9 Sgr is a very massive O+O binary of 53 and 39 M_{\odot} , and is one of the most massive galactic binaries ever resolved. It serves as a valuable anchor point in the upper left HRD to gauge stellar evolution models.

We use relative astrometry from VLTI/PIONIER and VLTI/GRAVITY and the orbital fitting tool spinOS to determine the period P, the eccentricity *e*, the time of periastron passage T_0 and the Euler angles *i*, Ω and ω defining the orientation of the orbit on the sky.

from A&A:

We corroborate the results from Le Bouquin et al. (2017) that the **orbit is very eccentric**, and has a period of 9 years.

The interferometry puts a **strict constraint on the inclination** of $i > 85^{\circ}$, while the spectroscopic solution from Rauw et al. (2012) required $i \approx 45^{\circ}$.

While fixing the other orbital elements to those found from the geometrical orbit, we sample the (K_1, K_2) space and determine the RV semi-amplitudes that minimize the chi-squared statistic between the recombined disentangled spectra and the observed spectra.

We find a minimum at $(K_1, K_2) = (36, 49)$ km s⁻¹, and a Monte Carlo sampling (MC) around this minimum shows our **results are distict** from $(K_1, K_2) = (26, 39)$ of Rauw et al. (2012). The combined geometrical orbit and RV semiamplitudes result in **dynamical masses of 53 and 39** M_{\odot} .

Geometric orbit

Spectral disentangling

We adjust FASTWIND models to obtain estimates for atmospheric parameters of effective temperature T_{eff} , surface gravity log*g* and elemental abundances of both components.

Instead of relying on fitted spectral lines to determine the radial velocity (RV) semi-amplitudes, as done in the studies of Rauw et at. (2012, 2016), we employ **grid-based Fourier spectral disentangling** based on fd3 (Hadrava, 1995, Ilijic et al. 2004, Ilijic, 2017).

Atmospheric modeling

We find very **low log***g* **for dwarf O stars**, most likely due to repeated normalization in the disentangling methodology.

Furthermore, making **quantitative abundance determinations are challenging**, although we detect hints of **enchanced N in the primary** and **enhanced C in the secondary**.

We use the Bayesian analysis tool BONNSAI (Schneider et al. to compare our inferred stellar parameters to the evolutionary models from Brott et al. (2011).

In the primary, we find a hint of nitrogen enrichment in the best fit atmosphere model. This **suggests enchanced internal mixing processes** in very massive stars compared to the implementation of Brott et al. (2011). To match the enhanced N in the atmosphere model of the primary, **fast rotation is required** in the evolutionary model, which in turn requires a **misaligned rotation axis** to the orbital axis.

The secondary star has most likely not evolved from baseline CNO values, and we find the components are **coeval at about 1 Myr.**

Massive binaries are **scarce yet instrumental** in the calibration of stellar evolution models. Long-period double lined spectroscopic binaries (SB2s) that are also resolved offer an excellent alternative to eclipsing SB2s to derive dynamical masses. 9 Sgr has a period of 9 years and has been monitored spectroscopically and interferometrically since 2009. However, **tension exists in the literature** between the spectroscopically and interferometrically inferred inclinations, **casting doubt** on the current spectroscopic analysis.

Introduction