-0210

Example applications

Combining modeling and spectroscopic analysis we can:

Test **modify gravity** with the slip parameter (γ)

 $d\tau^{2} = dt^{2} \left(1 - \frac{2M}{r}\right) - dr^{2} \left(1 - \frac{2\gamma M}{r}\right) - r^{2} d\phi^{2}$

Generic metric:

For General Relativity (GR): $\gamma_{\rm GR} = 1$

Components:

For the **SOAR sample** we obtained:

$\gamma = 1.17 - 0.33$	$\gamma =$	$1.17 \stackrel{+0.29}{_{-0.33}}$
------------------------	------------	-----------------------------------

Large scale simulations predicts that the density profile of halos at large distances is $\rho_{r>R_e} \propto r^{-3}$

However, observational data and simulations shows that at galaxy scales the total density profile is close to **isothermal**. For galaxy-scale systems on the **SOAR sample**:

- obtained for each of them measurements of **FWHM**
- We derived as the seeing the **mean measurement** of the set of individual measurements of FWHM

Sérsic light profile

 $I_n = I_0 \exp\left\{-c_n \left| \left(\frac{r}{r_{\text{off}}}\right)^{\frac{1}{n}} - 1 \right| \right\}$

ETG (Bulk + Disk profile)

 $I_{\text{lens}}(r) = I_n(r) + I_1(r)$

Lens light subtraction

Masking arcs to fit the lens light profile

Iteractive process to improve the lens light subtraction

 $|\alpha = 1.96 \pm 0.02|$

Future work

- Classify systems according to their properties
- Provide detailed modeling analysis for hundreds of systems
- Provide self-contained modify gravity tests with full information for light and density profiles on a system-by-system basis using our modelling with less external priors
- Use our sample to provide extensive database for ML applications on real data (classification, regression, segmentation...)