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= — the combination of several measurements taken at various modulator

angles provides the full characterization of the entrance beam

» Modulator = 2 thin double-plates of MgF, rotating as a stack at 6 optimized
angular positions

» Analyzer = Wollaston prism in MgF,
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« — the parameters of the plates (thickness, orientation) and modulator angles
are optimized to obtain the best efficiency in the extraction of the polarization
information
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will offer the benefit of combining spectroscopy with polarimetry. This will enable us, among other things, to probe the intricacies of massive-
star winds and in particular their large and small-scale structure, either from magnetic activity, instabilities or fast rotation.

[ts innovative combination of effective area and time coverage will allow us to study the great diversity of targets necessary to transform our
understanding of many science areas in stellar astronomy as well as interstellar medium and protoplanetary disks studies.

will map stellar wind and magnetospheric structures by uniting time domain, polarimetry and spectroscopy capability in the near- and far-UV
(NUV and FUV), which are densely populated with high-opacity resonance lines encoding a rich array of diagnostic information.

This exciting science program will be possible thanks to an instrument that combines advances in high reflectivity UV coatings and delta-doped CCDs
with high quantum efficiencies to provide dedicated FUV spectropolarimetry for the first time in 25 years.

will be equipped with two distinct channels:

-

The FUV channel (Chl), covers 122-200nm at a
resolution of R=30k. This spectral resolution is more
than 30 times better than WUPPE, with 10 times
better effective area, while reaching shorter
wavelengths. This will be crucial to gain the ability to
access strong lines of species like NIv and Silv.

-

The NUV channel (Ch2) covers 122-320nm at
R~140-4k. It will enable us to monitor fainter targets
at a modest spectral resolution but at a high
cadence.

The instrumental polarization stability in both channels
is designed to provide signal-to-noise ratios (SNR) for
UV polarimetry precision of 1x10° per exposure, per
resolution element. The precision can be further
improved with spectral binning and/or stacking
multiple exposures.

The 3-year mission of is 100 times longer than
that of WUPPE, corresponding to orders of magnitude
gains in stellar and interstellar observations.

Science Objectives — Massive Stars: Polstar will use UV spectropolarimetry to study the
three main mechanisms that are capable of significant change in the evolution of a massive
star:
+ S1: Kilo-gauss (kG) magnetic fields in which magnetic braking and magnetospheric
plasma trapping alter mass loss and spin-down rates.
S2: Non-spherical structure and clumping in stellar winds that alter mass and angular
momentum loss rates.
S3,4,5: Explore rapidly-rotating stars to understand dynamics at birth and evolution due
to binary mass transfer and loss to interstellar medium.

Science Objectives — Interstellar Medium: Addressing the nature of UV interstellar medium
(ISM) extinction through polarization, Polstar will:
» 11,2: Determine if Super-Serkowski UV polarization is driven by proximity to massive star EUV
sources by examining the characteristics of the smallest dust grains
13: Determine the carrier for the 2175A extinction feature, and its relation to poly-aromatic
hydrocarbons (PAHS).
|4: Determine for the first time the relationship of interstellar UV polarization to ISM metallicity
by probing the Magellanic Clouds.

Science Objectives — Protoplanetary Disks (PPDs): To understand .

processes governing the assembly and evolution of star and

planetary systems, Polstar will:

» Determine the methods of accretion active in PPDs around
lower-mass stars compared to higher mass stars.

» Determine the nature of transient events in the inner regions of
planet-forming disks and how that influences accretion.




