The CubeSpec space mission: Asteroseismology of massive stars from time-series optical spectroscopy

D. M. Bowman^{1,*}, B. Vandenbussche¹, H. Sana¹, A. Tkachenko¹, G. Raskin¹, T. Delabie², B. Vandoren², P. Royer¹, S. Garcia¹, T. Van Reeth¹, and the CubeSpec Collaboration

¹ Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium ² Arcsec NV, Blijde Inkomststraat 22, 3000 Leuven, Belgium

*dominic.bowman@kuleuven.be

A&A Instrument Paper ⇒

KU LEUVEN

Low-cost, high-cadence, high-resolution, time-series optical spectroscopy from space

Introduction

There is a need to constrain the interior rotation, mixing and angular momentum mechanisms within massive stars, as they strongly influence stellar evolution. Asteroseismology – the study of stellar structure from pulsations - is an excellent method for probing interior physical processes of massive stars [1]. The NASA TESS **mission** is providing high-precision light curves of thousands of massive stars [2], but time-series spectroscopy is highly advantageous in fully characterising their heat-driven pulsations.

The Belgian-led ESA/KU Leuven CubeSpec mission is specifically designed to provide low-cost space-based spectroscopy with specific capabilities to facilitate spectroscopic pulsation mode identification and asteroseismology of massive stars.

Technical Specifications

CubeSpec is a 6U cubesat to launch in 2024. The platform includes a deployable Cassegrain telescope with rectangular Sun shade primary mirror $(9 \times 19 \text{ cm}^2)$ and a compact high-resolution echelle spectrograph ($\mathbf{R} = 55000$) [3].

Prioritised Target List

A compact design requires bright (V < 4 mag) targets for asteroseismic science case.

Common type of pulsating massive star: **B** Cep stars, which have pulsation periods 2 < P < 8 hr and masses 6 < 100 $M < 30 M_{\odot}$ [1].

Right Ascension

To maximise success, search for all known pulsating massive stars a priori was done using literature and new TESS light curves [4].

Identified 23 ^β Cep stars from 90 bright targets. Highest priority are slow rotators with large amplitude and long period pulsators [4].

Asteroseismic science requirements:

- $R \ge 50000$
- S/N > 200
- cadence < hours
- exposure time < mins
- time series > months
- wavelength range including silicon triplet: 4552, 4567, and 4574 Å

CubeSpec will enable pulsation mode geometry identification in terms of spherical harmonics from spectral line profile variability.

Expected performance

Simulations using **BRUCE** code [5]:

- R = 55000
- inclination angle of 60°
- $v \sin i = 25 \text{ kms}^{-1}$
- cadence of 15 min
- noise to emulate S/N = 200

Line profile variability expected for β Cep with pulsation of 5.2498 d⁻¹ [6].

Secondary Science Cases

- winds, mass-loss, magnetosphere variability
- absolute flux calibration of stellar atmosphere models
- diffuse interstellar bands
- exoplanet and stellar host activity

Acknowledgements

The CubeSpec mission development is funded by the Belgian federal Science Policy Office (BELSPO) through the in-orbit demonstration ESA General Support Technology Programme (GSTP) programme of the European Space Agency. DMB gratefully acknowledges a senior postdoctoral fellowship from the Research Foundation Flanders (FWO) with grant agreement no. 1286521N.