

Vrije Universiteit Brussel

J-P. De Greve

C. De Loore

W. Van Rensbergen

Algols contribute to the Interstellar Mass

Binary evolution

¿Without (conservative) or with (liberal) mass loss from the system ?

Compare

Observations of ALGOLS

Orbital periods very accurate Mass ratios "rather accurate"

With

Theory

The "Brussels" binary evolutionary library (http://www.vub.ac.be/astrofys) traces binary evolution from birth through various ALGOL stages

Conservative simulation

starting from:

Initial distributions of orbital periods and mass ratios of non-evolved binaries with a B-type primary are fitted to the catalogue of spectroscopic binaries (http://sb9.astro.ulb.ac.be)

Liberal scenario

1. Gainer spins up when hit by RLOFmaterial from loser

2. Gainer spins down due to tidal friction

3. Gainer's critical velocity is reduced by push of its nuclear & accretion luminosity

4. As long as veq is below Vcrit **RLOF occurs conservatively** ($\beta = 1$)

5. At high Mdonor we have veq ≈ vcrit

6. All matter lost by the donor at higher rates leaves the system, blown away by the gainer as wind ($\beta < 1$)

7. Mass lost by the system typically adds up to 10% of the mass lost by the loser

Concusion: "parameter β "

Mgainer = - β Mdonor ; $0 \le \beta \le 1$

is time-dependent and determined self-consistently

Conservative evolution: Case B produces much more long periods than observed:

Far more ALGOL A than ALGOL B cases

More than 70% ALGOLS have mass ratios above q = 0.4 : **Conservative** evolution produces too many ALGOLS with small q:

Conservative evolution can not always be the case

Example: Evolution of a (6+3.6) M_{\odot} - binary with initial period P = 2.5 d: Almost always conservative ($\beta = 1$). Only during \approx 150.000 years of early RLOF A- evolution $\approx 1 \text{ M}_{\odot}$ is lost by the system (blue insert)

> Later ≈ 0.05 M_{\odot} is lost during ≈ 30.000 years of RLOF B-evolution (red insert)

The ALGOL lives now longer at higher mass ratios: meeting the observations

without changing much its orbital period: good agreement between theory and observations remains