XXVI General Assembly of IAU PRAHA- 2006

A.F.Kholtygin¹, T.E.Burlakova^{2,3}, S.N.Fabrika², G.G.Valyavin^{2,3}, M.V.Yushkin²

Binary stars as a probe for massive star evolution: a case of δ Ori A

¹Astronomical institute of Saint-Petersburg University, Russia,

afk@theor1.astro.spbu.ru

 ²Special Astrophysical Observatory, Russia
³Bohyunsan Optical Astronomy Observatory, Korea

Parameters of δ Ori A, O9.5II (V=2.23^m)

Distance to Aa ¹ , R⊙	Aa ¹	Aa ² 33	Ab 25000
Spectral class	09.5	B0.5III	В
Orbital period		5.7325d	200 Years
R/R _O	11	4	?
M/M	10.3	5.3	23
lg(L/L☉)	5.26	4.08	?
Т _{eff} , К	33000	27000	?
L/L _{total}	70%	7%	23%
Vsin i, km/s	157±6	138 ± 16	≈300
V∞, <mark>km/s</mark>	2000	1500	-
dM/dt, M _☉	1.1×10 ⁻⁶	?	?

Sources of data:

Miller et al., Ap.J., **499**, L195 (2002) Harvin et al., Ap.J., **565**, 1216 (2002) Lamers &Leitherer, Ap.J., **412**, 571 (1993) Voels et al, Ap.J., **340**, 1073 (1989)

δ **Ori A, O9.5**ΙΙ

Stars of δ Ori A system on HR diagram

Pamyatnykh, ActaAstr, 49, 119 (1999)

Observations:

SAO, 6m telescope, Jan 10/11 2004 NES, R=60000 $\lambda\lambda$ 4521 –6003 Å CCD 2K*2K, 40 spectra, T=2^h50^m S/N=500-800

Smooth Time variation spectra

 $\sigma^{2}(\lambda, S) = TVS(\lambda, S) =$ $\frac{1}{N-1} \left(\sum_{i=1}^{N} \left[g_{i} \Delta F(\lambda_{j}, t_{i}, S) - \overline{g_{i} \Delta F(\lambda_{j}, t_{i}, S)} \right]^{2} \right)$

 $\Delta F(\lambda,t,S) = F(\lambda,t,S) - F_{mean}(\lambda,t,S)$

 $\Delta F(\lambda, t, S) = \langle \Delta F(\lambda, t) \rangle_{S}$ smoothed with Gauss filter flux in the [λ , λ +d λ] interval at the time t. S is the filter width.

 $TVS(\lambda, S) \xrightarrow[S \to 0]{} TVS(\lambda)$

where $TVS(\lambda)$

is determined by Fullerton et al., Ap.J. Suppl. Ser.,103. P. 475 (1996)

Smooth TVS spectra

4890¹ambda

Dynamical spectra

Modeling line profiles

$I(\delta \operatorname{Ori} A) = r_1 \times I(\lambda, Aa^1) + r_2 \times I(\lambda, Aa^2) + r_3 \times I(\lambda, Ab)$

r₁ =70 % r₂ = 7% r₃ = 23 %

Fourier spectra of LPV $v \approx 5.9 \pm d^{-1}$ P= $3.5^{h} - 4.9^{h}$

H_β: Restored LPV (-142.5 :-135 km/s)

Fourier power spectrum

Restored vs. real LPV

Wavelet analysis of LPV in spectra of δ Ori A

$$W(s,u) = \frac{1}{s} \int_{-\infty}^{\infty} f(x) \psi\left(\frac{x-u}{s}\right) dx$$

$\begin{array}{l} \textit{MHAT wavelet} \\ \psi(x) {=} (1-x^2) {\exp(-x^2/2)} \end{array}$

Dynamical wavelet spectra: $W(s,u) \rightarrow W(s,u,T)$ T – time of observations

Dynamical wavelet spectra

S ——

S ——

Hel λ 4713: dynamical wavelet spectra for S=25 km/s for different cuts levels from 0.0 to 0.75

NRP Pulsation mode (I,m)

$$\ell \approx 0.10 + 1.09 |\Delta \Psi_0| / \pi \qquad (l,m) = (m) \approx -1.33 + 0.54 |\Delta \Psi_1| / \pi \qquad (2,-2)$$

Telting & Schrijvers, A&A Suppl. Ser., 317, 723 (1997)

 $V(\theta, \phi) \propto e^{im\phi + \sigma t}$ $v_{LPV} \approx 5.9 d^{-1} P_{LPV} = d = 4.1^{h}$

if pulsation mode (l,m)=(2,-2).

Then at m=2 $\omega_{\text{NRP}} = 2\pi \cdot \sigma/2$

 T_{rec} = 2* P_{LPV} = 0.32 d=7.4^h Phase velocity: ω_{NRP} =2 $\pi \times \sigma$ /m=40.3 rad/d

$$\begin{split} T_{cross} &= 3.5^{h} - crossing \ time \ for \ main \ details \\ of \ wavelet \ spectra \\ T_{cross} &\approx P_{LPV} \approx 4.1^{h} \longrightarrow the \ wavelet \ analysis \\ support \ the \ hypothesis \ about \ the \ NRP \\ nature \ the \ LPV \ in \ spectra \ of \ \delta \ Ori \ A \end{split}$$

Pulsation frequencies on the Period – T_{eff} diagram

from Pamyatnykh A.A., Acta Astron., 49, 119-148 (1999) Points : NRP pulsation modes Filled circles: β Cep stars

Large circles are positions of Aa¹ and Aa² stars on the diagram

What stars pulsate?

The main component Aa^1 is out of the pulsation domain for 12 M \odot star, but is exactly in the pulsation domain for 30 M \odot star.

This means:

- a) The set of pulsation frequencies of the star with strong wind and mass M are not in agreement with pulsation modes of the main sequence star with the same mass, but without mass loss;
- b) Only second (Aa²) and third (Ab) components of δ Ori A triple system are pulsating stars.

Conclusions

- 1. All investigated lines are variable wit amplitude 0.5-1\%;
- In dynamical wavelet spectra of lines Helλ4686, Helλ4713, Hβ and CIIIλ5696 the large scale components were detected in the zone [-Vsin i - Vsin i] for the main star Aa¹ with crossing time 4-5^h. The regular components out of this zone were detected ;
- 3. The regular LPV variations with the recurrence time $P \approx 4^h$ are detected. The evidences, that the variations are connected with non-radial pulsations in the quadrupole mode (I,m)=(2,-2) are found;
- 4. The nature of the pulsation of the stars in δ Ori A system are unknown.