Supplying angular momentum to the jittering jets explosion mechanism

Dmitry Shishkin and Noam Soker

Core Collapse Supernova:

Stars more than 10 times the mass of the sun eventually develop an Iron (Fe) core. This Iron core collapses to form a neutron star. $E_{\rm explosion} \sim 10^{51} erg$ $e + p = n + \nu_e$

40-year-old question:

How does $\approx 1\%$ of the gravitational energy released during neutron star formation **explode** the star?

Solutions:

Neutrino explosion: The conventional model. Neutrinos ($v_e, \bar{v}_e, v_\mu, \bar{v}_\mu, v_\tau, \bar{v}_\tau$) heat the exploding gas. Albeit popular, has fundamental issues.

Jittering jets explosion: We suggest that stochastic angular momentum fluctuations in the collapsing core give rise to stochastic accretion disks that launch jittering jets.

Results

From 1D stellar evolution simulation models using $M \in S \land$ we get the convective zones.

Taking the inner most convective region mass coordinate that satisfies $\overline{j}_{conv}(m) > 2.5 \times 10^{15} cm^2 s^{-1}$ as the remnant mass:

Silicon Burning

The **convection** becomes stronger during the collapse and supplies perturbation seeds that form stochastic accretion disks.

Conclusion

• We find vigorous convective regions at core collapse to have sufficient angular momentum fluctuations to explode the star according to the *jittering jets explosion mechanism*.