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Abstract
Clustering algorithms constitute a multi-disciplinary analytical tool commonly used to summarise large data sets. Astronomical classifications are based on similarity, where celestial objects are assigned to a specific class based on their physical features. This

research aims to obtain relevant information from high-dimensional data (at least three input variables in a data-frame) derived from stellar light curves using a number of clustering algorithms such as K-means and Expectation Maximization. In addition to identifying
the best performing algorithm, a subset of features that best define stellar groups will be identified. Three methodologies are applied to a sample of Kepler spacecraft time series in the temperature range 6500K− 19000K. Given the spectral range, at least four types of
stars are expected to be found; δ−Scuti, γ Doradus, Slowly Pulsating B (SPB) and (the still equivocal) Maia stars.

Introduction
Variable star classification is an initial and vital step of asteroseismo-
logical studies; therefore, it is crucial that is performed with high pre-
cision. In the era of big data where high-dimensionality is common,
this stage may be done through Machine Learning (ML) techniques as
traditional methods have proven less efficient to perform this signifi-
cant stage in variable stellar studies. Given that most stellar surveys
provide data sets that contain surface physical properties of stars, the
Harvard classification method may be used as an initial classification
to infer the nature of candidate stars. A rapid second stage of astero-
seismological classification inference can be done using high dimen-
sional data-frames with features derived primarily from light curves
through clustering algorithms. Cluster analysis is a data mining tool
where objects in a data-frame are separated into groups based on their
similarity. Clustering algorithms are commonly used as a component
of the exploration phase of data analysis as they are able to compress
the information contained in high dimensional data-frames and em-
phasise some of the features that best describe the structure of the
datasets.

A sample of Kepler Time Series data containing candidates from
Bradley et al. [2] and Balona et al. [1] was transformed to a high
dimensional frame (6217 × 14) prior to assigning them to respective
groups through cluster analysis. Labeled candidates from Bradley et
al. and Balona et al. were considered to be atraining set to infer
cluster labels.

Main Objective
The primary objective was to group candidate stars in the late B to
F spectral regions based on the similarity of their colour indices and
light-curve features such as period, Fourier parameters and skewness,
in order to deduce their pulsation class and/or subclass. Another ob-
jective was to evaluate the algorithms’ efficiencies as applied. A com-
bination of hard and soft hard partitioning methods was used to iden-
tify the structure in the generated data-frame consisting of approxi-
mately 6,217 candidate stars. Methods used were:
1. K-means: A hard clustering technique which typically uses the Eu-

clidean method to measure the similarity between objects
2. Gaussian Mixed Models as Expectation Maximization (EM): A

soft clustering approach where probabilities are used to assign ob-
jects to clusters.

3. K-means via Principal Component Analysis (PCA ): A modi-
fied/hybrid K-means method where Principal Components (PCs)
derived from Principal Component Analysis are used as a new fea-
ture set.

Methodology
The following analytical steps were done to deduce the structure of
the Kepler data-frame.
1. Generate features that best describe candidate stars in a data-frame.

Four types:
(a) Colour indices: Features sourced from Kepler survey g−r, J−K

and g−K. These were a combination of SDSS and 2MASS pho-
tometric systems.

(b) Period searching: The Lomb Scargle Analysis was used to esti-
mate the best period of the light curves. The corresponding am-
plitude was also determined.

(c) Model fitting through Least Squares Spectral Analysis
(LSSA): This technique was used to determine Fourier param-

eters , Rj1 =
Aj
A1

and φ′j1 = φj − jφ1 with j > 1 from light

curves respectively. Rj1 is the amplitude ratio and φ′j1 is the rela-
tive phase difference. Parameters were calculated from output of
a Fourier analysis model defined by:

y(t) = y0(t) +

4∑
j=1

Aj cos(j2πf + φj) (1)

where y0(t) is the average emitted flux, f = 1
P , P is the period

extracted using the Lomb Scargle analysis and φj is the phase of
the waveform.

(d) Statistical features: Based on the overall distribution of the mag-
nitudes in a light/phase curve. These are statistical parameters
such as weighted mean, weighted standard deviation, skewness,
kurtosis.

2. Apply clustering algorithms and infer an efficient algorithm for Ke-
pler light curves through validation techniques

3. Find possible labels for groups from a plausible algorithm.
Features listed in 1b, 1c and 1d were generated using a python mod-

ule UPSILON accessed as upsilon.generate features all() [3]. Pe-
riods extracted were validated using gatspy.LombScargle() where

three significant periods were extracted from light curves. A subset
of features was selected based on natural clustering technique. Fea-
tures in the data-frame are based on Sarro et al. [4]. A list of features
is shown in table 1.

Table 1: Features used in clustering methods. These were engineered with upsilon
and colour indices sourced from Kepler stellar parameters data

Feature Description

g − r SDSS Colour Index
J −K 2MASS Colour Index
g −K SDSS/2MASS Colour Index
logP log of the period extracted with Lomb Scargle Analysis
A1 Amplitude from FD at period from upsilon
R21 2nd to 1st amplitude ratio from FD
R31 3rd to 1st amplitude ratio from FD
φ21 Relative phase difference of the 2nd and 1st phases from FD
φ31 Relative phase difference of the 3rd and 1st phases from FD
γ1 Skewness
γ2 Kurtosis
Q3−1 Difference between 3rd and 1st quantiles
Ψη η (degree of change of trends) of a phased curve
ΨCS Range of cumsum of the phased curve

Clustering Methods
Two clustering algorithms were applied: K-means and Expectation
Maximization (EM). The K-means algorithm shown in figure 1 is a
hard partitioning method which aims to minimise the distortion de-
fined by:

fKM =
1

n

n∑
i=1

d(xi, cai) (2)

where n is the number of objects in a data frame and d(xi, cai) is the
Euclidean distance between cluster ci with centroid a and object i.

Algorithm 1: K-Means Clustering Algorithm
Input : Data set X containing n items, number of clusters k
Output: Cluster models M = {mj , j = 1 . . . k}, assignments

A = {ai, i = . . . n}
1 Initialise k cluster with models randomly chosen xi ε X
2 repeat
3 for i = n to n do
4 Let cj be xi’s closest cluster. Set ai to j.

; // Item Assignment

5 end for
6 for j = n to k do
7 Set cluster model mj to be mean of {xi |= j}

; // Cluster Update

8 end for

9 until;
10 A does not change

Figure 1: K-means Algorithm

The Expectation Maximization (EM) algorithm shown in figure 2
is a probabilistic approach to clustering and is known as soft/fuzzy.
Maximum likelihoods are used to assign an object to clusters. The
EM algorithm assumes that features in a data frame are normally dis-
tributed and aims to minimise the objective function:

fEM = L(µ, σ|X )

=

n∏
i

(xi|µj, σj)
(3)

where
∏

(xi|µj, σj) is the product of the probabilities.

Algorithm 1: Expectation Maximization Clustering Al-
gorithm

Input : Data set X containing n items, number of clusters k
Output: Cluster models M = {mj = (µj , σj), j = 1 . . . k}, assignments

A = {ai, i = . . . n}
1 Initialise k cluster with models randomly chosen xi ε X (or K-means).
2 repeat

3 Estimate the likelihood L using equation eq:em. ; // Expectation

4 for i = 1 to n do
5 for j = 1 to k do
6 Update cluster memberships p(ai = j, µj , σj) using

equation . . .

7 end for

8 end for
9 for j = 1 to k do

10 Update parameters µj , σj of eauqtions . . . ; // Maximization

11 Update prior cluster probabilities p(ai = j) using equation . . .

12 end for

13 until;

14 A does not change ; // Convergence

Figure 2: Expectation Maximization (EM) Algorithm

Results
Hopkins statistics showed no clustering tendency for the Kepler data-
frame (≈ 0.18), which is lower than the desired threshold; H ≥ 0.5.
Based on a-priori knowledge from the training set, K-means was
implemented using nine clusters. The EM method resulted in nine
optimal clusters in the data-frame (see figure 4). Silhouette analy-
sis for the K-means algorithm resulted in coefficients approximately
zero (≈ 0.20). This implies that some stars were incorrectly as-
signed (”misclassified”) and that there is an overlap between clusters,
suggesting a probabilistic clustering approach may be the preferred
method for stellar studies.

In addition to evaluating the efficiency of the algorithms, K-means
via PCA was computed with the first seven Principal Components
(PCs). These PCs were chosen so that they contained at least 80%
of the data information. This resulted in a ”new reduced” 6217 × 7

data-frame. Evaluation of the features through PCA showed that the
period (logP ) of the oscillations contributed the least to the PCs and
that skewness (γ1), φ21, φ31 and colour index g − K (gkmag) con-
tributed significantly to the PCs. Therefore, clustering analysis can
arguably be applied in surveys that consist primarily of light curves.
Feature evaluation also showed that colour indices of stars are highly
correlated; therefore, in order to reduce the complexity rate, at most
two of these features may be included in the data-frame.
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Figure 3: Contribution of variables with respect to K-means via PCA which show
that features such as amplitude, φ21 and φ31 may be removed from the feature set

Using the training set to infer cluster labels, it is evident that all
three algorithms resulted in one ”empty” cluster or at least one cluster
that had at most two target stars. Rotating variables and δ-Scuti stars
were both prominent in two clusters in each of the algorithms, which
may require modification of the algorithms used such that there is a
function that implements cluster merging. Distinct clusters with low
misclassification rates were obtained for Maia variables and Eclipsing
Binaries. All three algorithms resulted in a cluster that contained at
least three types of pulsating stars with dominant classes being γ-Dor,
δ-Scuti and hybrid γ-Dor / δ-Scuti stars.
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Figure 4: Clustering results from K-means and EM algorithms using Kepler Time
Series data frame

Conclusions
Clustering algorithms can be the used as a data exploration tool to
minimise the time and effort required in the initial procedures of do-
ing Asteroseismology. Furthermore, they can aid the discovery of new
groups/sub-groups. Given the overlapping characterisation of variable
stars using the EM algorithm, probabilistic clustering algorithms may
be more beneficial with respect to variable stellar light curves.

Forthcoming Research
A large scale search for pulsating stars in the late B to F regions stars
through clustering algorithms will be conducted in various large sur-
vey databases. The efficiency of hybrid probabilistic methods such as
Modal Expectation Maximization (MEM) will be studied.
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