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To develop and test our method, we use outputs from two strong lens classifiers on 
Hyper-Suprime Cam (HSC) data. These classifiers are:
• A neural network (HOLISMOKES VI, Cañameras et al. (2021))  applied to 5.4×10!

galaxies in HSC PDR2.
• Citizen science classifications from Space Warps (Sonnenfeld et al. (2020)) of 
~300,000 objects using HSC S17A.

These were cross-matched to within 1”, producing ~110,000 galaxies for which both 
classifier outputs were available. For a subset of 3,514 typically high-scoring objects, 
grades were available following subsequent visual inspection. We used these grades 
as a ‘ground-truth’, to determine the performance of each classifier. Figure 3 shows 
the distribution of scores for cross-matched objects.

What data are we using?

With the arrival of wide-area telescopes such as the Vera 
Rubin Observatory, Euclid and Roman space telescopes, the 
number of strong lenses identified will increase to 
~10! (Collett 2015, Holloway 2023 in prep). Current lens 
detection techniques require significant time-investment to 
remove false positives identified by automated or human 
classifiers. Our work aims to do the following:
1. Produce calibrated probabilities that a given system is 

strongly lensed. 
2. Identify and test a methodology to combine multiple strong 

lens classifiers, aiming to maximise purity without 
significant compromises on completeness. 

Summary

We first produced a mapping from classifier output to calibrated 
probability.  We took the distribution of grade A+B candidates 
(considered true lenses) as a function of classifier output ranking 
(hereafter ‘grade distribution’) and applied the following procedures 
to determine this mapping for each classifier, show in Figure 1: 
Isotonic regression (fitting a monotonically increasing curve to the 
grade distribution), variable bin fitting  (akin to a moving average, but 
with a fixed number of lenses per bin), and the Kullback-Leibler
Importance Estimation Procedure (KLIEP, Sugiyama 2008, a form of 
Gaussian mixture model). These calibration mappings are validated in 
Figure 2.
We combined the calibrated outputs to maximise the purity of the 
resultant sample. We first used a generalised mean of the 

form: 𝑃 𝑝" , 𝛼 = #
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where 𝑝" denotes the calibrated 

outputs from the 𝑁 different classifiers, and 𝛼 is a tuneable parameter. 
𝛼 = 1 corresponds to the usual geometric mean, while 𝛼 → ±∞
correspond to 𝑀𝑎𝑥 𝑝" , … , 𝑝$ and 𝑀𝑖𝑛 𝑝" , … , 𝑝$ . We also trialled 
Bayesian probability combination using multivariate normal mixtures  
detailed in Pirš & Štrumbelj (2019). The results of the best performing 
methods are shown in Figure 5.

What’s our method?
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What do we gain from combining classifiers?

There are a significant number of objects for which the two classifiers disagree, 
suggesting there is scope for an ensemble classifier which can find the ‘best of both 

worlds’.

Higher purity can be achieved through combining multiple strong lens classifiers

The left hand plot shows the distribution of 
classified objects as a function of their calibrated 
citizen science and neural network scores, shaded 
by the fraction of true lenses in each bin. The 
annotations indicate the number of graded objects 
in each bin. The purity of lenses is greatest where 
both classifiers give high scores. This is reflected in 
the ROC curve on the right, for which combining 
the scores provides the highest TPR in the low FPR 
(i.e. high purity) regime. The harmonic mean (𝛼 =
− 1) is the best performing when prioritising purity, 
however most of the combined methods show 
improved purity over the individual classifiers.

We calibrate the classifiers via the mappings above (top row), then validate this calibration on a 
separate validation set (bottom row). A perfectly calibrated classifier would lie along the y=x line.

We can calibrate strong-lens classifiers to produce 
accurate probabilities a given object is a lens


