

ABSTRACT: A detailed X-ray study of a massive binary called HD 93205 lying in the Carina nebula region has been made using XMM-Newton observations. The X-ray spectra of HD 93205 display negligible counts above 5 keV. The two thermal plasma emission models with average temperature values as ~0.20 and ~0.60 keV are required to explain the spectra indicating X-ray emission from HD 93205 is rather soft. The X-ray flux variations with binary separation are noticed to be in qualitative agreement with the wind-wind collision model but with few deviations from the expected 1/D trend (D is the binary separation).

Introduction

- The Carina nebula region is an interesting starforming region of the galaxy containing some of the youngest and most massive O-type stars.
- ◆HD 93205 lies in the vicinity of WR 25 and is a O3.5 V((f))+O8 V binary system.
- The orbital parameters in Table 1 indicate that HD 93205 has an elliptical orbit consisting of an earliest type star (Sota et al. 2014, ApJS, 211, 10).
- previous ♦ Many studies discussed about have variable X-ray emission from the source.
- The aim of the present analysis is to systematically probe the wind collision in HD 93205 in X-rays.

Observations	and	Data	Red	luction
---------------------	-----	------	-----	---------

- The X-ray data observed by XMM-Newton for a total of 24 epochs has been used for HD 93205.
- ◆The data span over a period of ~15 years from 2000 to 2015.
- HEASoft tasks.

Parameter	Value	
Period (d)	6.08102 ± 0.00066	
Primary:		
$V_o ({\rm km \ s^{-1}})$	3.6 ± 2.5	
$K_1 ({\rm km \ s^{-1}})$	139.1 ± 6.0	
$a \sin i$ (km)	$(1.015 \pm 0.047) imes 10^7$	
eccentricity	0.49 ± 0.03	
ω (degrees)	12 ± 3	
$T_{periastron}$ (JD)	2442532.784 ± 0.060	
$M_{pri} \sin^3 i (M_\odot)$	39	
Secondary:		
$K_2 ({\rm km \ s^{-1}})$	360 ± 53	
$M_{sec} \sin^3 i \left(M_{\odot} \right)$	15	

Table 1: Orbital parameters of HD 93205 from Conti & Walborn 1976, ApJ, 207, 502.

◆ Data has been analyzed Figure 1: XMM-Newton image using standard SAS and of the Carina region in 0.3-10.0 keV energy band.

- ♦ The much counts
- were
- cm^2
- ♦ Avera keV keV.
- ♦ The 4(left)around

X-ray emission characteristics of an O+O binary HD 93205

Bharti Arora and Jeewan C. Pandey Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India contact: bhartiarora612@gmail.com

X-ray light curve and spectral analysis

• The phase folded X-ray light curves of the binary (using the ephemeris provided in Table 1) are shown in Figure 2 in three energy bands defined as

> Broad (B) = 0.3-5.0 keVSoft (S) = 0.3-2.0 keVHard (H) = 2.0-5.0 keV

X-ray spectra appear \neg_{∞} softer with negligible above 5 keV in Figure 3.

• Total eight orbital phase bins analyzed by jointly fitting the spectra obtained = 0.12within very close by orbital phases using two temperature thermal plasma model "apec" ² 0.04 in XSPEC modified by the local and galactic N_{μ} .

• Fixed $N_{\rm H}^{\rm ISM}$ $= 0.24 \times 10^{22}$ (Jenkins, 2019, ApJ, 872, 55) and varied all other model parameters.

age
$$kT_1 = 0.20 \pm 0.07$$

and $kT_2 = 0.60 \pm 0.05$

ISM corrected X-ray flux as a function of orbital phase is shown in Figure periastron and the apastron.

Figure 2: X-ray light curve of HD 93205 in different energy bands as observed by XMM Newton-PN.

which is maximum Figure 3: X-ray spectra of HD 93205 fitted with two becomes minimum close to components of thermal plasma emission model.

- 4(right).

"IAUS361: Massive Stars Near and Far'

X-ray flux variability

• Fluxes F_{ism}^{s} and F_{ism}^{H} show deviation from the straight line on plotting with binary separation in Figure

• The deviation could arise from anisotropic absorption of X-rays in an eccentric binary at different orbital phases.

• The presence of asymmetries and inhomogeneities in the stellar winds may add further deviations from the expected wind-wind collision behavior.

orbital phase (left) and binary separation (right).

Conclusions

• The maximum ISM corrected X-ray luminosity of HD 93205 is estimated to be 7.73×10^{32} erg/s in 0.3-5.0 keV energy band with $\log(L_x/L_{bol}) = -6.20$.

◆Most of X-ray emission from HD 93205 comprises of the soft energy flux indicating comparatively less strong wind interaction in case of an O+O binary.

• A detailed quantitative analysis of wind collision in HD 93205 point toward departure from adiabatic interaction.